Acta Veterinaria et Zootechnica Sinica ›› 2020, Vol. 51 ›› Issue (3): 409-416.doi: 10.11843/j.issn.0366-6964.2020.03.001
• REVIEW • Previous Articles Next Articles
LIU Siyuan1,3, LU Dan1,4, TANG Zhonglin1,2*
Received:
2019-08-28
Online:
2020-03-25
Published:
2020-03-20
CLC Number:
LIU Siyuan, LU Dan, TANG Zhonglin. Research Progress on CRISPR/Cas9 and Its Application in Pigs Genome Editing[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(3): 409-416.
[1] | ISHINO Y,SHINAGAWA H,MAKINO K,et al.Nucleotide sequence of the iap gene,responsible for alkaline phosphatase isozyme conversion in Escherichia coli,and identification of the gene product[J].J Bacteriol,1987,169(12):5429-5433. |
[2] | JANSEN R,VAN EMBDEN J D A,GAASTRA W,et al.Identification of genes that are associated with DNA repeats in prokaryotes[J].Mol Microbiol,2002,43(6):1565-1575. |
[3] | POURCEL C,SALVIGNOL G,VERGNAUD G.CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA,and provide additional tools for evolutionary studies[J].Microbiology,2005,151(3):653-663. |
[4] | BROUNS S J,JORE M M,LUNDGREN M,et al.Small CRISPR RNAs guide antiviral defense in prokaryotes[J].Science, 2008, 321(5891):960-964. |
[5] | JIANG W Y,BIKARD D,COX D,et al.RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J].Nat Biotechnol, 2013,31(3):233-239. |
[6] | SHAH S A,GARRETT R A.CRISPR/Cas and Cmr modules,mobility and evolution of adaptive immune systems[J].Res Microbiol, 2011,162(1):27-38. |
[7] | JINEK M,CHYLINSKI K,FONFARA I,et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science,2012,337(6096):816-821. |
[8] | WHITWORTH K M,ROWLAND R R R,EWEN C L,et al.Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J].Nat Biotechnol,2016,34(1):20-22. |
[9] | RUAN J X,LI H G,XU K,et al.Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs[J].Sci Rep, 2015,5:14253. |
[10] | WANG K K,OUYANG H S,XIE Z Z,et al.Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system[J]. Sci Rep,2015,5:16623. |
[11] | XIANG G H,REN J L,HAI T,et al.Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs[J]. Cell Mol Life Sci,2018,75(24):4619-4628. |
[12] | LIU X F,LIU H B,WANG M,et al.Disruption of the ZBED6 binding site in intron 3 of IGF2 by CRISPR/Cas9 leads to enhanced muscle development in Liang Guang Small Spotted pigs[J].Transgenic Res,2019,28(1):141-150. |
[13] | ZHENG Q T,LIN J,HUANG J J,et al.Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity[J].Proc Natl Acad Sci U S A,2017,114(45):E9474-E9482. |
[14] | VAN GORP H,VAN BREEDAM W,VAN DOORSSELAERE J,et al.Identification of the CD163 protein domains involved in infection of the porcine reproductive and respiratory syndrome virus[J].J Virol,2010,84(6):3101-3105. |
[15] | WELLS K D,BARDOT R,WHITWORTH K M,et al.Replacement of porcine CD163 scavenger receptor cysteine-rich domain 5 with a CD163-like homolog confers resistance of pigs to genotype 1 but not genotype 2 porcine reproductive and respiratory syndrome virus[J].J Virol,2017,91(2):e01521-e01516. |
[16] | WHITWORTH K M,LEE K,BENNE J A,et al.Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos[J].Biol Reprod,2014,91(3):78. |
[17] | BURKARD C,OPRIESSNIG T,MILEHAM A J,et al.Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection[J].J Virol,2018,92(16):e00415-e00418. |
[18] | GUO C H,WANG M,ZHU Z B,et al.Highly efficient generation of pigs harboring a partial deletion of the CD163 SRCR5 domain, which are fully resistant to porcine reproductive and respiratory syndrome virus 2 infection[J].Front Immunol,2019,10:1846. |
[19] | YANG H Q,ZHANG J,ZHANG X W,et al.CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus[J].Antiviral Res,2018,151:63-70. |
[20] | YU M,SUN X S,TYLER S R,et al.Highly efficient transgenesis in ferrets using CRISPR/Cas9-mediated homology-independent insertion at the ROSA26 locus[J].Sci Rep,2019,9(1):1971. |
[21] | WANG M,SUN Z L,ZOU Z Y,et al.Efficient targeted integration into the bovine ROSA26 locus using TALENs[J].Sci Rep,2018, 8(1):10385. |
[22] | WU Y M,LUNA M J,BONILLA L S,et al.Characterization of knockin mice at the Rosa26,Tac1 and Plekhg1 loci generated by homologous recombination in oocytes[J].PLoS One,2018,13(2):e0193129. |
[23] | XIE Z C,PANG D X,YUAN H M,et al.Genetically modified pigs are protected from classical swine fever virus[J].PLoS Pathog, 2018,14(12):e1007193. |
[24] | HAI T,TENG F,GUO R F,et al.One-step generation of knockout pigs by zygote injection of CRISPR/Cas system[J].Cell Res, 2014, 24(3):372-375. |
[25] | WANG J Z,LIU M L,ZHAO L H,et al.Disabling of nephrogenesis in porcine embryos via CRISPR/Cas9-mediated SIX1 and SIX4 gene targeting[J].Xenotransplantation,2019,26(3):e12484. |
[26] | LAI L X,KOLBER-SIMONDS D,PARK K W,et al.Production of α-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning[J].Science,2002,295(5557):1089-1092. |
[27] | XIN J G,YANG H Q,FAN N N,et al.Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs[J]. PLoS One,2013,8(12):e84250. |
[28] | SATO M,MIYOSHI K,NAGAO Y,et al.The combinational use of CRISPR/Cas9-based gene editing and targeted toxin technology enables efficient biallelic knockout of the α-1,3-galactosyltransferase gene in porcine embryonic fibroblasts[J]. Xenotransplantation,2014,21(3):291-300. |
[29] | CHUANG C K,CHEN C H,HUANG C L,et al.Generation of GGTA1 mutant pigs by direct pronuclear microinjection of CRISPR/Cas9 plasmid vectors[J].Anim Biotechnol,2017,28(3):174-181. |
[30] | 唐雨婷,高景波,杜敏杰,等.CRISPR/Cas9介导的β4GalNT2基因敲除猪制备[J].农业生物技术学报,2017,25(10):1697-1705.TANG Y T,GAO J B,DU M J,et al.Generation of β4GalNT2 gene knockout pigs (Sus scrofa) via CRISPR/Cas9[J].Journal of Agricultural Biotechnology,2017,25(10):1697-1705.(in Chinese) |
[31] | NIU D,WEI H J,LIN L,et al.Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9[J].Science, 2017, 357(6357):1303-1307. |
[32] | ZHOU X Q,XIN J G,FAN N N,et al.Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer[J]. Cell Mol Life Sci,2015,72(6):1175-1184. |
[33] | YAN S,TU Z C,LIU Z M,et al.A huntingtin knockin pig model recapitulates features of selective neurodegeneration in huntington's disease[J].Cell,2018,173(4):989-1002.e13. |
[34] | 靳伟,代敏敏,李德娟,等.CRISPR/Cas9介导的外源基因在猪PSP位点的定点整合[J].农业生物技术学报,2019, 27(9):1569-1581.JIN W,DAI M M,LI D J,et al.CRISPR/Cas9-mediated site specific integration of foreign genes in pig (Sus scrofa) PSP locus[J]. Journal of Agricultural Biotechnology,2019,27(9):1569-1581.(in Chinese) |
[35] | PENG J,WANG Y,JIANG J Y,et al.Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes[J].Sci Rep,2015,5:16705. |
[36] | YANG Y,WANG K P,WU H,et al.Genetically humanized pigs exclusively expressing human insulin are generated through custom endonuclease-mediated seamless engineering[J].J Mol Cell Biol,2016,8(2):174-177. |
[37] | YANG Z,TAO Y X.Mutations in melanocortin-3 receptor gene and human obesity[J].Prog Mol Biol Transl Sci,2016,140:97-129. |
[38] | EHTESHAM S,QASIM A,MEYRE D.Loss-of-function mutations in the melanocortin-3 receptor gene confer risk for human obesity:a systematic review and meta-analysis[J].Obes Rev,2019,20(8):1085-1092. |
[39] | YIN Y J,HAO H Y,XU X B,et al.Generation of an MC3R knock-out pig by CRSPR/Cas9 combined with somatic cell nuclear transfer (SCNT) technology[J].Lipids Health Dis,2019,18(1):122. |
[40] | 王晓朋,徐奎,魏迎辉,等.CRISPR/Cas9介导的猪IPEC-J2细胞CD13基因敲除细胞系的建立[J].畜牧兽医学报,2019, 50(7):1319-1327.WANG X P,XU K,WEI Y H,et al.Establishment of CD13 gene knockout IPEC-J2 cell lines mediated by CRISPR/Cas9 system[J]. Acta Veterinaria et Zootechnica Sinica,2019,50(7):1319-1327.(in Chinese) |
[41] | PANG L,ZHANG N,XIA Y,et al.Serum APN/CD13 as a novel diagnostic and prognostic biomarker of pancreatic cancer[J]. Oncotarget, 2016,7(47):77854-77864. |
[42] | 张东杰,刘娣,张旭,等.利用CRISPR-Cas9系统定点突变猪MSTN基因的研究[J].畜牧兽医学报,2016,47(1):207-212.ZHANG D J,LIU D,ZHANG X,et al.Study of pig MSTN gene point mutation based on the CRISPR-Cas9 system[J].Acta Veterinaria et Zootechnica Sinica,2016,47(1):207-212.(in Chinese) |
[43] | 李聪聪,张永辉,赵婉霞,等.CRISPR/Cas9系统介导的miR-155基因敲除细胞的制备[J].生物技术通报,2019,35(11):231-239.LI C C,ZHANG Y H,ZHAO W X,et al.Preparation of miR-155 knockout cells mediated by CRISPR/Cas9 technology[J]. Biotechnology Bulletin,2019,35(11):231-239.(in Chinese) |
[44] | SATO M,KOSUKE M,KORIYAMA M,et al.Timing of CRISPR/Cas9-related mRNA microinjection after activation as an important factor affecting genome editing efficiency in porcine oocytes[J].Theriogenology,2018,108:29-38. |
[45] | KIMURA Y,HISANO Y,KAWAHARA A.Efficient generation of knock-in transgenic zebrafish carrying reporter/driver genes by CRISPR/Cas9-mediated genome engineering[J].Sci Rep,2014,4:6545. |
[46] | ZUO E W,CAI Y J,LI K,et al.One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs[J].Cell Res,2017,27(7):933-945. |
[47] | CRISPO M,MULET A P,TESSON L,et al.Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes[J].PLoS One,2015,10(8):e0136690. |
[48] | ZHANG J P,ZHU Z S,YUE W,et al.Establishment of CRISPR/Cas9-mediated knock-in system for porcine cells with high efficiency[J]. Appl Biochem Biotechnol,2019,189(1):26-36. |
[49] | FU Y F,FODEN J A,KHAYTER C,et al.High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J].Nat Biotechnol,2013,31(9):822-826. |
[50] | RAN F A,HSU P D,LIN C Y.Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J]. Cell, 2013, 154(6):1380-1389. |
[51] | KIM E J,KOO T,PARK S W,et al.In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni[J]. Nat Commun, 2017,8:14500. |
[52] | RAN F A,CONG L,YAN W X,et al.In vivo genome editing using Staphylococcus aureus Cas9[J].Nature,2015, 520(7546):186-191. |
[53] | 吴金青,梅瑰,刘志国,等.应用SSA报告载体提高ZFN和CRISPR/Cas9对猪IGF2基因的打靶效率[J].遗传,2015, 37(1):55-62.WU J Q,MEI G,LIU Z G,et al.Improving gene targeting efficiency on pig IGF2 mediated by ZFNs and CRISPR/Cas9 by using SSA reporter system[J].Hereditas,2015,37(1):55-62.(in Chinese) |
[54] | ZUO E W,SUN Y D,WEI W,et al.Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J]. Science,2019,364(6437):289-292. |
[55] | ABUDAYYEH O O,GOOTENBERG J S,FRANKLIN B,et al.A cytosine deaminase for programmable single-base RNA editing[J].Science,2019,365(6451):382-386. |
[56] | CHEN Y C,ZHENG Y H,KANG Y,et al.Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9[J]. Hum Mol Genet,2015,24(13):3764-3774. |
[57] | YANG L H,GVELL M,NIU D,et al.Genome-wide inactivation of porcine endogenous retroviruses (PERVs)[J].Science,2015, 350(6264):1101-1104. |
[58] | YAN J J,YEOM H J,JEONG J C,et al.Beneficial effects of the transgenic expression of human sTNF-αR-Fc and HO-1 on pig-to-mouse islet xenograft survival[J].Transpl Immunol,2016,34:25-32. |
[59] | CHAN J L,SINGH A K,CORCORAN P C,et al.Encouraging experience using multi-transgenic xenografts in a pig-to-baboon cardiac xenotransplantation model[J].Xenotransplantation,2017,24(6):e12330. |
[60] | BALIOU S,ADAMAKI M,KYRIAKOPOULOS A M,et al.CRISPR therapeutic tools for complex genetic disorders and cancer (Review)[J].Int J Oncol,2018,53(2):443-468. |
[61] | KRUMINIS-KASZKIEL E,JURANEK J,MAKSYMOWICZ W,et al.CRISPR/Cas9 technology as an emerging tool for targeting amyotrophic lateral sclerosis (ALS)[J].Int J Mol Sci,2018,19(3):906. |
[62] | GAUDELLI N M,KOMOR A C,REES H A,et al.Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature,2017,551(7681):464-471. |
[63] | KOMOR A C,BADRAN A H,LIU D R.CRISPR-based technologies for the manipulation of eukaryotic genomes[J].Cell,2017, 168(1-2):20-36. |
[64] | XIE S S,SHEN B,ZHANG C B,et al.sgRNAcas9:a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites[J].PLoS One,2014,9(6):e100448. |
[65] | ZHAO C Z,ZHENG X G,QU W B,et al.CRISPR-offinder:a CRISPR guide RNA design and off-target searching tool for user-defined protospacer adjacent motif[J].Int J Biol Sci,2017,13(12):1470-1478. |
[66] | 吴海波,边雪娇,贾丽玲,等.二代靶向测序在CRISPR/Cas9靶区筛选中的应用性研究[J].畜牧兽医学报,2019,50(8):1587-1595.WU H B,BIAN X J,JIA L L,et al.Screening of CRISPR/Cas9 gene editing targets using next generation targeted sequence[J].Acta Veterinaria et Zootechnica Sinica,2019,50(8):1587-1595.(in Chinese) |
[67] | LINO C A,HARPER J C,CARNEY J P,et al.Delivering CRISPR:a review of the challenges and approaches[J].Drug Deliv,2018, 25(1):1234-1257. |
[1] | ZHANG Wei, PAN Zhihao, FANG Fugui. Advances in Epigenetic Regulation of the Onset of Puberty in Female Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1875-1882. |
[2] | KANG Jiawei, HUANG Xuankai, WANG Zhipeng, ZHANG Aizhen, MENG Fangrong, GAI Peng, BAO Junfu, SUN Kexin, SONG Shaokang, SUN Pan, CHEN Yichuan, ZHANG Lei, GAO Shengyue, CHANG Minghang. Estimation of Genetic Parameters for Growth, Reproduction, and Body Measurements Traits in Large White Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1936-1944. |
[3] | SUN Wenli, WANG Haoqi, ZE Licuo, GAO Yufan, ZHANG Feifan, ZHANG Jian, DUAN Mengqi, SHANG Peng, QIANG Bayangzong. Polymorphism of Pro-Inflammatory Factors (IL-1β, IL-6, TNF-α) in Tibetan Pigs and Its Association Analysis with Immune Traits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1958-1969. |
[4] | LI Wanjun, XU Jiehuan, HE Mengxian, KONG Yuting, ZHANG Defu, DAI Jianjun. Cytochalasin B Alleviates the Migration Disorder of Cortical Particle Caused by Vitrification in Porcine Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1999-2010. |
[5] | QIU Meiyu, ZHANG Xuemei, ZHANG Ning, LIU Mingjun. Approach and Application of Prime Editing System [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1345-1355. |
[6] | PENG Peiya, CHEN Yuhan, YANG Long, WANG Ming, ZHAO Ruiting, HE Jun, YIN Yulong, LIU Mei. Research Progress of Copy Number Variation in Livestock [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1356-1369. |
[7] | HUANG Jie, RUAN Zihao, CAI Rui. Advances of the Application of Antimicrobial Peptides in the Preservation of Porcine Semen at Room Temperature [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1401-1411. |
[8] | WANG Jiali, YANG Fan, SHAO Wenhua, HUANG Mengyao, CAO Weijun, PU Xiuying, ZHANG Wei, ZHENG Haixue. Construction of Tollip Knockout Pig Kidney Cell Line [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1810-1818. |
[9] | SONG Kelin, YAN Zunqiang, WANG Pengfei, CHENG Wenhao, LI Jie, BAI Yaqin, SUN Guohu, GUN Shuangbao. Analysis on Genetic Diversity and Genetic Structure Based on SNP Chips of Huixian Qingni Black Pig [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 995-1006. |
[10] | LIU Yangguang, ZHANG Huibin, WEN Haoyu, XIE Fan, ZHAO Shiming, DING Yueyun, ZHENG Xianrui, YIN Zongjun, ZHANG Xiaodong. SNP/Indel Screening Analysis of Porcine Ovarian Granulosa Cells Treated with Follicular Fluid Exosomes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 576-586. |
[11] | CHEN Xueqing, LI Zhiqiang, WU Yulong, ZHANG Chonghao, ZHANG Yuanshu. Expression of Renin Angiotensin System (RAS) in Jejunum Tissues of Piglets with Clinical Diarrhea and Its Relationship with Intestinal Inflammation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 751-758. |
[12] | WEI Miaoyi, WU Shihai, YANG Fulin, YU Chenyun, SUN Zhigang, LIU Xinyuan, XU Yuanyuan, LIANG Bingbing, LI Fuhuang, SUN Hong, LIU Xiaoye, DONG Hong. Clinical Efficacy of Herbal Gentian Combat Trichomonas pigeon [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 785-796. |
[13] | XIAO Le, LIU Junyuan, ZENG Wenyu, WANG Qin, HAN Wenjue, LIU Yanling, FAN Yu, XU Yuting, YANG Beini, XIAO Xiong, WANG Zili. Microbiome and Transcriptome Analyses Revealed the Regulatory Mechanism of Xiangsha Liujunzi Decoction on Ileal Injury Induced by ETEC in Weaned Piglets with Diarrhea [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 797-808. |
[14] | ZHANG Jinpeng, CHEN Cuiteng, LIN Lin, FU Huanru, LI Zhaolong, JIANG Bin, HUANG Yu, WAN Chunhe. Establishment of a Real-time Fluorescent RT-PCR Assay for Detection of Pigeon Megrivirus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 860-866. |
[15] | NIU Naiqi, ZHAO Runze, ZONG Wencheng, LIU Xiance, LIU Hai, SHI Guohua, JING Xitao, ZHANG Longchao. Association of Polymorphisms of GREB1L and MIB1 Genes with Rib Number and Carcass Traits in Beijing Black Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 79-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||