Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (2): 666-678.doi: 10.11843/j.issn.0366-6964.2025.02.018
• Animal Biotechnology and Reproduction • Previous Articles Next Articles
WANG Tao1(), WANG Qi2, DONG Jiaojiao1, WANG Dehe1, LI Lanhui1,*(
)
Received:
2024-08-09
Online:
2025-02-23
Published:
2025-02-26
Contact:
LI Lanhui
E-mail:1905580765@qq.com;lanhuili13@163.com
CLC Number:
WANG Tao, WANG Qi, DONG Jiaojiao, WANG Dehe, LI Lanhui. Bidirectional Promoter Regulate Transcriptional Expression of PRLR and SPEF2 in Chicken Embryonic Gonads[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 666-678.
Table 1
Primers used in this experiment"
引物名称 Primer | 引物序列(5′→3′) Primer sequence | 用途 Usage |
PRLR-5′RACE-1 | gattaccgccaagcttCCAGGGTCTAACGTACAGCGGACCTGAA | RACE |
PRLR-5′RACE-2 | gattaccgccaagcttTTATCTTTGGTCCTGGAACTGGCGGTAG | |
SPEF2-5′RACE-1 | gattaccgccaagcttACAGCAATCCTCCGCTCCTGCTGAGA | RACE |
SPEF2-5′RACE-2 | gattaccgccaagcttCAGTTGGGCACCATTCCCCTGTCATA | |
pGL3-PA1 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$TGTGACATGAGTGTGTCAGT | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CTGGGGAACGATGTAGACCT | ||
pGL3-PA2 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$CACACATCAAATCGCACAACGG | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$AGTGCAGAACACAGACATCTTTC | ||
pGL3-PC1 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$CCAGTACTTCCTTGATTCGCCT | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$TGGTATTGAGAAGTATGTCGACCC | ||
pGL3-PB5 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$CCTTCCGTGTGTTTACCTGACT | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CAAGGTCCATGCCAAATGAGAG | ||
pGL3-PC2 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$GGTAGAGGGTTAAGCTGAGGC | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$TCAATCAGACCTTCAGGAACCC | ||
pGL3-PA10 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$GTAAGGGTTCCTGAAGGTCTGATT | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$GTGTTGTGGCTTCTCCTCTGTC | ||
pGL3-PA4 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$AAGCCCATCCTATGAGCAGC | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CCAGCACATTTTACACAGAAACAC | ||
pGL3-PB2 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$ATGGAAGAACTCAGGCGTCA | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$ACCATTCTTGTTCAGGCAGTATCT | ||
pGL3-SDA | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$CTGGGGAACGATGTAGACCT | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$TGTGACATGAGTGTGTCAGT | ||
pGL3-SA | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$AGTGCAGAACACAGACATCTTTC | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CACACATCAAATCGCACAACGG | ||
pGL3-SB | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$ACACGAACGCCTTACACAAGA | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$GGAACCACTTCCCCATTCCA | ||
pGL3-SC | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$CCTAAGAGTCCCCTGCGGTG | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CCCACGCTCCGGGAAAGTT | ||
PRLR-P1-865 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$CTGTGGAAAGTCGCTCACACG | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$ACAGCCACCTGTAGTGAGGA | ||
PRLR-P2-713 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$TACCAAGAGCGACGGAGCCT | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$ACAGCCACCTGTAGTGAGGA | ||
PRLR-P3-565 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$CTCAGACTCGCCGCATCCT | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$ACAGCCACCTGTAGTGAGGA | ||
PRLR-P4-345 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$GCATGCGCAAAGGAGAGGA | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$ACAGCCACCTGTAGTGAGGA | ||
SPEF2-P1-2178 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$AGTGCAGAACACAGACATCTTTC | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CCCACGCTCCGGGAAAGTT | ||
SPEF2-P2-1852 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$TCAAGGTCAGAGGTTATACGGAA | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CCCACGCTCCGGGAAAGTT | ||
SPEF2-P3-1684 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$ACACTCAGATGGCAGACACTC | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CCCACGCTCCGGGAAAGTT | ||
SPEF2-P4-1428 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$GGCAACTCAATAACTCGCCC | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CCCACGCTCCGGGAAAGTT | ||
SPEF2-P5-1142 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$CTGGGGAACGATGTAGACCT | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CCCACGCTCCGGGAAAGTT | ||
SPEF2-P6-931 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$TTCTGGCACACGAACGCCTT | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CCCACGCTCCGGGAAAGTT | ||
SPEF2-P7-703 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$CCTAAGAGTCCCCTGCGGTG | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CCCACGCTCCGGGAAAGTT | ||
SPEF2-P8-478 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$ATGACAGCCACCTGTAGTGAGG | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CCCACGCTCCGGGAAAGTT | ||
SPEF2-P9-205 | cagaacatttctctatcgata$\underline{{\rm{GGTACC}}}$CATGCGCGGCCCTCTC | DLRA |
aagcttacttagatcgcagat$\underline{{\rm{CTCGAG}}}$CCCACGCTCCGGGAAAGTT | ||
PRLR | TGGTGGAAGATGAAGAAGAGCAT | RT-qPCR |
AGACCTGTTTTGTTTGACCTGTG | ||
SPEF2 | GCTGCCTGTGCTGTAGTTTC | RT-qPCR |
AAGAGAAGCGGAGGACACTT | ||
β-actin | CTGTGCCCATCTATGAAGGCTA | RT-qPCR |
ATTTCTCTCTCGGCTGTGGTG | ||
CpG-PRLR | TTTTGTTATGTGTTGTAGGTTTTTAAGT | BSP |
TCCAAAAATTAAAAAAATTTTAATAAATTT | ||
CpG-PRLR-1 | TGAGGAAAATTAATTTTATTTTTGAAAG | BSP |
AACAACCACCTATAATAAAAACCCC | ||
CpG-PRLR-2 | TTTTTGTTATTTTTTGAGGTAG | BSP |
CCACCTATAATAAAAACCCCC | ||
CpG-SPEF2 | GGTTTTTTAGTTTAAGAGTTTTTTG | BSP |
ACTTACTACTCCCTCTATCAACCTC |
Fig. 2
Schematic structure of the 5′ end of PRLR and SPEF2 transcript variants with different TSS PA1, PB1, PA2, PA4, PB2, PC1, PB5, PC2, PB6 and PA10 are the 10 PRLR transcription variants with different TSS, while SA, SB and SC are the 3 SPEF2 transcription variants. Light gray boxes are the non-coding exons, and gray boxes are the coding exons, dotted boxes are the first exon in the non-coding exon"
1 |
YANG M Q , KOEHLY L M , ELNITSKI L L . Comprehensive annotation of bidirectional promoters identifies co-regulation among breast and ovarian cancer genes[J]. PLoS Comput Biol, 2007, 3 (4): e72.
doi: 10.1371/journal.pcbi.0030072 |
2 | 曹煜, 余心宇, 刘秀霞, 等. 双向启动子探针载体的构建及其在谷氨酸棒杆菌中的应用[J]. 农业生物技术学报, 2023, 31 (2): 425- 435. |
CAO Y , YU X Y , LIU X X , et al. Construction of bidirectional promoter probe vector and its application in Corynebacterium glutamicum[J]. Journal of Agricultural Biotechnology, 2023, 31 (2): 425- 435. | |
3 |
WARMAN E A , FORREST D , GUEST T , et al. Widespread divergent transcription from bacterial and archaeal promoters is a consequence of DNA-sequence symmetry[J]. Nat Microbiol, 2021, 6 (6): 746- 756.
doi: 10.1038/s41564-021-00898-9 |
4 | JODLBAUER J , RIEDER L , GLIEDER A , et al. Bidirectional promoter libraries enable the balanced co-expression of two target genes in E. coli[J]. Methods Mol Biol, 2023, 2617, 75- 86. |
5 |
POWERS E N , CHAN C , DORON-MANDEL E , et al. Bidirectional promoter activity from expression cassettes can drive off-target repression of neighboring gene translation[J]. eLife, 2022, 11, e81086.
doi: 10.7554/eLife.81086 |
6 |
WU X X , LI F Z , YANG R F , et al. Identification of a bidirectional promoter from Trichoderma reesei and its application in dual gene expression[J]. J Fungi (Basel), 2022, 8 (10): 1059.
doi: 10.3390/jof8101059 |
7 |
PERALTA-ALVAREZ C A , NÚÑEZ-MARTÍNEZ H N , CERECEDO-CASTILLO Á J , et al. A bidirectional non-coding RNA promoter mediates long-range gene expression regulation[J]. Genes (Basel), 2024, 15 (5): 549.
doi: 10.3390/genes15050549 |
8 |
BARGER C J , CHEE L , ALBAHRANI M , et al. Co-regulation and function of FOXM1/RHNO1 bidirectional genes in cancer[J]. eLife, 2021, 10, e55070.
doi: 10.7554/eLife.55070 |
9 |
KOVINA A P , PETROVA N V , KOMKOV D S , et al. Regulatory systems of chicken alpha-globin gene domain suppress bidirectional transcription[J]. Biochim Biophys Acta Gene Regul Mech, 2022, 1865 (5): 194850.
doi: 10.1016/j.bbagrm.2022.194850 |
10 |
CHAHAR N , DANGWAL M , DAS S . Complex origin, evolution, and diversification of non-canonically organized OVATE-OFP and OVATE-Like OFP gene pair across Embryophyta[J]. Gene, 2023, 883, 147685.
doi: 10.1016/j.gene.2023.147685 |
11 |
LIN S D , LUO W , JIANG M Y , et al. Chicken CCDC152 shares an NFYB-regulated bidirectional promoter with a growth hormone receptor antisense transcript and inhibits cells proliferation and migration[J]. Oncotarget, 2017, 8 (48): 84039- 84053.
doi: 10.18632/oncotarget.21091 |
12 |
BERNARD V , YOUNG J , BINART N . Prolactin- a pleiotropic factor in health and disease[J]. Nat Rev Endocrinol, 2019, 15 (6): 356- 365.
doi: 10.1038/s41574-019-0194-6 |
13 |
SWEETT H , FONSECA P A S , SUÁREZ-VEGA A , et al. Genome-wide association study to identify genomic regions and positional candidate genes associated with male fertility in beef cattle[J]. Sci Rep, 2020, 10 (1): 20102.
doi: 10.1038/s41598-020-75758-3 |
14 |
洪坤月, 汪峰, 虞德兵, 等. 太湖鸡PRL、PRLR和FSHβ基因多态与前期产蛋性状关系研究[J]. 西北农业学报, 2007, 16 (5): 11- 14.
doi: 10.3969/j.issn.1004-1389.2007.05.003 |
HONG K Y , WANG F , YU D B , et al. Polymorphisms in Taihu chicken of PRL, PRLR and FSHβ genes and association with prophase egg production[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2007, 16 (5): 11- 14.
doi: 10.3969/j.issn.1004-1389.2007.05.003 |
|
15 |
LÜ X Q , HAN J R , LIU X F , et al. The LTR of endogenous retrovirus EV21 retains promoter activity and exhibits tissue specific transcription in chicken[J]. Chin Sci Bull, 2009, 54 (24): 4664- 4670.
doi: 10.1007/s11434-009-0547-y |
16 |
LU W Q , LI Y , MENG L L , et al. Novel SPEF2 variants cause male infertility and likely primary ciliary dyskinesia[J]. J Assist Reprod Genet, 2024, 41 (6): 1485- 1498.
doi: 10.1007/s10815-024-03106-9 |
17 |
KAVARTHAPU R , ANBAZHAGAN R , DUFAU M L . Crosstalk between PRLR and EGFR/HER2 signaling pathways in breast cancer[J]. Cancers (Basel), 2021, 13 (18): 4685.
doi: 10.3390/cancers13184685 |
18 |
NIE H Z , HUANG P Q , JIANG S H , et al. The short isoform of PRLR suppresses the pentose phosphate pathway and nucleotide synthesis through the NEK9-Hippo axis in pancreatic cancer[J]. Theranostics, 2021, 11 (8): 3898- 3915.
doi: 10.7150/thno.51712 |
19 |
TELLERIA C M , PARMER T G , ZHONG L , et al. The different forms of the prolactin receptor in the rat corpus luteum: developmental expression and hormonal regulation in pregnancy[J]. Endocrinology, 1997, 138 (11): 4812- 4820.
doi: 10.1210/endo.138.11.5479 |
20 |
XUE H L , XU J H , WU M , et al. Identification and sequence analysis of prolactin receptor and its differential expression profile at various developmental stages in striped hamsters[J]. Braz J Med Biol Res, 2021, 54 (5): e10274.
doi: 10.1590/1414-431x202010274 |
21 |
FARRAR V S , HARRIS R M , AUSTIN S H , et al. Prolactin and prolactin receptor expression in the HPG axis and crop during parental care in both sexes of a biparental bird (Columba livia)[J]. Gen Comp Endocrinol, 2022, 315, 113940.
doi: 10.1016/j.ygcen.2021.113940 |
22 |
LA Y , MA F L , MA X M , et al. Different expression of LHR, PRLR, GH and IGF1 during testicular development of yak[J]. Reprod Domest Anim, 2022, 57 (2): 221- 227.
doi: 10.1111/rda.14044 |
23 |
SIRONEN A , FISCHER D , LAIHO A , et al. A recent L1 insertion within SPEF2 gene is associated with changes in PRLR expression in sow reproductive organs[J]. Anim Genet, 2014, 45 (4): 500- 507.
doi: 10.1111/age.12153 |
24 |
GUO F , YANG B , JU Z H , et al. Alternative splicing, promoter methylation, and functional SNPs of sperm flagella 2 gene in testis and mature spermatozoa of Holstein bulls[J]. Reproduction, 2014, 147 (2): 241- 252.
doi: 10.1530/REP-13-0343 |
25 |
ZHANG X A , LI J B , WANG X Q , et al. ATAC-seq and RNA-seq analysis unravel the mechanism of sex differentiation and infertility in sex reversal chicken[J]. Epigenetics Chromatin, 2023, 16 (1): 2.
doi: 10.1186/s13072-022-00476-1 |
26 |
PAPATHEODOROU I , FONSECA N A , KEAYS M , et al. Expression Atlas: gene and protein expression across multiple studies and organisms[J]. Nucleic Acids Res, 2018, 46 (D1): D246- D251.
doi: 10.1093/nar/gkx1158 |
27 |
SIRONEN A , UIMARI P , ISO-TOURU T , et al. L1 insertion within SPEF2 gene is associated with increased litter size in the Finnish Yorkshire population[J]. J Anim Breed Genet, 2012, 129 (2): 92- 97.
doi: 10.1111/j.1439-0388.2011.00977.x |
28 |
TAN J L , MAJOR A T , SMITH C A . Mini review: Asymmetric Müllerian duct development in the chicken embryo[J]. Front Cell Dev Biol, 2024, 12, 1347711.
doi: 10.3389/fcell.2024.1347711 |
29 | 白少川, 李楠, 王德贺, 等. 慢羽鸡PRLR和SPEF2基因连接方式和融合基因双向转录研究[J]. 河北农业大学学报, 2021, 44 (3): 85- 91. |
BAI S C , LI N , WANG D H , et al. Detection of PRLR and SPEF2 gene connection and bidirectional transcription of fusion gene in slow-feathering chicken[J]. Journal of Hebei Agricultural University, 2021, 44 (3): 85- 91. | |
30 |
DUDNYK K , CAI D H , SHI C L , et al. Sequence basis of transcription initiation in the human genome[J]. Science, 2024, 384 (6694): eadj0116.
doi: 10.1126/science.adj0116 |
31 |
LIU X Q , ZHOU X J , LI Y , et al. Identification and functional characterization of bidirectional gene pairs and their intergenic regions in maize[J]. BMC Genomics, 2014, 15 (1): 338.
doi: 10.1186/1471-2164-15-338 |
32 |
LIN S D , ZHANG L , LUO W , et al. Characteristics of antisense transcript promoters and the regulation of their activity[J]. Int J Mol Sci, 2015, 17 (1): 9.
doi: 10.3390/ijms17010009 |
33 |
KACZYNSKI J , COOK T , URRUTIA R . Sp1- and Krüppel-like transcription factors[J]. Genome Biol, 2003, 4 (2): 206.
doi: 10.1186/gb-2003-4-2-206 |
34 |
DOLFINI D , GNESUTTA N , MANTOVANI R . Expression and function of NF-Y subunits in cancer[J]. Biochim Biophys Acta Rev Cancer, 2024, 1879 (2): 189082.
doi: 10.1016/j.bbcan.2024.189082 |
35 |
VIDAL L , LEBRUN E , PARK Y K , et al. Bidirectional hybrid erythritol-inducible promoter for synthetic biology in Yarrowia lipolytica[J]. Microb Cell Fact, 2023, 22 (1): 7.
doi: 10.1186/s12934-023-02020-6 |
36 |
ARNAIZ A , MARTINEZ M , GONZALEZ-MELENDI P , et al. Plant defenses against pests driven by a bidirectional promoter[J]. Front Plant Sci, 2019, 10, 930.
doi: 10.3389/fpls.2019.00930 |
37 |
CHEN L G , CHENG Y , ZHANG G X , et al. WGBS of embryonic gonads revealed that long non-coding RNAs in the MHM region might be involved in cell autonomous sex identity and female gonadal development in chickens[J]. Epigenetics, 2024, 19 (1): 2283657.
doi: 10.1080/15592294.2023.2283657 |
38 |
BRENET F , MOH M , FUNK P , et al. DNA methylation of the first exon is tightly linked to transcriptional silencing[J]. PLoS One, 2011, 6 (1): e14524.
doi: 10.1371/journal.pone.0014524 |
39 |
BABBAR R , TIWARI L D , MISHRA R C , et al. Arabidopsis plants overexpressing additional copies of heat shock protein Hsp101 showed high heat tolerance and endo-gene silencing[J]. Plant Sci, 2023, 330, 111639.
doi: 10.1016/j.plantsci.2023.111639 |
[1] | YANG Miaomiao, XIE Li, JIAN Baoyi, LUO Chaowei, XIE Zhuojun, ZHU Piao, ZHOU Tianri, LI Hua, XIANG Hai. Construction and Optimization of Prediction Models for Abdominal Fat Deposition in Adult Hens based on Early Body Size Traits using Machine Learning [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 548-558. |
[2] | ZHANG Xiwen, YIN Yue, LI Xiang, WANG Min, WANG Yongfang, JIN Shuning, FENG Xinhui, ZHAO Yurong. Effects of Ursolic Acid on Breast Meat Quality and Wooden Breast of Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 711-721. |
[3] | LI Yuanfang, WU Ran, LI Shuaihao, WEI Qianran, WANG Yadong, WANG Dandan, LI Zhi, LI Guoxi, LIU Qiaoming. The Role of G3BP1 in the Proliferation and Differentiation of Chicken Intramuscular Preadipocytes and Identification of Its Molecular Markers [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 159-167. |
[4] | YIN Qiong, GAO Mingchao, YAO Xiumei, LIU Kunyu, LIU Wei, JIE Hongwei, LI Hua, YE Fei. Correlation Analysis between Melanin Content in Breast Muscle and PMEL17 Gene of Muchuan Black-bone Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 168-177. |
[5] | WU Shuang, YIN Na, YU Mohan, PING Yuyu, BAI Hao, CHEN Shihao, CHANG Guobin. The Effect of TRIM39.2 Overexpression on the Transcriptional Expression of Chicken Macrophages [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 178-188. |
[6] | WANG Yi, HOU Lulu, FANG Fei, GAO Linying, XIE Shumin, WANG Yu. Fluoride Induced Small Intestine Oxidative Damage in Broilers via Autophagy and Ferroptosis [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 442-454. |
[7] | Nanzhu CHEN, Junliang LI, Dawei YU, Xinyi ZHOU, Jing WANG, Huiying ZOU, Weihua DU. Analysis of Imprinted Expression and DNA Methylation Status of the Porcine MKRN3 Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3853-3863. |
[8] | Jiqiao ZHANG, Yingjie CAI, Yuxiao LI, Chang CAO, Tao LI, Xiuyu BAO, Jianqin ZHANG. Comparative Analysis of Growth Performance, Immune, Intestinal Morphology, and Cecal Microbiota of Lueyang Black-bone Chickens under Different Rearing Systems [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4001-4011. |
[9] | Ming LOU, Haoyu LUO, Fang MU, Hui LI, Ning WANG. Advances in the Study of Chicken Insulin Signaling Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3288-3296. |
[10] | Li ZHANG, Mengmeng YU, Ying WANG, Suyan WANG, Zhuangzhuang XU, Peng LIU, Yuntong CHEN, Xiaole QI, Liuan LI, Yulong GAO. Analysis of Cellular Receptor chNHE1 Expression in Chicken Tissues Infected with Avian Leukosis Virus Subgroup J [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3631-3639. |
[11] | Xiaolong HUANG, Xihui SHENG, Jingwei YUAN. Research Progress of Environmental Adaptability in Chickens from Perspective of Omics Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2809-2824. |
[12] | Binghong XIE, Yifan LIU, Fuguang XUE, Yanju SHAN, Yunjie TU, Gaige JI, Xiaojun JU, Jingting SHU, Hongxiang WU. The Mechanism of Effect of Hypoxia on Myofiber Type Transformation in Chicken Myoblasts [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2397-2408. |
[13] | ZHANG Wei, PAN Zhihao, FANG Fugui. Advances in Epigenetic Regulation of the Onset of Puberty in Female Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1875-1882. |
[14] | NIU Jiajia, XU Dan, LIU Yang, ZHAO Xiaoling. Research Progress on Genetic Regulation Mechanism of Barring Feather Trait in Chicken [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1883-1892. |
[15] | LEI Yanru, HU Xiaoyu, XU Chunhong, ZHANG Chenxi, DU Wenping, WANG Yangguang, LI Donghua, SUN Guirong, LI Wenting, KANG Xiangtao. Comparative Analysis of Growth, Carcass and Meat Quality Traits of Five Hybrid Combinations of Houdan Chicken [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1521-1535. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||