Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (1): 178-188.doi: 10.11843/j.issn.0366-6964.2025.01.017
• Animal Genetics and Breeding • Previous Articles Next Articles
WU Shuang1(), YIN Na1, YU Mohan1, PING Yuyu2, BAI Hao1, CHEN Shihao1,*(
), CHANG Guobin1
Received:
2024-07-23
Online:
2025-01-23
Published:
2025-01-18
Contact:
CHEN Shihao
E-mail:775216658@qq.com;mrrchen@yzu.edu.cn
CLC Number:
WU Shuang, YIN Na, YU Mohan, PING Yuyu, BAI Hao, CHEN Shihao, CHANG Guobin. The Effect of TRIM39.2 Overexpression on the Transcriptional Expression of Chicken Macrophages[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 178-188.
Table 1
Primers used in the study"
基因 Gene | 引物序列(5′→3′) Primers sequence | GenBank登录号 GenBank accession No. |
TRIM39.2 (载体构建) | F: $\underline{{\rm{ggatcttccagagat}}}$ATGGATGAAGATAACCCAGCTGA R: $\underline{{\rm{ctgccgttcgacgat}}}$TCACGGGGACAGCGTGAA | NM_001006196.3 |
TRIM39.2 | F: GTATCAGGCTCTCACTTCAC R: ACCTCATTGTTGGCATCG | NM_001006196.3 |
β-ACTIN | F: GAGAAATTGTGCGTGACATCA R: CCTGAACCTCTCATTGCA | NM_205518.2 |
SAMD9L | F: TCAGAATATCTCAGCAGGAAG R: AGGAACAAGCATAAGGACAT | XM_004939297 |
LYZ | F: TGTGTGCCGCAAAATTCGAG R: CCAGCGGCTGTTGATCTGTA | NM_205281.2 |
IFNW1 | F: CTTGCCCACAACAAGACGTG R: TGTTTTGGAGTGTGTGGGCT | NM_001024836 |
MDA5 | F: GTGTCCGCTTGTCAGATT R: AGGTGAGGCTGTAAGTCC | NM_001193638.2 |
CCL19 | F: TCAAGGCAATTAGGCTCTG R: CACCACAGCAGGACATAG | NM_001302168.1 |
TRIM25 | F: GAGGAAGAGCAGGAGGCG R: GCTGATGGTGGCGGAAG | NM_001318458.2 |
TBK1 | F: AGACTGGCACAACACTTCCC R: CCATACTGGCATCCCCATCC | NM_001199558.2 |
IRF7 | F: GAGCCTCCTCCCTCAACAGT R: AGGGACACAGGAAGGGAGTG | NM_205372.2 |
IFNβ | F: AGCTCTCACCACCACCTTCTC R: TGGCTGCTTGCTTCTTGTCCTT | NM_002176.4 |
OASL | F: ACATCCTCGCCATCATCGA R: GCGGACTGGTGATGCTGACT | NM_001397447.1 |
MX1 | F: CCGCAACACAGAAATACAG R: TTATCTTGTGGCTGGTTCC | NM_204609.2 |
Table 2
Quality control results of transcriptome sequencing data"
样品 Sample | 原始数据/条 Raw reads | 有效数据/条 Clean reads | Q20/% | Q30/% |
MOCK1 | 44 575 852 | 44 401 146 | 99.7 | 99.61 |
MOCK2 | 46 024 180 | 45 838 076 | 99.72 | 99.60 |
MOCK3 | 39 214 078 | 39 000 552 | 99.68 | 99.46 |
TRIM39.2-1 | 37 936 706 | 37 817 626 | 99.72 | 99.69 |
TRIM39.2-2 | 46 822 660 | 46 438 132 | 99.68 | 99.18 |
TRIM39.2-3 | 40 622 054 | 40 429 634 | 99.71 | 99.53 |
1 | 周雪, 汪显耀, 何志旭. E3泛素连接酶Trim21在肿瘤中的研究进展[J]. 遵义医科大学学报, 2024, 47 (9): 916-925, 934. |
ZHOU X , WANG X Y , HE Z X . Research progress of E3 ubiquitin ligase Trim21 in tumor[J]. Journal of Zunyi Medical University, 2024, 47 (9): 916-925, 934. | |
2 |
侯雪阳, 宋丹丹, 徐晓珍, 等. TRIM28蛋白结构和功能及其在肿瘤中的研究进展[J]. 现代肿瘤医学, 2024, 32 (18): 3589- 3596.
doi: 10.3969/j.issn.1672-4992.2024.18.030 |
HOU X Y , SONG D D , XU X Z , et al. The structure and function of TRIM28 protein and its research progress in tumor[J]. Modern Oncology, 2024, 32 (18): 3589- 3596.
doi: 10.3969/j.issn.1672-4992.2024.18.030 |
|
3 |
REYMOND A , MERONI G , FANTOZZI A , et al. The tripartite motif family identifies cell compartments[J]. EMBO J, 2001, 20 (9): 2140- 2151.
doi: 10.1093/emboj/20.9.2140 |
4 | 杨东亮, 毕冬琳, 杨晓莉, 等. TRIM家族蛋白在病毒感染中作用的研究进展[J]. 微生物学报, 2023, 63 (4): 1356- 1364. |
YANG D L , BI D L , YANG X L , et al. Role of TRIM family proteins in viral infection[J]. Acta Microbiologica Sinica, 2023, 63 (4): 1356- 1364. | |
5 | 刘艳美, 孙萌, 马瑞瑞. TRIM家族蛋白结构和功能研究进展[J]. 黑龙江畜牧兽医, 2022, (15): 29- 36. |
LIU Y M , SUN M , MA R R . Advances in the structure and function of TRIM family protein[J]. Heilongjiang Animal Science and Veterinary Medicine, 2022, (15): 29- 36. | |
6 | 贾玉生, 廖明, 代曼曼. 鸡主要组织相容性复合体分子结构与抗病性关系研究进展[J]. 中国畜牧兽医, 2024, 51 (1): 242- 254. |
JIA Y S , LIAO M , DAI M M . Research progress on the relationship between the molecular structure of chicken MHC and disease resistance[J]. China Animal Husbandry & Veterinary Medicine, 2024, 51 (1): 242- 254. | |
7 |
ZUREK B , SCHOULTZ I , NEERINCX A , et al. TRIM27 negatively regulates NOD2 by ubiquitination and proteasomal degradation[J]. PLoS One, 2012, 7 (7): e41255.
doi: 10.1371/journal.pone.0041255 |
8 |
CAGLIANI R , RIVA S , POZZOLI U , et al. Balancing selection is common in the extended MHC region but most alleles with opposite risk profile for autoimmune diseases are neutrally evolving[J]. BMC Evol Biol, 2011, 11 (1): 171.
doi: 10.1186/1471-2148-11-171 |
9 |
CREE B A C , RIOUX J D , MCCAULEY J L , et al. A major histocompatibility class i locus contributes to multiple sclerosis susceptibility independently from HLA-DRB1 *15:01[J]. PLoS One, 2010, 5 (6): e11296.
doi: 10.1371/journal.pone.0011296 |
10 |
LANATA C M , NITITHAM J , TAYLOR K E , et al. Genetic contributions to lupus nephritis in a multi-ethnic cohort of systemic lupus erythematous patients[J]. PLoS One, 2018, 13 (6): e0199003.
doi: 10.1371/journal.pone.0199003 |
11 |
ZHAO W , WANG L J , ZHANG M , et al. Tripartite motif-containing protein 38 negatively regulates TLR3/4-and RIG-I-mediated IFN-β production and antiviral response by targeting NAP1[J]. J Immunol, 2012, 188 (11): 5311- 5318.
doi: 10.4049/jimmunol.1103506 |
12 |
ZHAO W , WANG L J , ZHANG M , et al. E3 ubiquitin ligase tripartite motif 38 negatively regulates TLR-mediated immune responses by proteasomal degradation of TNF receptor-associated factor 6 in macrophages[J]. J Immunol, 2012, 188 (6): 2567- 2574.
doi: 10.4049/jimmunol.1103255 |
13 |
XUE Q H , ZHOU Z , LEI X B , et al. TRIM38 negatively regulates TLR3-mediated IFN-β signaling by targeting TRIF for degradation[J]. PLoS One, 2012, 7 (10): e46825.
doi: 10.1371/journal.pone.0046825 |
14 |
SUZUKI M , WATANABE M , NAKAMARU Y , et al. TRIM39 negatively regulates the NFκB-mediated signaling pathway through stabilization of Cactin[J]. Cell Mol Life Sci, 2016, 73 (5): 1085- 1101.
doi: 10.1007/s00018-015-2040-x |
15 |
KURATA R , TAJIMA A , YONEZAWA T , et al. TRIM39R, but not TRIM39B, regulates type Ⅰ interferon response[J]. Biochem Biophys Res Commun, 2013, 436 (1): 90- 95.
doi: 10.1016/j.bbrc.2013.05.064 |
16 | 刘妮妮, 张靓, 伍冰倩, 等. 新型免疫分子TRIM39及其缺失体参与抗禽白血病病毒作用[J]. 江苏农业科学, 2019, 47 (16): 63- 66. |
LIU N N , ZHANG L , WU B Q , et al. A new immune molecule TRIM39 and its deletants participate in immune response of chicken against avian leukemia virus[J]. Jiangsu Agricultural Sciences, 2019, 47 (16): 63- 66. | |
17 | 陈世豪, 潘诗雨, 赵睿涵, 等. 鸡SAMD9L基因真核表达载体构建及其对ALV-J病毒复制的影响[J]. 扬州大学学报: 农业与生命科学版, 2021, 42 (6): 54- 59. |
CHEN S H , PAN S Y , ZHAO R H , et al. Construction of eukaryotic expression vector of chicken SAMD9L gene and its effect on ALV-J replication[J]. Journal of Yangzhou University: Agricultural and Life Science Edition, 2021, 42 (6): 54- 59. | |
18 | 连玲. 鸡主要组织相容性复合体(MHC)研究进展[J]. 中国家禽, 2022, 44 (1): 1- 10. |
LIAN L . Research progresses on chicken major histocompatibility complex[J]. China Poultry, 2022, 44 (1): 1- 10. | |
19 |
SHIINA T , BRILES W E , GOTO R M , et al. Extended gene map reveals tripartite motif, C-type lectin, and Ig superfamily type genes within a subregion of the chicken MHC-B affecting infectious disease[J]. Extended gene map reveals tripartite motif, C-type lectin, and Ig superfamily type genes within a subregion of the chicken MHC-B affecting infectious disease[J]. J Immunol, 2007, 178 (11): 7162- 7172.
doi: 10.4049/jimmunol.178.11.7162 |
20 |
LIU X X , WANG B L , LI Y Y , et al. Powerful anticolon tumor effect of targeted gene immunotherapy using folate-modified nanoparticle delivery of CCL19 to activate the immune system[J]. ACS Cent Sci, 2019, 5 (2): 277- 289.
doi: 10.1021/acscentsci.8b00688 |
21 |
GARRIDO D , ALBER A , KUT E , et al. The role of type Ⅰ interferons (IFNs) in the regulation of chicken macrophage inflammatory response to bacterial challenge[J]. Dev Comp Immunol, 2018, 86, 156- 170.
doi: 10.1016/j.dci.2018.04.025 |
22 |
CHEN D W , JI Q L , LIU J , et al. MicroRNAs in the regulation of RIG-I-like receptor signaling pathway: possible strategy for viral infection and cancer[J]. Biomolecules, 2023, 13 (9): 1344.
doi: 10.3390/biom13091344 |
23 |
WU S F , XIA L , SHI X D , et al. RIG-I regulates myeloid differentiation by promoting TRIM25-mediated ISGylation[J]. Proc Natl Acad Sci U S A, 2020, 117 (25): 14395- 14404.
doi: 10.1073/pnas.1918596117 |
24 |
马克姣, 蔡清清, 王佳兴, 等. 鸡TET2及截短体真核表达载体的构建及其对先天免疫反应的影响[J]. 农业生物技术学报, 2024, 32 (10): 2371- 2380.
doi: 10.3969/j.issn.1674-7968.2024.10.015 |
MA K J , CAI Q Q , WANG J X , et al. Construction of chicken (Gallus gallus) TET2 and truncated eukaryotic expression vector and its effects on innate immune response[J]. Journal of Agricultural Biotechnology, 2024, 32 (10): 2371- 2380.
doi: 10.3969/j.issn.1674-7968.2024.10.015 |
|
25 |
YANG E , HUANG S , JAMI-ALAHMADI Y , et al. Elucidation of TRIM25 ubiquitination targets involved in diverse cellular and antiviral processes[J]. PLoS Pathog, 2022, 18 (9): e1010743.
doi: 10.1371/journal.ppat.1010743 |
26 |
HE T S , XIE T , LI J , et al. THO complex subunit 7 homolog negatively regulates cellular antiviral response against RNA viruses by targeting TBK1[J]. Viruses, 2019, 11 (2): 158.
doi: 10.3390/v11020158 |
27 | WAN Q Y , YANG C R , RAO Y L , et al. MDA5 induces a stronger interferon response than RIG-I to GCRV infection through a mechanism involving the phosphorylation and dimerization of IRF3 and IRF7 in CIK cells[J]. Front Immunol, 2017, 8, 189. |
[1] | YU Fengjiao, LIU Kaidong, SONG Weijie, LIU Nan, LI Hegang, ZHAO Jinshan, GAO Xiaoxiao, HE Jianning. Mechanism of miR-137 Targeting MITF Regulating Melanogenesis in Goat Melanocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 189-200. |
[2] | WU Shaoqiang, LIU Yufan, WEI Yirong, HUANG Yanna, JIANG Qinyang. Mechanism of Resveratrol Regulating Myofiber Type Transformation through PROX1/SIRT1 Signaling Pathway in Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 201-212. |
[3] | LU Xiu, ZHANG Ming’ai, KONG Min, ZHANG Jing, WANG Binghan, HOU Zhongyi, TENG Xingyi, JIANG Yajing, FAN Wenlei, WANG Baowei. Screening for Candidate Genes Related to Egg Production in Wulong Geese Based on Transcriptome and Proteome Analyses [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 232-245. |
[4] | FAN Wei, LIU Xinxin, ZHAI Yilu, ZHANG Xinyu, WANG Wei, FU Jiaqi, SUN Fuliang. Isolation and Identification of Klebsiella pneumoniae of Sheep Origin and Establishment of a Method for the Extraction of Its Outer Membrane Vesicles [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 353-364. |
[5] | JIN Congli, JIA Qiong, REN Hongrui, CHI Zhiduan, BAI Rui, GUO Xiang, FAN Ruiwen, HERRID Muren. The Expression of Qa-1b/NKG2A in the Skins of Mongolia Cattle and Preparation and Functional Roles of the Qa-1b Nanobody [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 404-416. |
[6] | Xu GUO, Xiaoxiao CHEN, Yiming CHI, Wenyu MA, Mengze DU, Jian AN, Qiuming LI, Deqi YIN. Research Progress of Toxoplasma gondii AP2 Family [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3824-3832. |
[7] | Zijin YUAN, Wanxin WANG, Ya XING, Jiahui LI, Ying XUE, Jing GE, Minmeng ZHAO, Long LIU, Daoqing GONG, Tuoyu GENG. HDLBP Is Involved in Goose Fatty Liver Formation by Regulating the Level of Oxidative Stress and the Expression of Inflammatory Factors [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3897-3913. |
[8] | Hongyan HUANG, Liyun ZHANG, Zhirong HUANG, Zhongping WU, Xumeng ZHANG, Hongjia OUYANG, Junpeng CHEN, Zhenping LIN, Yunbo TIAN, Xiujin LI, Yunmao HUANG. The Study on Population Genetic Diversity and Genome-wide Association Study of Body Weight and Size Traits for Lion-head Geese [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3914-3924. |
[9] | Yan WANG, Yadong GAO, Chenghui JIANG, Qiaoying ZENG. Isolation and Pathogenicity of a Goose Derived Fowl Adenovirus Type 4 [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4232-4240. |
[10] | Xiaoxu ZHANG, Hao LI, Pingjie FENG, Hao YANG, Xinyue LI, Ran LÜ, Zhangyuan PAN, Mingxing CHU. Application of Single-Cell Transcriptome Sequencing Technology in Domesticated Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3276-3287. |
[11] | Jing CHEN, Xuebei WU, Dongzhi MIAO, Chi ZHANG, Zhenyu GUO, Ying WANG. Comparative Analysis of Transcriptome of Pigeon Follicles at Early Stage of Laying Interval Reveals Genes Related to Follicular Development [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3503-3515. |
[12] | Meila NA, Kenan LI, Haidong DU, Wenliang GUO, Renhua NA. Study on the Differences of Fungal Diversity in Rumen and Feces of Inner Mongolia Cashmere Goats at Different Ages [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3526-3540. |
[13] | Yuting CHENG, ABI-Kehamo, Chen YANG, Dingzhong ZHANG, Yunxin REN, Hua YUE, Cheng TANG. Isolation and Molecular Characterization of Aichivirus C from Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3612-3622. |
[14] | Peng SHEN, Yi WANG, Weijie REN, Yongchun YANG, Houhui SONG, Zhiliang WANG. Meta Analysis of Immune Antibody Monitoring for Lumpy Skin Disease [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3649-3658. |
[15] | Jinbu WANG, Jia LI, Deming REN, Lixian WANG, Ligang WANG. Progress in the Application of Machine Learning in Livestock and Poultry Genomic Selection [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2775-2785. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||