Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (2): 548-558.doi: 10.11843/j.issn.0366-6964.2025.02.007
• Animal Genetics and Breeding • Previous Articles Next Articles
YANG Miaomiao(), XIE Li, JIAN Baoyi, LUO Chaowei, XIE Zhuojun, ZHU Piao, ZHOU Tianri, LI Hua, XIANG Hai*(
)
Received:
2024-05-27
Online:
2025-02-23
Published:
2025-02-26
Contact:
XIANG Hai
E-mail:1079278298@qq.com;xh@fosu.edu.cn
CLC Number:
YANG Miaomiao, XIE Li, JIAN Baoyi, LUO Chaowei, XIE Zhuojun, ZHU Piao, ZHOU Tianri, LI Hua, XIANG Hai. Construction and Optimization of Prediction Models for Abdominal Fat Deposition in Adult Hens based on Early Body Size Traits using Machine Learning[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 548-558.
Table 1
Data pre-processing results"
日龄/d Age | 项目 Item | 体重/g Weight | 冠高/cm Comb height | 体斜长/cm Body diagonal length | 龙骨长/cm Keel length | 胫长/cm Shank length | 胫围/cm Shank circumference | 腰围/cm Waist circumference | 胸宽/mm Chest width | 胸深/mm Chest depth | 骨盆宽/mm Pelvic width |
58 | 平均值±标准差 | 746.55±83.01 | 0.79±0.24 | 16.45±1.28 | 7.94±0.62 | 6.28±0.73 | 3.23±0.22 | 26.51±1.78 | 47.54±4.92 | 69.3±5.23 | 39.11±3.35 |
相关系数 | 0.17 | 0.10 | 0.15 | 0.11 | 0.03 | 0.04 | 0.02 | 0.06 | 0.00 | 0.05 | |
72 | 平均值±标准差 | 946.1±97.44 | 0.94±0.29 | 18.17±1.06 | 9.35±0.75 | 7.11±0.45 | 3.31±0.18 | 30.2±1.73 | 51.44±3.54 | 68.62±3.88 | 40.83±2.89 |
相关系数 | 0.18 | 0.09 | 0.09 | 0.03 | 0.02 | 0.06 | 0.12 | 0.03 | 0.02 | 0.02 | |
86 | 平均值±标准差 | 1 088.03±111.21 | 1.08±0.46 | 19.48±0.97 | 10.4±0.8 | 7.25±0.39 | 3.37±0.21 | 32.69±1.71 | 57.64±3.46 | 70.63±3.68 | 45.1±2.87 |
相关系数 | 0.24 | 0.02 | 0.15 | 0.07 | 0.05 | 0.02 | 0.22 | 0.12 | 0.14 | 0.04 | |
104 | 平均值±标准差 | 1 214.12±116.96 | 1.56±0.59 | 19.9±1.18 | 11.02±0.61 | 7.36±0.32 | 3.52±0.15 | 33.48±1.71 | 59.66±4.01 | 75.2±4.63 | 49.34±2.5 |
相关系数 | 0.26 | 0.11 | 0.17 | 0.06 | 0.19 | 0.16 | 0.21 | 0.07 | 0.15 | 0.10 | |
119 | 平均值±标准差 | 1 413.07±142.67 | 1.93±0.64 | 20.76±1.15 | 11.86±0.65 | 7.86±0.43 | 3.72±0.18 | 35.81±1.81 | 65.46±3.38 | 81.44±4.27 | 53.31±3.08 |
相关系数 | 0.27 | 0.13 | 0.16 | 0.05 | 0.07 | 0.15 | 0.21 | 0.04 | 0.11 | -0.08 | |
136 | 平均值±标准差 | 1 694.13±177.83 | 2.42±0.66 | 20.86±1.00 | 11.93±0.64 | 7.92±0.45 | 3.71±0.16 | 38.07±1.91 | 68.07±4.81 | 97.93±5.02 | 56.44±3.63 |
相关系数 | 0.38 | 0.01 | 0.14 | 0.04 | 0.00 | 0.07 | 0.23 | 0.14 | 0.13 | 0.03 |
Table 3
Optimal parameters of the models in the binary and tertiary classifications"
分类方法 Classification method | 日龄/d Age | KNN (近邻数/n_neighbors) | Bagging (估计器数量/n_estimators) | SVM (正则化参数/C) |
二分类 | 58 | 3 | 50 | 0.01 |
72 | 10 | 5 | 0.01 | |
86 | - | 50 | 1 000 | |
104 | 12 | 20 | 10 | |
119 | 10 | 20 | 0.01 | |
136 | 10 | 20 | 10 | |
三分类 | 58 | 10 | 50 | 0.01 |
72 | 12 | 50 | 0.01 | |
86 | 12 | 50 | 0.01 | |
104 | 12 | 50 | 0.01 | |
119 | 12 | 50 | 0.01 | |
136 | 3 | 50 | 0.01 |
Table 4
Ranking of importance of traits based on body size traits at different days of age"
日龄/d Age | 指标 Metric | 第一特征 First feature | 第二特征 Second feature | 第三特征 Third feature | 第四特征 Fourth feature | 第五特征 Fifth feature |
58 | DT | 胸宽 | 骨盆宽 | 胸深 | 体斜长 | 冠高 |
RF | 骨盆宽 | 胸深 | 胸宽 | 体斜长 | 体重 | |
GBDT | 胸深 | 胸宽 | 骨盆宽 | 体斜长 | 腰围 | |
XGBoost | 胸宽 | 骨盆宽 | 腰围 | 胫长 | 胫围 | |
72 | DT | 体重 | 骨盆宽 | 腰围 | 胸宽 | 胸深 |
RF | 骨盆宽 | 胸深 | 胸宽 | 体重 | 腰围 | |
GBDT | 骨盆宽 | 胸宽 | 胸深 | 腰围 | 龙骨长 | |
XGBoost | 骨盆宽 | 胸宽 | 胫长 | 龙骨长 | 胸深 | |
86 | DT | 骨盆宽 | 腰围 | 龙骨长 | 胸深 | 胸宽 |
RF | 骨盆宽 | 胸宽 | 腰围 | 胸深 | 体重 | |
GBDT | 骨盆宽 | 胸宽 | 腰围 | 胸深 | 体重 | |
XGBoost | 骨盆宽 | 胸宽 | 腰围 | 胸深 | 胫长 | |
104 | DT | 体重 | 腰围 | 骨盆宽 | 胸深 | 胸宽 |
RF | 体重 | 腰围 | 胸深 | 骨盆宽 | 胸宽 | |
GBDT | 体重 | 腰围 | 胸深 | 骨盆宽 | 胸宽 | |
XGBoost | 胫长 | 腰围 | 胸宽 | 骨盆宽 | 胸深 | |
119 | DT | 骨盆宽 | 体重 | 胸深 | 胸宽 | 胫长 |
RF | 体重 | 胸深 | 骨盆宽 | 胸宽 | 胫长 | |
GBDT | 胸宽 | 体重 | 胸深 | 骨盆宽 | 胫长 | |
XGBoost | 胫围 | 胫长 | 胸宽 | 骨盆宽 | 腰围 | |
136 | DT | 体重 | 胸深 | 骨盆宽 | 胸宽 | 体斜长 |
RF | 体重 | 胸宽 | 骨盆宽 | 胸深 | 腰围 | |
GBDT | 体重 | 骨盆宽 | 胸宽 | 胸深 | 体斜长 | |
XGBoost | 体重 | 骨盆宽 | 胫围 | 胸宽 | 腰围 |
Table 5
Results of regression prediction using selected body size traits at different ages"
日龄/d Age | 模型 Model | 决策树特征选择 DT feature selection | 随机森林特征选择 RF feature selection | 梯度提升决策树特征选择 GBDT feature selection | 梯度提升决策树特征选择 XGBoost feature selection | |||||||||||
决定系数 R2 | 平均绝对误差 MAE | 时间/s Time | 决定系数 R2 | 平均绝对误差 MAE | 时间/s Time | 决定系数 R2 | 平均绝对误差 MAE | 时间/s Time | 决定系数 R2 | 平均绝对误差 MAE | 时间/s Time | |||||
58 | DT | 0.038 | 17.15 | 0.73 | 0.038 | 17.2 | 0.83 | 0.038 | 17.15 | 0.67 | 0.032 | 17.48 | 0.85 | |||
RF | 0.839 | 6.92 | 2.12 | 0.821 | 7.27 | 2.37 | 0.846 | 6.74 | 2.67 | 0.837 | 7.09 | 2.48 | ||||
GBDT | 0.748 | 8.64 | 6.15 | 0.773 | 8.44 | 6.02 | 0.730 | 9.09 | 5.83 | 0.673 | 10.11 | 6.31 | ||||
XGBoost | 0.771 | 7.91 | 1.63 | 0.771 | 7.93 | 2.43 | 0.744 | 8.52 | 1.62 | 0.771 | 8.11 | 2.04 | ||||
72 | DT | 0.044 | 16.85 | 0.57 | 0.044 | 16.85 | 0.73 | 0.044 | 16.85 | 0.63 | 0.020 | 17.23 | 0.97 | |||
RF | 0.842 | 6.96 | 1.98 | 0.842 | 6.96 | 2.28 | 0.846 | 6.86 | 2.14 | 0.846 | 6.80 | 2.37 | ||||
GBDT | 0.732 | 9.15 | 6.42 | 0.732 | 9.15 | 7.34 | 0.728 | 9.04 | 6.39 | 0.734 | 9.11 | 6.72 | ||||
XGBoost | 0.731 | 8.63 | 1.49 | 0.731 | 8.63 | 1.59 | 0.706 | 8.81 | 1.61 | 0.680 | 9.27 | 1.7 | ||||
86 | DT | 0.060 | 17.10 | 0.70 | 0.060 | 17.10 | 1.00 | 0.060 | 17.10 | 0.64 | 0.060 | 17.10 | 0.91 | |||
RF | 0.854 | 6.63 | 2.08 | 0.845 | 6.83 | 2.22 | 0.845 | 6.83 | 2.20 | 0.839 | 6.8 | 2.31 | ||||
GBDT | 0.750 | 8.76 | 6.16 | 0.760 | 8.61 | 6.87 | 0.760 | 8.61 | 8.09 | 0.764 | 8.53 | 6.39 | ||||
XGBoost | 0.708 | 9.16 | 1.63 | 0.692 | 9.36 | 1.67 | 0.692 | 9.36 | 1.66 | 0.768 | 8.26 | 1.77 | ||||
104 | DT | 0.068 | 17.08 | 0.61 | 0.068 | 17.08 | 0.78 | 0.068 | 17.08 | 0.62 | 0.061 | 16.88 | 0.91 | |||
RF | 0.852 | 6.49 | 1.98 | 0.851 | 6.54 | 2.23 | 0.851 | 6.54 | 1.97 | 0.827 | 6.60 | 2.20 | ||||
GBDT | 0.774 | 8.30 | 6.40 | 0.774 | 8.30 | 6.37 | 0.774 | 8.30 | 6.25 | 0.726 | 8.84 | 6.10 | ||||
XGBoost | 0.754 | 8.17 | 8.17 | 0.754 | 8.17 | 1.74 | 0.754 | 8.17 | 1.63 | 0.752 | 7.99 | 1.85 | ||||
119 | DT | 0.057 | 17.18 | 0.61 | 0.057 | 17.18 | 0.75 | 0.057 | 17.18 | 0.63 | 0.042 | 17.25 | 0.90 | |||
RF | 0.857 | 6.55 | 2.21 | 0.855 | 6.56 | 2.14 | 0.854 | 6.59 | 2.06 | 0.851 | 6.51 | 2.26 | ||||
GBDT | 0.776 | 8.09 | 6.00 | 0.776 | 8.09 | 6.56 | 0.776 | 8.09 | 6.82 | 0.745 | 8.48 | 6.39 | ||||
XGBoost | 0.765 | 8.34 | 1.63 | 0.765 | 8.34 | 2.00 | 0.765 | 8.34 | 1.84 | 0.736 | 8.49 | 1.98 | ||||
136 | DT | 0.121 | 16.64 | 0.62 | 0.121 | 16.64 | 1.37 | 0.121 | 16.64 | 0.69 | 0.121 | 16.64 | 1.75 | |||
RF | 0.843 | 6.58 | 2.47 | 0.853 | 6.65 | 2.37 | 0.846 | 6.52 | 2.24 | 0.861 | 6.32 | 2.39 | ||||
GBDT | 0.776 | 7.96 | 6.45 | 0.771 | 8.24 | 6.34 | 0.776 | 7.96 | 7.24 | 0.768 | 8.41 | 5.89 | ||||
XGBoost | 0.792 | 7.69 | 1.57 | 0.777 | 7.93 | 2.76 | 0.792 | 7.69 | 1.12 | 0.782 | 7.61 | 1.74 |
Table 6
Results of classification prediction using selected body size traits at different ages"
日龄/d Age | 模型 Model | 二分类 Binary classification | 三分类 Tertiary classification | |||
准确率/% ACC | 时间/s Time | 准确率/% ACC | 时间/s Time | |||
58 | KNN | 79.41 | 0.30 | 66.81 | 0.25 | |
MultinomialNB | 57.56 | 0.05 | 63.03 | 0.04 | ||
SVM | 51.68 | 0.47 | 63.03 | 1.21 | ||
Bagging | 100.00 | 2.10 | 100.00 | 1.90 | ||
72 | KNN | 59.24 | 0.28 | 62.61 | 0.30 | |
MultinomialNB | 51.68 | 0.05 | 63.03 | 0.05 | ||
SVM | 51.68 | 0.44 | 63.03 | 0.75 | ||
Bagging | 94.54 | 1.87 | 100.00 | 2.14 | ||
86 | KNN | 68.07 | 0.63 | 65.97 | 0.26 | |
MultinomialNB | 52.10 | 0.06 | 63.03 | 0.05 | ||
SVM | 56.30 | 0.46 | 63.03 | 0.73 | ||
Bagging | 100.00 | 1.97 | 100.00 | 2.02 | ||
104 | KNN | 65.55 | 0.39 | 63.87 | 0.27 | |
MultinomialNB | 51.68 | 0.07 | 63.03 | 0.05 | ||
SVM | 56.30 | 0.58 | 63.03 | 0.69 | ||
Bagging | 99.58 | 2.27 | 100.00 | 1.88 | ||
119 | KNN | 65.97 | 0.41 | 63.45 | 0.29 | |
MultinomialNB | 51.68 | 0.06 | 63.03 | 0.05 | ||
SVM | 51.68 | 0.50 | 63.03 | 0.76 | ||
Bagging | 99.58 | 0.58 | 99.58 | 2.28 | ||
136 | KNN | 68.07 | 0.29 | 75.21 | 0.32 | |
MultinomialNB | 59.24 | 0.05 | 63.45 | 0.06 | ||
SVM | 59.66 | 0.53 | 63.03 | 0.70 | ||
Bagging | 99.58 | 1.91 | 100.00 | 2.50 |
1 | 蔡艳. 畜牧业发展的制约因素及其宏观调控问题[J]. 吉林畜牧兽医, 2023, 44 (1): 115- 116. |
CAI Y . Constraints to livestock development and its macro-control issues[J]. Jilin Animal Husbandry and Veterinary Medicine, 2023, 44 (1): 115- 116. | |
2 | 广东畜牧兽医学会. 当前黄羽肉鸡产业发展痛点分析和应对思考[J]. 家禽科学, 2022, (2): 17- 18. |
Guangdong Assoication of Animal Husbandry and Veterinary Medicine . Analysis of the current pain points in the development of the yellow-feathered broiler industry and the response to thinking[J]. Poultry Science, 2022, (2): 17- 18. | |
3 | 冷丽, 张慧, 王宇祥, 等. 低脂肉鸡选育方法研究进展[J]. 中国家禽, 2019, 41 (12): 1- 4. |
LENG L , ZHANG H , WANG Y X , et al. Research progress of lean broiler selection methods[J]. China Poultry, 2019, 41 (12): 1- 4. | |
4 | RUCHAY A , GRITSENKO S , ERMOLOVA E , et al. A comparative study of machine learning methods for predicting live weight of duroc, landrace, and yorkshire pigs[J]. Animals (Basel), 2022, 12 (9): 1152. |
5 |
XU W , VAN KNEGSEL A T M , VERVOORT J J M , et al. Prediction of metabolic status of dairy cows in early lactation with on-farm cow data and machine learning algorithms[J]. J Dairy Sci, 2019, 102 (11): 10186- 10201.
doi: 10.3168/jds.2018-15791 |
6 |
CHEN J T , HE P G , JIANG J S , et al. In vivo prediction of abdominal fat and breast muscle in broiler chicken using live body measurements based on machine learning[J]. Poult Sci, 2023, 102 (1): 102239.
doi: 10.1016/j.psj.2022.102239 |
7 |
CAMACHO-PÉREZ E , LUGO-QUINTAL J M , TIRINK C , et al. Predicting carcass tissue composition in blackbelly sheep using ultrasound measurements and machine learning methods[J]. Trop Anim Health Prod, 2023, 55 (5): 300.
doi: 10.1007/s11250-023-03759-1 |
8 |
HE Y P , TIEZZI F , HOWARD J , et al. Predicting body weight in growing pigs from feeding behavior data using machine learning algorithms[J]. Comput Electron Agric, 2021, 184, 106085.
doi: 10.1016/j.compag.2021.106085 |
9 |
TSAI I J , SHEN W C , LEE C L , et al. Machine learning in prediction of bladder cancer on clinical laboratory data[J]. Diagnostics (Basel), 2022, 12 (1): 203.
doi: 10.3390/diagnostics12010203 |
10 | 巴桑旺堆, 平措占堆, 朱彦宾, 等. 线性模型与机器学习模型对牦牛体重预测的比较[J]. 现代农业科技, 2019, (23): 205-206, 208. |
BASANG W D , PUNTSO Z D , ZHU Y B , et al. Comparison of accuracy of linear model and machine learning model in predication of yak body weight[J]. Modern Agricultural Science and Technology, 2019, (23): 205-206, 208. | |
11 |
LOH W Y . Fifty years of classification and regression trees[J]. Int Stat Rev, 2014, 82 (3): 329- 348.
doi: 10.1111/insr.12016 |
12 | LOUPPE G. Understanding random forests: from theory to practice[J]. arXiv: 1407.7502, 2014. |
13 |
FRIEDMAN J H . Greedy function approximation: a gradient boosting machine[J]. Ann Statist, 2001, 29 (5): 1189- 1232.
doi: 10.1214/aos/1013203450 |
14 | CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785-794. |
15 | YU X G, YU X P. The research on an adaptive K-nearest neighbors classifier[C]//Proceedings of the 2006 International Conference on Machine Learning and Cybernetics. Dalian: IEEE, 2006: 1241-1246. |
16 | ZHANG H. The optimality of naive Bayes[C]//Proceedings of the 17th International Florida Artificial Intelligence Research Society Conference. Miami Beach: AAAI, 2004: 562-567. |
17 | WINTERS-HILT S , MERAT S . SVM clustering[J]. BMC Bioinformatics, 2007, 8 Suppl 7 (Suppl 7): S18. |
18 | BREIMAN L . Bagging predictors[J]. Mach Learn, 1996, 24 (2): 123- 140. |
19 | RAMAKRISHNAN S . Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case studies[J]. Comput Rev, 2016, 57 (6): 346- 346. |
20 | 徐振强, 彭志军, 季从亮, 等. 优质型黄羽肉鸡腹脂的遗传选择[J]. 中国畜牧杂志, 2019, 55 (2): 62- 65. |
XU Z Q , PENG Z J , JI C L , et al. Genetic selection for abdominal fat in quality-type yellow-feathered broilers[J]. Chinese Journal of Animal Science, 2019, 55 (2): 62- 65. | |
21 | LIN W J , REN T H , LI W Y , et al. Novel 61-bp indel of RIN2 is associated with fat and hatching weight traits in chickens[J]. Front Genet, 2021, 12, 672888. |
22 | ZHANG H L , XU Z Q , YANG L L , et al. Genetic parameters for the prediction of abdominal fat traits using blood biochemical indicators in broilers[J]. Br Poult Sci, 2018, 59 (1): 28- 33. |
23 | 张蕊, 汤青萍, 穆春宇, 等. 超声波法测量肉鸽胸肌厚度及鸽屠宰、体重、体尺性状间的相关分析[J]. 黑龙江畜牧兽医, 2019, (22): 151- 153. |
ZHANG R , TANG Q P , MU C Y , et al. Measurement of pectoral muscle thickness in meat pigeons by ultrasonic method and correlation analysis between pigeon slaughter, body weight and body size traits[J]. Heilongjiang Animal Science and Veterinary Medicine, 2019, (22): 151- 153. | |
24 | TRAKULPANITKIT A , TUNTHANATHIP T . Comparison of intracranial pressure prediction in hydrocephalus patients among linear, non-linear, and machine learning regression models in Thailand[J]. Acute Crit Care, 2023, 38 (3): 362- 370. |
25 | TZOU S J , PENG C H , HUANG L Y , et al. Comparison between linear regression and four different machine learning methods in selecting risk factors for osteoporosis in a Chinese female aged cohort[J]. J Chin Med Assoc, 2023, 86 (11): 1028- 1036. |
26 | ALKUTBE R B , ALRUBAN A , ALTURKI H , et al. Fat mass prediction equations and reference ranges for Saudi Arabian children aged 8-12 years using machine technique method[J]. PeerJ, 2021, 9, e10734. |
27 | HUSSAIN S A , CAVUS N , SEKEROGLU B . Hybrid machine learning model for body fat percentage prediction based on support vector regression and emotional artificial neural networks[J]. Appl Sci, 2021, 11 (21): 9797. |
28 | HORVAT T , HAVAŠ L , SRPAK D . The impact of selecting a validation method in machine learning on predicting basketball game outcomes[J]. Symmetry, 2020, 12 (3): 431. |
29 | CHEN R Y , ZHAO Y L , YANG Y L , et al. Online estimating weight of white Pekin duck carcass by computer vision[J]. Poult Sci, 2023, 102 (2): 102348. |
30 | ASHRI S E A , EL-GAYAR M M , EL-DAYDAMONY E M . HDPF: Heart disease prediction framework based on hybrid classifiers and genetic algorithm[J]. IEEE Access, 2021, 9, 146797- 146809. |
31 | ESSAM Y , HUANG Y F , BIRIMA A H , et al. Predicting suspended sediment load in peninsular Malaysia using support vector machine and deep learning algorithms[J]. Sci Rep, 2022, 12 (1): 302. |
32 | LIU X Q , WU Q L , PAN W T . Sentiment classification of micro-blog comments based on randomforest algorithm[J]. Concurr Comput Pract Exp, 2019, 31 (10): e4746. |
33 | HWANG M S , SONG E , AHN J , et al. Machine learning-based prediction of abdominal subcutaneous fat thickness during pregnancy[J]. Metab Syndr Relat Disord, 2023, 21 (9): 479- 488. |
34 | JEON Y , KIM Y J , JEON J , et al. Machine learning based prediction of recurrence after curative resection for rectal cancer[J]. PLoS One, 2023, 18 (12): e0290141. |
35 | MARCOS-PASERO H , COLMENAREJO G , AGUILAR-AGUILAR E , et al. Ranking of a wide multidomain set of predictor variables of children obesity by machine learning variable importance techniques[J]. Sci Rep, 2021, 11 (1): 1910. |
36 | LI B , BEATON D , EISENBERG N , et al. Using machine learning to predict outcomes following carotid endarterectomy[J]. J Vasc Surg, 2023, 78 (4): 973- 987.e6. |
37 | ZHANG M , ZHANG Y G , YU S Y , et al. Two machine learning approaches for predicting cyanobacteria abundance in aquaculture ponds[J]. Ecotoxicol Environ Saf, 2023, 258, 114944. |
38 | OLLAGNIER C , KASPER C , WALLENBECK A , et al. Machine learning algorithms can predict tail biting outbreaks in pigs using feeding behaviour records[J]. PLoS One, 2023, 18 (1): e0252002. |
39 | SEMAKULA J , CORNER-THOMAS R A , MORRIS S T , et al. Application of machine learning algorithms to predict body condition score from liveweight records of mature Romney ewes[J]. Agriculture, 2021, 11 (2): 162. |
40 | RUCHAY A , KOBER V , DOROFEEV K , et al. Comparative analysis of machine learning algorithms for predicting live weight of Hereford cows[J]. Comput Electron Agric, 2022, 195, 106837. |
[1] | WANG Tao, WANG Qi, DONG Jiaojiao, WANG Dehe, LI Lanhui. Bidirectional Promoter Regulate Transcriptional Expression of PRLR and SPEF2 in Chicken Embryonic Gonads [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 666-678. |
[2] | ZHANG Xiwen, YIN Yue, LI Xiang, WANG Min, WANG Yongfang, JIN Shuning, FENG Xinhui, ZHAO Yurong. Effects of Ursolic Acid on Breast Meat Quality and Wooden Breast of Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 711-721. |
[3] | LI Yuanfang, WU Ran, LI Shuaihao, WEI Qianran, WANG Yadong, WANG Dandan, LI Zhi, LI Guoxi, LIU Qiaoming. The Role of G3BP1 in the Proliferation and Differentiation of Chicken Intramuscular Preadipocytes and Identification of Its Molecular Markers [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 159-167. |
[4] | YIN Qiong, GAO Mingchao, YAO Xiumei, LIU Kunyu, LIU Wei, JIE Hongwei, LI Hua, YE Fei. Correlation Analysis between Melanin Content in Breast Muscle and PMEL17 Gene of Muchuan Black-bone Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 168-177. |
[5] | WU Shuang, YIN Na, YU Mohan, PING Yuyu, BAI Hao, CHEN Shihao, CHANG Guobin. The Effect of TRIM39.2 Overexpression on the Transcriptional Expression of Chicken Macrophages [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 178-188. |
[6] | YANG Wenpan, LIU Xiangjie, LUO Dongxiang, CHEN Menghui, XIE Ying, FANG Yuexin, LIN Tingyan, LI Aimin, LI Wenjing, DENG Zheng, DING Nengshui. Research on Genomic Selection of Reproductive Traits in Landrace Pigs Based on Chip Data [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 213-221. |
[7] | WANG Yi, HOU Lulu, FANG Fei, GAO Linying, XIE Shumin, WANG Yu. Fluoride Induced Small Intestine Oxidative Damage in Broilers via Autophagy and Ferroptosis [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 442-454. |
[8] | Jiqiao ZHANG, Yingjie CAI, Yuxiao LI, Chang CAO, Tao LI, Xiuyu BAO, Jianqin ZHANG. Comparative Analysis of Growth Performance, Immune, Intestinal Morphology, and Cecal Microbiota of Lueyang Black-bone Chickens under Different Rearing Systems [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4001-4011. |
[9] | Ming LOU, Haoyu LUO, Fang MU, Hui LI, Ning WANG. Advances in the Study of Chicken Insulin Signaling Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3288-3296. |
[10] | Li ZHANG, Mengmeng YU, Ying WANG, Suyan WANG, Zhuangzhuang XU, Peng LIU, Yuntong CHEN, Xiaole QI, Liuan LI, Yulong GAO. Analysis of Cellular Receptor chNHE1 Expression in Chicken Tissues Infected with Avian Leukosis Virus Subgroup J [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3631-3639. |
[11] | Jinbu WANG, Jia LI, Deming REN, Lixian WANG, Ligang WANG. Progress in the Application of Machine Learning in Livestock and Poultry Genomic Selection [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2775-2785. |
[12] | Xiaolong HUANG, Xihui SHENG, Jingwei YUAN. Research Progress of Environmental Adaptability in Chickens from Perspective of Omics Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2809-2824. |
[13] | Jing LI, Yuanxu ZHANG, Zezhao WANG, Yan CHEN, Lingyang XU, Lupei ZHANG, Xue GAO, Huijiang GAO, Junya LI, Bo ZHU, Peng GUO. Research Progress in Machine Learning Genomic Selection [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2281-2292. |
[14] | Binghong XIE, Yifan LIU, Fuguang XUE, Yanju SHAN, Yunjie TU, Gaige JI, Xiaojun JU, Jingting SHU, Hongxiang WU. The Mechanism of Effect of Hypoxia on Myofiber Type Transformation in Chicken Myoblasts [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2397-2408. |
[15] | ZHANG Yuanxu, LI Jing, WANG Zezhao, CHEN Yan, XU Lingyang, ZHANG Lupei, GAO Xue, GAO Huijiang, LI Junya, ZHU Bo, GUO Peng. Advances in Animal Genetic Evaluation Software [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1827-1841. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||