Acta Veterinaria et Zootechnica Sinica ›› 2020, Vol. 51 ›› Issue (7): 1506-1514.doi: 10.11843/j.issn.0366-6964.2020.07.004
• REVIEW • Previous Articles Next Articles
HUANG Yalin1,2,3, CHENG Anchun1,2,3, WANG Mingshu1,2,3*
Received:
2019-12-20
Online:
2020-07-25
Published:
2020-07-22
CLC Number:
HUANG Yalin, CHENG Anchun, WANG Mingshu. Effect of Alphaherpesvirus Glycoprotein gE on Virulence[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(7): 1506-1514.
[1] | FARNSWORTH A, GOLDSMITH K, JOHNSON D C. Herpes simplex virus glycoproteins gD and gE/gI serve essential but redundant functions during acquisition of the virion envelope in the cytoplasm[J]. J Virol, 2003, 77(15):8481-8494. |
[2] | FARNSWORTH A, JOHNSON D C. Herpes simplex virus gE/gI must accumulate in the trans-Golgi network at early times and then redistribute to cell junctions to promote cell-cell spread[J]. J Virol, 2006, 80(7):3167-3179. |
[3] | LUBINSKI J M, LAZEAR H M, AWASTHI S, et al. The herpes simplex virus 1 IgG Fc receptor blocks antibody-mediated complement activation and antibody-dependent cellular cytotoxicity in vivo[J]. J Virol, 2011, 85(7):3239-3249. |
[4] | MCGRAW H M, AWASTHI S, WOJCECHOWSKYJ J A, et al. Anterograde spread of herpes simplex virus type 1 requires glycoprotein E and glycoprotein I but not US9[J]. J Virol, 2009, 83(17):8315-8326. |
[5] | ZHU Z, HAO Y, GERSHON M D, et al. Targeting of glycoprotein I(gE) of varicella-zoster virus to the trans-Golgi network by an AYRV sequence and an acidic amino acid-rich patch in the cytosolic domain of the molecule[J]. J Virol, 1996, 70(10):6563-6575. |
[6] | OLSON J K, BISHOP G A, GROSE C. Varicella-zoster virus Fc receptor gE glycoprotein:serine/threonine and tyrosine phosphorylation of monomeric and dimeric forms[J]. J Virol, 1997, 71(1):110-119. |
[7] | TIRABASSI R S, ENQUIST L W. Mutation of the YXXL endocytosis motif in the cytoplasmic tail ofpseudorabies virus gE[J]. J Virol, 1999, 73(4):2717-2728. |
[8] | BERARDUCCI B, RAJAMANI J, REICHELT M, et al. Deletion of the first cysteine-rich region of the varicella-zoster virus glycoprotein E ectodomain abolishes the gE and gI interaction and differentially affects cell-cell spread and viral entry[J]. J Virol, 2009, 83(1):228-240. |
[9] | SPRAGUE E R, WANG C, BAKER D, et al. Crystal structure of the HSV-1 Fc receptor bound to Fc reveals a mechanism for antibody bipolar bridging[J]. PLoS Biol, 2006, 4(6):e148. |
[10] | MO C J, LEE J, SOMMER M H, et al. Varicella-zoster virus infection facilitates VZV glycoprotein E trafficking to the membrane surface of melanoma cells[J]. J Med Virol, 2003, 70(S1):S56-S58 |
[11] | JOHNSON D C, WEBB M, WISNER T W, et al. Herpes simplex virus gE/gI sorts nascent virions to epithelial cell junctions, promoting virus spread[J]. J Virol, 2001, 75(2):821-833. |
[12] | WAN L, MOLLOY S S, THOMAS L, et al. PACS-1 defines a novel gene family of cytosolic sorting proteins required for trans-Golgi network localization[J]. Cell, 1998, 94(2):205-216. |
[13] | CAMPADELLI-FIUME G, MENOTTI L, AVITABILE E, et al. Viral and cellular contributions to herpes simplex virus entry into the cell[J]. Curr Opin Virol, 2012, 2(1):28-36. |
[14] | HEMING J D, CONWAY J F, HOMA F L. Herpesvirus capsid assembly and DNA packaging[J]. Adv Anat Embryol Cell Biol, 2017, 223:119-142. |
[15] | RADTKE K, KIENEKE D, WOLFSTEIN A, et al. Plus-and minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures[J]. PLoS Pathog, 2010, 6(7):e1000991. |
[16] | FARNSWORTH A, WISNER T W, JOHNSON D C. Cytoplasmic residues of herpes simplex virus glycoprotein gE required for secondary envelopment and binding of tegument proteins VP22 and UL11 to gE and gD[J]. J Virol, 2007, 81(1):319-331. |
[17] | HAN J, CHADHA P, MECKES D G J, et al. Interaction and interdependent packaging of tegument protein UL11 and glycoprotein e of herpes simplex virus[J]. J Virol, 2011, 85(18):9437-9446. |
[18] | MO C J, SCHNEEBERGER E E, ARVIN A M. Glycoprotein E of varicella-zoster virus enhances cell-cell contact in polarized epithelial cells[J]. J Virol, 2000, 74(23):11377-11387. |
[19] | POLCICOVA K, GOLDSMITH K, RAINISH B L, et al. The extracellular domain of herpes simplex virus gE is indispensable for efficient cell-to-cell spread:evidence for gE/gI receptors[J]. J Virol, 2005, 79(18):11990-12001. |
[20] | CARPENTER J E, JACKSON W, DE SOUZA G A, et al. Insulin-degrading enzyme binds to the nonglycosylated precursor of varicella-zoster virus gE protein found in the endoplasmic reticulum[J]. J Virol, 2010, 84(2):847-855. |
[21] | LI Q X, ALI M A, COHEN J I. Insulin degrading enzyme is a cellular receptor mediating varicella-zoster virus infection and cell-to-cell spread[J]. Cell, 2006, 127(2):305-316. |
[22] | LI Q X, ALI M A, WANG K N, et al. Insulin degrading enzyme induces a conformational change in varicella-zoster virus gE, and enhances virus infectivity and stability[J]. PLoS One, 2010, 5(6):e11327. |
[23] | BERARDUCCI B, RAJAMANI J, ZERBONI L, et al. Functions of the unique N-terminal region of glycoprotein E in the pathogenesis of varicella-zoster virus infection[J]. Proc Natl Acad Sci USA, 2010, 107(1):282-287. |
[24] | YEH P C, HAN J, CHADHA P, et al. Direct and specific binding of the UL16 tegument protein of herpes simplex virus to the cytoplasmic tail of glycoprotein E[J]. J Virol, 2011, 85(18):9425-9436. |
[25] | HAN J, CHADHA P, STARKEY J L, et al. Function of glycoprotein E of herpes simplex virus requires coordinated assembly of three tegument proteins on its cytoplasmic tail[J]. Proc Natl Acad Sci USA, 2012, 109(48):19798-19803. |
[26] | CARMICHAEL J C, WILLS J W. Differential requirements for gE, gI, and UL16 among herpes simplex virus 1 syncytial variants suggest unique modes of dysregulating the mechanism of cell-to-cell spread[J]. J Virol, 2019, 93(15):e00494-19. |
[27] | OWEN D J, CRUMP C M, GRAHAM S C. Tegument assembly and secondary envelopment of alphaherpesviruses[J]. Viruses, 2015, 7(9):5084-5114. |
[28] | ROLLER R J, HAUGO A C, YANG K, et al. The herpes simplex virus 1 UL51 gene product has cell type-specific functions in cell-to-cell spread[J]. J Virol, 2014, 88(8):4058-4068. |
[29] | ROLLER R J, FETTERS R. The herpes simplex virus 1 UL51 protein interacts with the UL7 protein and plays a role in its recruitment into the virion[J]. J Virol, 2015, 89(6):3112-3122. |
[30] | FEUTZ E, MCLELAND-WIESER H, MA J L, et al. Functional interactions between herpes simplex virus pUL51, pUL7 and gE reveal cell-specific mechanisms for epithelial cell-to-cell spread[J]. Virology, 2019, 537:84-96. |
[31] | STYLIANOU J, MARINGER K, COOK R, et al. Virion incorporation of the herpes simplex virus type 1 tegument protein VP22 occurs via glycoprotein E-specific recruitment to the late secretory pathway[J]. J Virol, 2009, 83(10):5204-5218. |
[32] | MARINGER K, STYLIANOU J, ELLIOTT G. A network of protein interactions around the herpes simplex virus tegument protein VP22[J]. J Virol, 2012, 86(23):12971-12982. |
[33] | CHOULJENKO D V, KIM I J, CHOULJENKO V N, et al. Functional hierarchy of herpes simplex virus 1 viral glycoproteins in cytoplasmic virion envelopment and egress[J]. J Virol, 2012, 86(8):4262-4270. |
[34] | SUN H P, OLSEN H S, MÉRIGEON E Y, et al. Recombinant human IgG1 based Fc multimers, with limited FcR binding capacity, can effectively inhibit complement-mediated disease[J]. J Autoimmun, 2017, 84:97-108. |
[35] | QUAST I, KELLER C W, MAURER M A, et al. Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity[J]. J Clin Invest, 2015, 125(11):4160-4170. |
[36] | JENKS J A, GOODWIN M L, PERMAR S R. The roles of host and viral antibody Fc receptors in herpes simplex virus (HSV) and human cytomegalovirus (HCMV) infections and immunity[J]. Front Immunol, 2019, 10:2110. |
[37] | BOURNAZOS S, DILILLO D J, RAVETCH J V. The role of Fc-FcγR interactions in IgG-mediated microbial neutralization[J]. J Exp Med, 2015, 212(9):1361-1369. |
[38] | LEE C H, ROMAIN G, YAN W P, et al. IgG Fc domains that bind C1q but not effector Fcγ receptors delineate the importance of complement-mediated effector functions[J]. Nat Immunol, 2017, 18(8):889-898. |
[39] | SPRAGUE E R, MARTIN W L, BJORKMAN P J. pH dependence and stoichiometry of binding to the Fc region of IgG by the herpes simplex virus Fc receptor gE-gI[J]. J Biol Chem, 2004, 279(14):14184-14193. |
[40] | NDJAMEN B, FARLEY A H, LEE T, et al. The herpes virus Fc receptor gE-gI mediates antibody bipolar bridging to clear viral antigens from the cell surface[J]. PLoS Pathog, 2014, 10(3):e1003961. |
[41] | PONTES M S, DEVRIENDT B, FAVOREEL H W. Pseudorabies virus triggers glycoprotein gE-mediated ERK1/2 activation and ERK1/2-dependent migratory behavior in T cells[J]. J Virol, 2015, 89(4):2149-2156. |
[42] | PONTES M S, VAN WAESBERGHE C, NAUWYNCK H, et al. Pseudorabies virus glycoprotein gE triggers ERK1/2 phosphorylation and degradation of the pro-apoptotic protein Bim in epithelial cells[J]. Virus Res, 2016, 213:214-218. |
[43] | LAMOTE J A S, KESTENS M, VAN WAESBERGHE C, et al. The pseudorabies virus glycoprotein gE/gI complex suppresses type I interferon production by plasmacytoid dendritic cells[J]. J Virol, 2017, 91(7):e02276-16. |
[44] | NORDÉN R, NILSSON J, SAMUELSSON E, et al. Recombinant glycoprotein E of varicella zoster virus contains glycan-peptide motifs that modulate B cell epitopes into discrete immunological signatures[J]. Int J Mol Sci, 2019, 20(4):E954. |
[45] | EVERETT R D. The spatial organization of DNA virus genomes in the nucleus[J]. PLoS Pathog, 2013, 9(6):e1003386. |
[46] | TAYLOR M P, ENQUIST L W. Axonal spread of neuroinvasive viral infections[J]. Trends Microbiol, 2015, 23(5):283-288. |
[47] | LIU Z F, BRUM M C, DOSTER A, et al. A bovine herpesvirus type 1 mutant virus specifying a carboxyl-terminal truncation of glycoprotein E is defective in anterograde neuronal transport in rabbits and calves[J]. J Virol, 2008, 82(15):7432-7442. |
[48] | CHOWDHURY S I, COATS J, NEIS R A, et al. A bovine herpesvirus type 1 mutant virus with truncated glycoprotein E cytoplasmic tail has defective anterograde neuronal transport in rabbit dorsal root ganglia primary neuronal cultures in a microfluidic chamber system[J]. J Neurovirol, 2010, 16(6):457-465. |
[49] | HOWARD P W, WRIGHT C C, HOWARD T, et al. Herpes simplex virus gE/gI extracellular domains promote axonal transport and spread from neurons to epithelial cells[J]. J Virol, 2014, 88(19):11178-11186. |
[50] | MCGRAW H M, FRIEDMAN H M. Herpes simplex virus type 1 glycoprotein E mediates retrograde spread from epithelial cells to neurites[J]. J Virol, 2009, 83(10):4791-4799. |
[51] | WANG F S, ZUMBRUN E E, HUANG J L, et al. Herpes simplex virus type 2 glycoprotein E is required for efficient virus spread from epithelial cells to neurons and for targeting viral proteins from theneuron cell body into axons[J]. Virology, 2010, 405(2):269-279. |
[52] | KRATCHMAROV R, KRAMER T, GRECO T M, et al. Glycoproteins gE and gI are required for efficient KIF1A-dependent anterograde axonal transport of alphaherpesvirus particles in neurons[J]. J Virol, 2013, 87(17):9431-9440. |
[53] | AWASTHI S, FRIEDMAN H M. Molecular association of herpes simplex virus type 1 glycoprotein E with membrane protein Us9[J]. Arch Virol, 2016, 161(11):3203-3213. |
[54] | DURAINE G, WISNER T W, HOWARD P, et al. Herpes simplex virus gE/gI and US9 promote both envelopment and sorting of virus particles in the cytoplasm of neurons, two processes that precede anterograde transport in axons[J]. J Virol, 2017, 91(11):e00050-17. |
[55] | HOWARD P W, HOWARD T L, JOHNSON D C. Herpes simplex virus membrane proteins gE/gI and US9 act cooperatively to promote transport of capsids and glycoproteins from neuron cell bodies into initial axon segments[J]. J Virol, 2013, 87(1):403-414. |
[56] | CH'NG T H, ENQUIST L W. Neuron-to-cell spread of pseudorabies virus in a compartmentedneuronal culture system[J]. J Virol, 2005, 79(17):10875-10889. |
[57] | DANIEL G R, SOLLARS P J, PICKARD G E, et al. Pseudorabies virus fast axonal transport occurs by a pUS9-independent mechanism[J]. J Virol, 2015, 89(15):8088-8091. |
[58] | LYMAN M G, FEIERBACH B, CURANOVIC D, et al. Pseudorabies virus Us9 directs axonal sorting of viral capsids[J]. J Virol, 2007, 81(20):11363-11371. |
[59] | SUN Y, LIANG W, LIU Q Y, et al. Epidemiological and genetic characteristics of swine pseudorabies virus in mainland China between 2012 and 2017[J]. PeerJ, 2018, 6:e5785. |
[60] | WANG Y B, QIAO S L, LI X W, et al. Molecular epidemiology of outbreak-associated pseudorabies virus (PRV) strains in central China[J]. Virus Genes, 2015, 50(3):401-409. |
[61] | TONG W, LIU F, ZHENG H, et al. Emergence of a pseudorabies virus variant with increased virulence to piglets[J]. Vet Microbiol, 2015, 181(3-4):236-240. |
[62] | FAN J D, ZENG X D, ZHANG G Q, et al. Molecular characterization and phylogenetic analysis of pseudorabies virus variants isolated from Guangdong province of southern China during 2013-2014[J]. J Vet Sci, 2016, 17(3):369-375. |
[63] | WU X M, CHEN Q Y, CHEN R J, et al. Pathogenicity and whole genome sequence analysis of a pseudorabies virus strain FJ-2012 isolated from Fujian, southern China[J]. Can J Infect Dis Med Microbiol, 2017, 2017:9073172. |
[64] | GU Z Q, HOU C C, SUN H F, et al. Emergence of highly virulent pseudorabies virus in southern China[J]. Can J Vet Res, 2015, 79(3):221-228. |
[65] | DONG J, GU Z Q, JIN L, et al. Polymorphisms affecting the gE and gI proteins partly contribute to the virulence of a newly-emergent highly virulent Chinese pseudorabies virus[J]. Virology, 2018, 519:42-52. |
[1] | SONG Yan, YUAN Yongfeng, QIAN Hongyu, LI Xincan, LUO Hongyan, WANG Zhiying, ZHOU Zuoyong. Identification and Partial Biological Characteristics Analysis of Corynebacterium pseudotuberculosis Isolated from Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 680-687. |
[2] | LIU Xinhuan, YUN Jialei, MAO Li, LI Jizong, HAO Fei, HE Miaofeng, YANG Leilei, ZHANG Wenwen, CHENG Zilong, SUN Min, LIU Maojun, WANG Shaohui, BAI Juan, LI Wenliang. Isolation, Identification, Virulence Genes and Drug Resistance Analysis of Escherichia coli Isolated from Diarrheal Goat and Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3445-3454. |
[3] | ZHAO Feifei, LI Jie, HAN Ning, XIE Shiting, ZENG Zhenling. Antibacterial Drug Resistance Analysis of Klebsiella pneumoniae Isolated from Slaughterhouse [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 3044-3053. |
[4] | JIANG Meihan, WEI Jintao, GUO Yuming, GUO Shuangshuang, DU Encun. Effects of Essential Oils on Gut Lesions, Carbohydrate Active Enzymes Spectrum and eggNOG Pathways of Intestinal Flora in Broilers Challenged with Clostridium perfringens [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2448-2457. |
[5] | JIANG Zenghai, TENG Lin, HE Anwen, LIU Yanyan, YUE Min, HE Qigai. Genomic Analysis of Salmonella Typhimurium Isolates and Salmonella Serotype 4, [5], 12: i:- Isolates from Pig-borne Food Chain [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1199-1209. |
[6] | LU Bikai, YUAN Xiufang, XU Lihua, YU Bin, SU Fei, YE Shiyi, CHEN Yijie, JIANG Liming, ZHANG Hui, LI Junxing. Molecular Serotyping and Apx Gene Profile Analysis of Actinobacillus pleuropneumoniae Isolates [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1341-1346. |
[7] | ZHI Yan, MEI Chen, LIU Zhenyi, WUYUN Gerile, WANG Hongjun, HU Ge. Research Progress on the Virulence Factors of Avibacterium paragallinarum [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4934-4942. |
[8] | WANG Jianing, ZHANG Ziqiang, KONG Dejing, FENG Caicai, ZHANG Feike, LIU Yumei. Isolation and Identification of Klebsiella pneumoniae in Rabbits [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5198-5206. |
[9] | XIAO Jinlong, WANG Hao, WAN Quan, SHEN Jue, ZHANG Bo, ZHAO Weiwei, DENG Jing, WANG Xi, ZHAO Ru, XIAO Peng, GAO Hong. Induction of IPEC-J2 Pyroptosis by E.coli HPI from Saba Pig via NLRP3/ASC/Caspase-1 Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5218-5227. |
[10] | YANG Menglin, ZHENG Shiqi, PENG Kai, WANG Wei, HUANG Yanhua, PENG Jie. Isolation and Identification of Pigeon-derived Salmonella Typhimurium and Pathogenic Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4880-4888. |
[11] | ZHANG Kaichuan, WANG Jinyu, LI Shoujun, JIA Kun. Isolation, Identification and Biological Characteristics of Klebsiella pneumoniae from Sheep in Guangdong Province [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 328-337. |
[12] | ZHAO Xuyang, JIN Jiaxin, LU Wenlong, ZHANG Shuai, HUANG Li, ZHANG Gaiping, SUN Aijun, ZHUANG Guoqing. Advances in the Molecular Mechanism of Immune Escape of African Swine Fever Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2074-2082. |
[13] | WANG Xi, LI Ke, LI Tingcui, YAN Hongya, ZHAO Rong, CHANG Zhishun, LIAO Ming, SUN Minhua, XIN Aiguo. MLST Typing and Drug Resistance Analysis of 75 Salmonella Strains Isolated from Laying Hens [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1626-1631. |
[14] | ZHAO Xueliang, WANG Bin, MIAO Yongqiang, ZHAO Haoyu, XIE Qingfang, WANG Juan, YANG Zengqi. Detection of Virulence Genes and Antimicrobial Resistance Analysis of Escherichia coli Isolated from Diarrhea Sheep in Shaanxi Province [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1644-1648. |
[15] | AN Ni, ZHANG Yu, FANG Xiaowei, LIANG Xiongyan, LIU Jing, YANG Yuying, FANG Chun. Construction of Listeria monocytogenes Two-Component System hssS/hssR Deletion and Research on Its Biological Characteristics [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 867-874. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||