Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (1): 159-167.doi: 10.11843/j.issn.0366-6964.2025.01.015
• Animal Genetics and Breeding • Previous Articles Next Articles
LI Yuanfang1,2(), WU Ran3,4, LI Shuaihao3,4, WEI Qianran1,2, WANG Yadong1,2, WANG Dandan5, LI Zhi1,2,*(
), LI Guoxi3,4,*(
), LIU Qiaoming1,2,*(
)
Received:
2024-08-09
Online:
2025-01-23
Published:
2025-01-18
Contact:
LI Zhi, LI Guoxi, LIU Qiaoming
E-mail:yuanfangli1991@163.com;18530085133@163.com;liguoxi0914@126.com;cslqm@hit.edu.com
CLC Number:
LI Yuanfang, WU Ran, LI Shuaihao, WEI Qianran, WANG Yadong, WANG Dandan, LI Zhi, LI Guoxi, LIU Qiaoming. The Role of G3BP1 in the Proliferation and Differentiation of Chicken Intramuscular Preadipocytes and Identification of Its Molecular Markers[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 159-167.
Table 1
Information of qRT-PCR primers"
基因Gene | 引物序列(5′→3′)Primer sequence | 片段长度/bp Length | 退火温度/℃ Tm |
G3BP1 | F: CTCCAAATCCTGGCTTCT R: GAGGGTCTGCTGTTCTTCAT | 563 | 60 |
CCNB2 | F: CCTCTTCCACTTCACTTCT R: CTTTGTACCCCACTTATCA | 195 | 60 |
CCND1 | F: CAGAAGTGCGAAGAGGAAGT R: CTGATGGAGTTGTCGGTGTA | 188 | 60 |
PCNA | F: AGCACCAAATCAGGAAAAG R: GCACAGGAGATGACAACAG | 177 | 60 |
CDK1 | F: TAATAGATGACAAAGGGGT R: GAGTGGAATACAGAGCAGA | 147 | 60 |
LPL | F: TCCGATCCCGAAGCTGAGA R: ACATTCCTGTCACCGTCCAC | 167 | 60 |
FABP4 | F: ATATGAAAGAGCTGGGTGTGGG R: CAGTGTGCCATTGTCTAGGGT | 218 | 60 |
FABP5 | F: TGGCCATCGACGCGTTTTTA R: TCTGGTTTCGCCATGCTTCC | 121 | 60 |
FASN | F: ACAACAGCCAGCTTGGAATG R: CAGGGGCTTTACCACACCAT | 152 | 60 |
PPARγ | F: GTGCAATCAAAATGGAGCC R: CTTACAACCTTCACATGCAT | 170 | 60 |
CEBPA | F: TTCTACGAGGTCGATTCCCG R: AGCCTCTCTGTAGCCGTAG | 96 | 60 |
GAPDH | F: GAACATCATCCCAGCGTCCA R: CGGCAGGTCAGGTCAACAAC | 132 | 60 |
Table 2
Genetic analysis of the G3BP1 gene"
突变位点 SNP site | 数量 Number | 基因型频率 Genotype frequency | 等位基因频率 Allele frequency | 杂合度 Heterozygosity | ||||
II | ID | DD | I | D | ||||
13588667G>A | 721 | 0.681 | 0.288 | 0.030 | 0.836 | 0.164 | 0.274 | |
13588768C>A | 721 | 0.575 | 0.362 | 0.062 | 0.768 | 0.232 | 0.356 | |
13588930C>T | 721 | 0.241 | 0.447 | 0.312 | 0.438 | 0.562 | 0.492 |
Table 3
Association analysis between genotypes of 13588667G>A in G3BP1 and meat quality traits"
相关指标 Relevant metrics | 基因型 Genotype | P值 P-value | ||
GG | GA | AA | ||
皮脂/g Sebum | 7.316±0.522b | 9.667±0.799a | 5.898±2.454ab | 0.033 |
皮脂率/% Sebum rate | 0.801±0.055b | 1.038±0.085a | 0.649±0.264b | 0.045 |
肌间脂肪宽/cm Intermuscular fat width | 0.729±0.012 | 0.737±0.019 | 0.720±0.058 | 0.929 |
皮下脂肪厚/cm Subcutaneous fat thickness | 0.457±0.008 | 0.464±0.012 | 0.454±0.035 | 0.862 |
鲜样脂肪含量/% Fat content in fresh samples | 0.719±0.013 | 0.705±0.019 | 0.711±0.060 | 0.833 |
绝干脂肪含量/% Fat content in absolute dry samples | 2.747±0.047 | 2.705±0.072 | 2.746±0.222 | 0.886 |
肌内脂肪含量/% Intramuscular fat content | 2.681±0.031a | 2.437±0.047b | 2.244±0.145b | <0.001 |
Fig. 3
Effect of G3BP1 on the proliferation of intramuscular preadipocytes in chickens A. Purity identification of intramuscular preadipocytes by Oil Red O staining; B. G3BP1 overexpression efficiency assay; C. Proliferation marker gene changes after G3BP1 overexpression; D. Changes in cell proliferation activity after CCK-8 detection of G3BP1 overexpression; E-G. Cell cycle changes after G3BP1 overexpression detected by flow cytometry"
Fig. 4
Effect of G3BP1 on the differentiation of intramuscular preadipocytes in chickens A. Changes in differentiation marker genes expression after G3BP1 overexpression; B. Results of TG content assay after G3BP1 overexpression; C-E. Analysis of Oil Red O staining after G3BP1 overexpression"
1 |
KHAN M I , JO C , TARIQ M R . Meat flavor precursors and factors influencing flavor precursors—A systematic review[J]. Meat Sci, 2015, 110, 278- 284.
doi: 10.1016/j.meatsci.2015.08.002 |
2 |
CAMERON N D , ENSER M , NUTE G R , et al. Genotype with nutrition interaction on fatty acid composition of intramuscular fat and the relationship with flavour of pig meat[J]. Meat Sci, 2000, 55 (2): 187- 195.
doi: 10.1016/S0309-1740(99)00142-4 |
3 |
MATEESCU R G , GARRICK D J , GARMYN A J , et al. Genetic parameters for sensory traits in longissimus muscle and their associations with tenderness, marbling score, and intramuscular fat in Angus cattle[J]. J Anim Sci, 2015, 93 (1): 21- 27.
doi: 10.2527/jas.2014-8405 |
4 |
OKEUDO N J , MOSS B W . Interrelationships amongst carcass and meat quality characteristics of sheep[J]. Meat Sci, 2005, 69 (1): 1- 8.
doi: 10.1016/j.meatsci.2004.04.011 |
5 |
BLASCO A , NAGY I , HERNÁNDEZ P . Genetics of growth, carcass and meat quality in rabbits[J]. Meat Sci, 2018, 145, 178- 185.
doi: 10.1016/j.meatsci.2018.06.030 |
6 |
HU T T , LI Z B , GONG C S , et al. FOS inhibits the differentiation of intramuscular adipocytes in goats[J]. Genes (Basel), 2023, 14 (11): 2088.
doi: 10.3390/genes14112088 |
7 |
ZHANG Y Y , WANG Y N , WANG H B , et al. MicroRNA-224 impairs adipogenic differentiation of bovine preadipocytes by targeting LPL[J]. Mol Cell Probes, 2019, 44, 29- 36.
doi: 10.1016/j.mcp.2019.01.005 |
8 |
PEWAN S B , OTTO J R , HUERLIMANN R , et al. Genetics of omega-3 long-chain polyunsaturated fatty acid metabolism and meat eating quality in Tattykeel Australian white lambs[J]. Genes (Basel), 2020, 11 (5): 587.
doi: 10.3390/genes11050587 |
9 |
LI Y F , CHEN Y , JIN W J , et al. Analyses of MicroRNA and mRNA expression profiles reveal the crucial interaction networks and pathways for regulation of chicken breast muscle development[J]. Front Genet, 2019, 10, 197.
doi: 10.3389/fgene.2019.00197 |
10 | 赵峰, 康相涛, 白晓辉, 等. 父母代固始鸡空肠的发育形态学研究[J]. 家畜生态学报, 2007, 28 (5): 48- 51. |
ZHAO F , KANG X T , BAI X H , et al. Study on the developmental morphology of the jejunum in the parental line of Gushi chickens[J]. Acta Ecologae Animalis Domastici, 2007, 28 (5): 48- 51. | |
11 | LI H, LI S, ZHANG H, et al. Integrated GWAS and transcriptome analysis reveals key genes associated with muscle fibre and fat traits in Gushi chicken[J/OL]. British Poultry Science, 2024, doi: 10.1080/00071668.2024.2400685. |
12 |
FAN S X , YUAN P T , LI S H , et al. Genetic architecture and key regulatory genes of fatty acid composition in Gushi chicken breast muscle determined by GWAS and WGCNA[J]. BMC Genomics, 2023, 24 (1): 434.
doi: 10.1186/s12864-023-09503-1 |
13 |
PARKER F , MAURIER F , DELUMEAU I , et al. A Ras-GTPase-activating protein SH3-domain-binding protein[J]. Mol Cell Biol, 1996, 16 (6): 2561- 2569.
doi: 10.1128/MCB.16.6.2561 |
14 |
TOCQUE B , DELUMEAU I , PARKER F , et al. Ras-GTPase activating protein (GAP): A putative effector for Ras[J]. Cell Signal, 1997, 9 (2): 153- 158.
doi: 10.1016/S0898-6568(96)00135-0 |
15 |
MATSUKI H , TAKAHASHI M , HIGUCHI M , et al. Both G3BP1 and G3BP2 contribute to stress granule formation[J]. Genes Cells, 2013, 18 (2): 135- 146.
doi: 10.1111/gtc.12023 |
16 |
TSAI W C , GAYATRI S , REINEKE L C , et al. Arginine demethylation of G3BP1 promotes stress granule assembly[J]. J Biol Chem, 2016, 291 (43): 22671- 22685.
doi: 10.1074/jbc.M116.739573 |
17 |
WINSLOW S , LEANDERSSON K , LARSSON C . Regulation of PMP22 mRNA by G3BP1 affects cell proliferation in breast cancer cells[J]. Mol Cancer, 2013, 12 (1): 156.
doi: 10.1186/1476-4598-12-156 |
18 |
ZHENG X C , CHEN J W , DENG M H , et al. G3BP1 and SLU7 jointly promote immune evasion by downregulating MHC-Ⅰ via PI3K/Akt activation in bladder cancer[J]. Adv Sci (Weinh), 2024, 11 (7): e2305922.
doi: 10.1002/advs.202305922 |
19 |
GE Y D , JIN J B , CHEN G , et al. Endometrial cancer (EC) derived G3BP1 overexpression and mutant promote EC tumorigenesis and metastasis via SPOP/ERα axis[J]. Cell Commun Signal, 2023, 21 (1): 303.
doi: 10.1186/s12964-023-01342-7 |
20 |
邵琪, 屈阳, 朱子晨, 等. 应用G3BP1稳转细胞系监测应激状态下的应激颗粒形成[J]. 畜牧兽医学报, 2020, 51 (9): 2275- 2283.
doi: 10.11843/j.issn.0366-6964.2020.09.025 |
SHAO Q , QU Y , ZHU Z C , et al. Monitoring of stress granule formation under stress by G3BP1 stable expressing cell line[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (9): 2275- 2283.
doi: 10.11843/j.issn.0366-6964.2020.09.025 |
|
21 |
张频, 孙英杰, 郑航, 等. 鸡G3BP1在新城疫病毒感染诱导应激颗粒形成过程中的作用[J]. 畜牧兽医学报, 2017, 48 (3): 515- 521.
doi: 10.11843/j.issn.0366-6964.2017.03.015 |
ZHANG P , SUN Y J , ZHENG H , et al. The role of chicken G3BP1 in the formation of stress granules induced by newcastle disease virus infection[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48 (3): 515- 521.
doi: 10.11843/j.issn.0366-6964.2017.03.015 |
|
22 |
LV S , MA M L , SUN Y M , et al. MicroRNA-129-5p inhibits 3T3-L1 preadipocyte proliferation by targeting G3BP1[J]. Anim Cells Syst (Seoul), 2017, 21 (4): 269- 277.
doi: 10.1080/19768354.2017.1337046 |
23 |
HAN R L , WEI Y , KANG X T , et al. Novel SNPs in the PRDM16 gene and their associations with performance traits in chickens[J]. Mol Biol Rep, 2012, 39 (3): 3153- 3160.
doi: 10.1007/s11033-011-1081-y |
24 |
BALLESTER M , CASTELLÓ A , IBÁÑEZ E , et al. Real-time quantitative PCR-based system for determining transgene copy number in transgenic animals[J]. Biotechniques, 2004, 37 (4): 610- 613.
doi: 10.2144/04374ST06 |
25 | 马凤英, 张景萍, 付绍印, 等. 影响绵羊肉质因素的研究进展[J]. 饲料研究, 2023, 46 (10): 134- 138. |
MA F Y , ZHANG J P , FU S Y , et al. Research progress on factors affecting sheep meat quality[J]. Feed Research, 2023, 46 (10): 134- 138. | |
26 |
PIAO M Y , YONG H I , LEE H J , et al. Comparison of fatty acid profiles and volatile compounds among quality grades and their association with carcass characteristics in longissimus dorsi and semimembranosus muscles of Korean cattle steer[J]. Livest Sci, 2017, 198, 147- 156.
doi: 10.1016/j.livsci.2017.02.021 |
27 | 祝仁铸. 野莱F1猪肉品质及肌内脂肪沉积机理的研究[D]. 泰安: 山东农业大学, 2013. |
ZHU R Z. Study on the meat qualities and the sedimentary mechanism of intramuscular fat in YL F1 pigs[D]. Taian: Shandong Agricultural University, 2013. (in Chinese) | |
28 |
LU T , ABDALLA GIBRIL B A , XU J G , et al. Unraveling the genetic foundations of broiler meat quality: Advancements in research and their impact[J]. Genes (Basel), 2024, 15 (6): 746.
doi: 10.3390/genes15060746 |
29 |
CAO Y Z , XING Y X , GUAN H B , et al. Genomic insights into molecular regulation mechanisms of intramuscular fat deposition in chicken[J]. Genes (Basel), 2023, 14 (12): 2197.
doi: 10.3390/genes14122197 |
30 |
NOTHNAGEL M , FÜRST R , ROHDE K . Entropy as a measure for linkage disequilibrium over multilocus haplotype blocks[J]. Hum Hered, 2002, 54 (4): 186- 198.
doi: 10.1159/000070664 |
31 |
AKEY J , JIN L , XIONG M M . Haplotypes vs single marker linkage disequilibrium tests: what do we gain?[J]. Eur J Hum Genet, 2001, 9 (4): 291- 300.
doi: 10.1038/sj.ejhg.5200619 |
32 |
ZHANG W Z , WANG L , RAZA S H A , et al. MiR-33a plays a crucial role in the proliferation of bovine preadipocytes[J]. Adipocyte, 2021, 10 (1): 189- 200.
doi: 10.1080/21623945.2021.1908655 |
33 |
ZHAO C Z , WU H G , CHEN P R , et al. MAT2A/2B promote porcine intramuscular preadipocyte proliferation through ERK signaling pathway[J]. Anim Sci J, 2019, 90 (9): 1278- 1286.
doi: 10.1111/asj.13264 |
34 |
CRISTANCHO A G , LAZAR M A . Forming functional fat: a growing understanding of adipocyte differentiation[J]. Nat Rev Mol Cell Biol, 2011, 12 (11): 722- 734.
doi: 10.1038/nrm3198 |
35 |
ZHANG W Z , RAZA S H A , LI B Z , et al. miR-33a inhibits the differentiation of bovine preadipocytes through the IRS2-Akt pathway[J]. Genes (Basel), 2023, 14 (2): 529.
doi: 10.3390/genes14020529 |
36 |
AMBELE M A , DHANRAJ P , GILES R , et al. Adipogenesis: A complex interplay of multiple molecular determinants and pathways[J]. Int J Mol Sci, 2020, 21 (12): 4283.
doi: 10.3390/ijms21124283 |
37 | LIU S S , FANG X , WEN X , et al. How mesenchymal stem cells transform into adipocytes: Overview of the current understanding of adipogenic differentiation[J]. World J Stem Cells, 2024, 16 (3): 245- 256. |
38 | WU M Y , MI J W , QU G X , et al. Role of hedgehog signaling pathways in multipotent mesenchymal stem cells differentiation[J]. Cell Transplant, 2024, 33, 9636897241244943. |
39 | ENGIN A B . MicroRNA and Adipogenesis[J]. Adv Exp Med Biol, 2017, 960, 489- 509. |
40 | MELNIK B C , WEISKIRCHEN R , STREMMEL W , et al. Risk of fat mass- and obesity-associated gene-dependent obesogenic programming by formula feeding compared to breastfeeding[J]. Nutrients, 2024, 16 (15): 2451. |
[1] | Dong CHEN, Wenxuan ZHOU, Zhenjian ZHAO, Qi SHEN, Yang YU, Shengdi CUI, Junge WANG, Ziyang CHEN, Shixin YU, Jiamiao CHEN, Xiangfeng WANG, Pingxian WU, Zongyi GUO, Jinyong WANG, Guoqing TANG. Development of a Pig Intramuscular Fat Content and Eye Muscle Area Measurement System Based on Computer Vision Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3843-3852. |
[2] | Zhangrong PENG, Haoran SUN, Qiaoru ZHANG, Ying YANG, Hongying GUO, Tong CHANG, Hui ZHAO, Tietao ZHANG. Study on the Pattern of Intramuscular Fat Deposition and Its Influence in Flavor Quality of Sika Deer at Different Ages [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3541-3551. |
[3] | Ming FENG, Xudong YI, Weijun PANG. Advances in Intestinal Microorganism Regulating Pork Quality through Skeletal Muscle Fiber Type, Intramuscular Fat Content and Skeletal Muscle Metabolism [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2304-2312. |
[4] | NIU Jiajia, XU Dan, LIU Yang, ZHAO Xiaoling. Research Progress on Genetic Regulation Mechanism of Barring Feather Trait in Chicken [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1883-1892. |
[5] | Shuhan YANG, Yuxin SHI, Yunwei PANG, Kaimin YUAN, Haoyu XIU, Chao WANG, Yongqiang LU, Dong WANG. Research Progress of Estrus Identification Markers in Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 4785-4795. |
[6] | ZHANG Run, LIU Hai, YANG Man, ZHANG Longchao, WANG Yuan. Analysis of Lipidome Difference between High and Low Intramuscular Fat Content Groups in Beijing Black Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 3262-3271. |
[7] | LI Tingting, LIU Qiuyue, LI Xiangchen, WANG Haitao. Research Progress and Applications of Genes Associated with Economic Traits in Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2417-2434. |
[8] | LI Wufeng, SUN Yutong, GUAN Jiawei, ZHAO Jingwei, DU Min. Key Regulatory Factors of Intramuscular Fat Deposition in Donkey [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(2): 364-375. |
[9] | YUE Yongqi, HUA Yonglin, XIONG Yan, LIN Yaqiu, XIONG Xianrong, LI Jian. Research Progress of microRNA Regulation on the Fat Deposition of Subcutaneous Adipose Tissue and Intramuscular Fat in Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(10): 2698-2709. |
[10] | LIU Xiaojing, LIU Lu, WANG Jie, CUI Huanxian, ZHAO Guiping, WEN Jie. Genome-wide Association Study of Chicken Blood Glucose Traits Using Whole Genome Resequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(6): 1187-1195. |
[11] | MA Qingshan, ZHANG Ruitao, WANG Changfa, LIU Guiqin, LI Yan. Research Progress on the Effects of Gut Microbiota and Its Functional Metabolites on Fat Metabolism and Intramuscular Fat Deposition [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(12): 2921-2933. |
[12] | REN Ling, HU Xin, XING Yishen, WANG Yahui, LI Junya, ZHANG Lupei. Effects of S100a10 on White and Brown Adipogenic Differentiation of Mice Preadipocytes [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(6): 1171-1178. |
[13] | WANG Yingming, XU Ya'ou, WANG Zhimin, XU Longyang, YANG Lei, LIN Yaqiu. Studies on the Cloning of KLF15 Gene, Tissue Expression Profile and the Association between Its Expression and Intramuscular Fat Content in Tibetan Chicken [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(2): 261-270. |
[14] | LI Kan, LIU Wen-zhong, ZHANG Rui-xin, LI Qian, ZHANG Ting, QIN Xu-ze, ZHANG Jian-xin, ZHAO Jun-xing. AMPK Regulates Sheep Muscle Derived Preadipocytes Differentiation [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2018, 49(8): 1594-1604. |
[15] | LI Ai, ZHANG Xiu-xiu, HUANG Wan-long, XIE Ling-li, MIAO Xiang-yang. Identification and Analysis of circRNAs in Intramuscular Adipose Tissues between Large White and Laiwu Pigs [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2018, 49(7): 1343-1353. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||