Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (8): 3446-3459.doi: 10.11843/j.issn.0366-6964.2024.08.018
• Animal Genetics and Breeding • Previous Articles Next Articles
Ruowei WANG1,3(), Xiyao XU1, Xiaona TANG1, Chunmei WANG1,2,*(
), Feng ZHAO1,*(
)
Received:
2024-01-23
Online:
2024-08-23
Published:
2024-08-28
Contact:
Chunmei WANG, Feng ZHAO
E-mail:3029680795@qq.com;wangcm-1@163.com;erjinzhi@126.com
CLC Number:
Ruowei WANG, Xiyao XU, Xiaona TANG, Chunmei WANG, Feng ZHAO. Connective Tissue Growth Factor Regulates the Growth and Differentiation of Cows Mammary Epithelial Cells in Vitro[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3446-3459.
Table 1
qRT-PCR primers sequence"
基因 Gene | 引物序列(5′→3′) Primer sequence |
PPARγ | F: CTTCACCACCGTTGACTTCTCCAG R: CAGGCTCCACTTTGATTGCACTTTG |
FASN | F: CTGAGTCGGAGAACCTGGAGGAG R: CTTCCACCGCCTGTCATCATCTG |
SREBP1 | F: GCCACTGGTAGTAGACACTGACAAG R: TTGATGGAAGAGCGGTAGCGTTTC |
CSN2 | F: TGTACCTGGTGAGATTGTGGAAAGC R: GTTCATCCTCTGTTTGCTGCTGTTC |
PRLR | F: ACCAAGCAGAGGGAGTCAGAAGG R: CCAAGGGTTTAGCAGAGATCAAGGG |
STAT5a | F: GCGGAAGCAGCAGACCATCATC R: GCCAACTTCTCACACCAGGACTG |
STAT5b | F:GCGGAAGCAGCAGACCATCATC R:GCCAACTTCTCACACCAGGACTG |
ITGB1 | F: CGCCTGTGACTGTTCTCTGGATAC R: CCAAGGCAGGTCTGACACATCTC |
CyclinD1 | F: GCCGAGGAGAACAAGCAGATCATC R: AGGGCGGGTTGGAAATGAACTTC |
MAPK | F:AACACCTCAGCAACGACCACATC R:TGTTGAGCAGCAGGTTGGAAGG |
Bcl-2 | F: GCTTCAGGGTTTCATCCAGGATCG R: CAGACACTCGCTCAGCTTCTTGG |
Bax | F: GCTTCAGGGTTTCATCCAGGATCG R: CAGACACTCGCTCAGCTTCTTGG |
Caspase3 | F: TTGCAGAAGTCTGACTGGAAAACCC R: CAGCACCACTGTCTGTCTCAATACC |
β-Actin | F: TGCGGCATTCACGAAACTAC R: ACAGCACCGTGTTGGCGTA |
Fig. 2
Effects of exogenous CTGF addition on cell proliferation and apoptosis A.EdU was used to detect cell proliferation, DAPI was the stained nucleus, and red fluorescence was the proliferating cells; B. Apoptosis was detected by flow cytometry; C. Fluorescent quantitative PCR was used to detect the marker genes expression of cell proliferation and apoptosis; D. Western blot was used to detect proteins expression related to cell proliferation and apoptosis synthesis. * the difference was significant (P < 0.05); ** the difference was very significant (P < 0.01), the same as below"
Fig. 3
Effects of overexpression of CTGF on cell proliferation and apoptosis A.EdU was used to detect cell proliferation, DAPI was the stained nucleus, and red fluorescence was the proliferating cells; B. Apoptosis was detected by flow cytometry; C. Fluorescent quantitative PCR to detect the marker genes expression of cell proliferation and apoptosis; D. Western blot was used to detect proteins expression related to cell proliferation and apoptosis synthesis. Different lowercase letters indicated significant difference (P<0.05); Same lowercase letter means no significant difference (P>0.05), the same as below"
Fig. 4
Effect of exogenous addition of CTGF on milk protein synthesis in cells A. Intracellular milk fat synthesis was detected by Nile red staining, DAPI was the stained nucleus, and red fluorescence was the amount of milk fat synthesis; B. The effect of adding CTGF on the content of synthesized triglyceride (TAG); C. Fluorescent quantitative PCR detection of milk fat synthesis marker genes expression; D. Fluorescent quantitative PCR was used to detect the marker genes expression of milk protein synthesis; E. Western blot was used to detect proteins expression related to milk fat synthesis; F. Western blot was used to detect the expression of proteins related to milk protein synthesis in cells"
Fig. 5
Effect of endogenous overexpression of CTGF on proteins synthesis of cellular milk fat A. Intracellular milk fat synthesis was detected by Nile red staining, DAPI was the stained nucleus, and red fluorescence was the amount of milk fat synthesis; B. Effect of overexpression of CTGF on the content of triglyceride (TAG) secreted by cells in culture medium; C. Fluorescent quantitative PCR detection of milk fat synthesis marker genes expression; D. Fluorescent quantitative PCR was used to detect the marker genes expression of milk protein synthesis; E. Western blot was used to detect proteins expression related to milk fat synthesis; F. Western blot was used to detect the expression of protein related to milk protein synthesis in cells"
1 |
ZAYKOV V , CHAQOUR B . The CCN2/CTGF interactome: an approach to understanding the versatility of CCN2/CTGF molecular activities[J]. J Cell Commun Signal, 2021, 15 (4): 567- 580.
doi: 10.1007/s12079-021-00650-2 |
2 |
RIQUELME-GUZMÁN C , CONTRERAS O , BRANDAN E . Expression of CTGF/CCN2 in response to LPA is stimulated by fibrotic extracellular matrix via the integrin/FAK axis[J]. Am J Physiol Cell Physiol, 2018, 314 (4): C415- C427.
doi: 10.1152/ajpcell.00013.2017 |
3 |
YEGER H . CCN proteins: opportunities for clinical studies-a personal perspective[J]. J Cell Commun Signal, 2023, 17 (2): 333- 352.
doi: 10.1007/s12079-023-00761-y |
4 |
CAPPARELLI C , WHITAKER-MENEZES D , GUIDO C , et al. CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth[J]. Cell Cycle, 2012, 11 (12): 2272- 2284.
doi: 10.4161/cc.20717 |
5 |
YANG Z H , LI W S , SONG C L , et al. CTGF as a multifunctional molecule for cartilage and a potential drug for osteoarthritis[J]. Front Endocrinol (Lausanne), 2022, 13, 1040526.
doi: 10.3389/fendo.2022.1040526 |
6 |
XIA X Y , HUANG L , ZHOU S J , et al. Hypoxia-induced long non-coding RNA plasmacytoma variant translocation 1 upregulation aggravates pulmonary arterial smooth muscle cell proliferation by regulating autophagy via miR-186/Srf/Ctgf and miR-26b/Ctgf signaling pathways[J]. Int J Cardiol, 2023, 370, 368- 377.
doi: 10.1016/j.ijcard.2022.09.060 |
7 |
LI X N , PONGKITWITOON S , LU H B , et al. CTGF induces tenogenic differentiation and proliferation of adipose-derived stromal cells[J]. J Orthop Res, 2019, 37 (3): 574- 582.
doi: 10.1002/jor.24248 |
8 |
BRIGSTOCK D R . The CCN family: a new stimulus package[J]. J Endocrinol, 2003, 178 (2): 169- 175.
doi: 10.1677/joe.0.1780169 |
9 | 王春梅, 贾聚晨, 王保胜, 等. CTGF对奶牛乳腺上皮细胞乳蛋白表达的调控[J]. 东北农业大学学报, 2022, 53 (5): 51- 58. |
WANG C M , JIA J C , WANG B S , et al. Regulation of milk protein expression by CTGF in dairy cow mammaryepithelial cells[J]. Journal of Northeast Agricultural University, 2022, 53 (5): 51- 58. | |
10 |
李月娇, 崔燕, 张倩, 等. CTGF和FGF-2在不同年龄牦牛肺内的分布与表达研究[J]. 畜牧兽医学报, 2021, 52 (7): 2025- 2033.
doi: 10.11843/j.issn.0366-6964.2021.07.024 |
LI Y J , CUI Y , ZHANG Q , et al. Study on the distribution and expression of CTGF and FGF-2 in the lungs of yaks at different ages[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (7): 2025- 2033.
doi: 10.11843/j.issn.0366-6964.2021.07.024 |
|
11 | OFTEDAL O T . The evolution of lactation in mammalian species[J]. Nestlé Nutr Inst Workshop Ser, 2020, 94, 1- 10. |
12 | 任倩倩, 罗仍卓么, 王兴平, 等. 奶牛乳腺上皮细胞增殖与凋亡的分子调控机制[J]. 农业生物技术学报, 2022, 30 (2): 356- 369. |
REN Q Q , LUO R Z M , WANG X P , et al. Molecular regulation mechanism of proliferation and apoptosis in bovine(bos taurus)mammary epithelial cells[J]. Journal of Agricultural Biotechnology, 2022, 30 (2): 356- 369. | |
13 |
WANG M Z , JI Y , WANG C , et al. The preliminary study on the effects of growth hormone and insulin-like growth factor-I on κ-casein synthesis in bovine mammary epithelial cells in vitro[J]. J Anim Physiol Anim Nutr (Berl), 2016, 100 (2): 251- 255.
doi: 10.1111/jpn.12361 |
14 |
SHARMIN M M , HAYASHI S , MIYAJI M , et al. Insulin-like growth factor-1 induces IRE1-XBP1-dependent endoplasmic reticulum biogenesis in bovine mammary epithelial cells[J]. J Dairy Sci, 2021, 104 (11): 12094- 12104.
doi: 10.3168/jds.2021-20268 |
15 |
WANG W H , JOSE C , KENNEY N , et al. Global expression profiling reveals regulation of CTGF/CCN2 during lactogenic differentiation[J]. J Cell Commun Signal, 2009, 3 (1): 43- 55.
doi: 10.1007/s12079-009-0047-5 |
16 |
MORRISON B L , JOSE C C , CUTLER M L . Connective tissue growth factor (CTGF/CCN2) enhances lactogenic differentiation of mammary epithelial cells via integrin-mediated cell adhesion[J]. BMC Cell Biol, 2010, 11 (1): 35.
doi: 10.1186/1471-2121-11-35 |
17 |
HENDESI H , BARBE M F , SAFADI F F , et al. Integrin mediated adhesion of osteoblasts to connective tissue growth factor (CTGF/CCN2) induces cytoskeleton reorganization and cell differentiation[J]. PLoS One, 2015, 10 (2): e0115325.
doi: 10.1371/journal.pone.0115325 |
18 |
YU Y L , LENG Y , SONG X Y , et al. Extracellular matrix stiffness regulates microvascular stability by controlling endothelial paracrine signaling to determine pericyte fate[J]. Arterioscler Thromb Vasc Biol, 2023, 43 (10): 1887- 1899.
doi: 10.1161/ATVBAHA.123.319119 |
19 |
ZHOU Y T , YU Y Q , YANG H , et al. Extracellular ATP promotes angiogenesis and adhesion of TNBC cells to endothelial cells via upregulation of CTGF[J]. Cancer Sci, 2022, 113 (7): 2457- 2471.
doi: 10.1111/cas.15375 |
20 |
LAU L F . Cell surface receptors for CCN proteins[J]. J Cell Commun Signal, 2016, 10 (2): 121- 127.
doi: 10.1007/s12079-016-0324-z |
21 |
FU M Y , PENG D D , LAN T X , et al. Multifunctional regulatory protein connective tissue growth factor (CTGF): a potential therapeutic target for diverse diseases[J]. Acta Pharm Sin B, 2022, 12 (4): 1740- 1760.
doi: 10.1016/j.apsb.2022.01.007 |
22 |
CHEN C C , LAU L F . Functions and mechanisms of action of CCN matricellular proteins[J]. Int J Biochem Cell Biol, 2009, 41 (4): 771- 783.
doi: 10.1016/j.biocel.2008.07.025 |
23 |
RAYEGO-MATEOS S , CAMPILLO S , RODRIGUES-DIEZ R R , et al. Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis[J]. Clin Sci (Lond), 2021, 135 (16): 1999- 2029.
doi: 10.1042/CS20201016 |
24 |
JASWAL S , JENA M K , ANAND V , et al. Critical review on physiological and molecular features during bovine mammary gland development: recent advances[J]. Cells, 2022, 11 (20): 3325.
doi: 10.3390/cells11203325 |
25 |
JASWAL S , ANAND V , KUMAR S , et al. In-depth proteome analysis of more than 12, 500 proteins in buffalo mammary epithelial cell line identifies protein signatures for active proliferation and lactation[J]. Sci Rep, 2020, 10 (1): 4834.
doi: 10.1038/s41598-020-61521-1 |
26 | YU W , GUO J Q , MAO L , et al. Glucose promotes cell growth and casein synthesis via ATF4/Nrf2-Sestrin2-AMPK-mTORC1 pathway in dairy cow mammary epithelial cells[J]. Anim Biotechnol, 2023, 34 (8): 3808- 3818. |
27 | VANG A L , BRESOLIN T , FRIZZARINI W S , et al. Longitudinal analysis of bovine mammary gland development[J]. J Mammary Gland Biol Neoplasia, 2023, 28 (1): 11. |
28 | HALL-GLENN F , AIVAZI A , AKOPYAN L , et al. CCN2/CTGF is required for matrix organization and to protect growth plate chondrocytes from cellular stress[J]. J Cell Commun Signal, 2013, 7 (3): 219- 230. |
29 | RILEY K G , PASEK R C , MAULIS M F , et al. Connective tissue growth factor modulates adult β-cell maturity and proliferation to promote β-cell regeneration in mice[J]. Diabetes, 2015, 64 (4): 1284- 1298. |
30 | TONG Z Y , BRIGSTOCK D R . Intrinsic biological activity of the thrombospondin structural homology repeat in connective tissue growth factor[J]. J Endocrinol, 2006, 188 (3): R1- R8. |
31 | HISHIKAWA K , OEMAR B S , NAKAKI T . Static pressure regulates connective tissue growth factor expression in human mesangial cells[J]. J Biol Chem, 2001, 276 (20): 16797- 16803. |
32 | GUO H Y , LI J Y , WANG Y H , et al. Progress in research on key factors regulating lactation initiation in the mammary glands of dairy cows[J]. Genes (Basel), 2023, 14 (6): 1163. |
33 | MORRISON B , CUTLER M L . The contribution of adhesion signaling to lactogenesis[J]. J Cell Commun Signal, 2010, 4 (3): 131- 139. |
34 | WANG W H , MORRISON B , GALBAUGH T , et al. Glucocorticoid induced expression of connective tissue growth factor contributes to lactogenic differentiation of mouse mammary epithelial cells[J]. J Cell Physiol, 2008, 214 (1): 38- 46. |
[1] | Xinrui ZHANG, Yu FU, Sijia MA, Zhuo YANG, Jinzhong TAO. Physiological Regulation and Feeding Management of Periparturient Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2325-2333. |
[2] | Hang ZHANG, Peipei ZHANG, Baigao YANG, Xiaoyi FENG, Yifan NIU, Zhou YU, Jianhua CAO, Pengcheng WAN, Xueming ZHAO. Combination of IGF1, CoQ10 and MT Alleviated the Effects of Heat Stress on Bovine IVF Blastocysts [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2474-2485. |
[3] | XIANG Hui, GUI Linsen, YANG Di, WEI Shihao, GONG Yanbin, SHI Yuangang, MA Yun, DAN Xingang. Research Progress on the Estrus Synchronization-fixed-timed Artificial Insemination Technology in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1412-1422. |
[4] | KANG Fangyuan, LIU Zhentao, WU Kuixian, NI Han, ZHONG Kai, LI Heping, YANG Guoyu, HAN Liqiang. Regulation of Lipophagy on the Size of Lipid Droplets in Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1095-1101. |
[5] | ZHANG Xinrui, FU Yu, YANG Zhuo, SHEN Wenjuan, TAO Jinzhong. Study of Early Pregnancy Diagnostic Proteins in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 451-460. |
[6] | MENG Lu, HU Haiyan, DONG Lei, ZHENG Nan, WANG Jiaqi. Influence of Dairy Farm Environment on Mastitis Milk Microbiota via SourceTracker [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3872-3883. |
[7] | ZHANG Hang, YANG Baigao, XU Xi, FENG Xiaoyi, DU Weihua, HAO Haisheng, ZHU Huabin, ZHANG Peipei, ZHAO Xueming. Research Progress on the Mechanism of Heat Stress Affecting the Development of Dairy Cow Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2692-2700. |
[8] | ZHAO Wanli, CAO Qiqi, YANG Yue, DENG Zhaoju, XU Chuang. The Interaction between Gastrointestinal Microbiota and Mucosal Immunity in Health of Perinatal Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2751-2760. |
[9] | SHAO Yuexin, ZHANG Xinyu, GE Liyan, SHI Huaiping. Cloning and RNA Interference Analysis of ATF4 Gene in Xinong Saanen Dairy Goat [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2353-2364. |
[10] | HUANG Shangzhen, MA Longgang, LOU Wenqi, NING Jingyang, ZHANG Hailiang, HU Lirong, ZHA Qiong, LI Bin, XU Qing, BASANG Luobu, WANG Yachun. Analysis of Influencing Factors on Blood Indicators of Dairy Cows at High-altitude Area [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1964-1978. |
[11] | JIA Hongru, YANG Chaoqun, WANG Meng, WU Zhangqing, ZAN Linsen, YANG Wucai. LRTN4RL1-AS Mediates Milk Fat Synthesis in Bovine Mammary Epithelial Cells through miR-27a-3p Targeting PPARγ [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1465-1477. |
[12] | CAI Mingyu, ZHANG Hailong, HAI Zhenzhen, QIAO Yarui, DU Jun, ZHOU Xuezhang. The Inflamed Molecular Mechanism Induced by Recombined 14-3-3 Protein of Candida krusei on Bovine Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1679-1689. |
[13] | FENG Xiaoyi, YANG Baigao, HAO Haisheng, DU Weihua, ZHU Huabin, CUI Kai, ZHAO Xueming. Mechanism and Solution of Heat Stress Induced Embryo Quality Decline in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 868-876. |
[14] | YU Shiqiang, LI Liuxue, ZHAO Xiaobo, ZHAO Huiying, TU Yan, ZHAO Yuchao, JIANG Linshu. Differences and Correlations of Lactation Performance in Chinese Holstein Dairy Cows at Different Lactation Stages and Somatic Levels [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1003-1014. |
[15] | PAN Chanyuan, ZHAO Zixuan, DUAN Mingjie, JIANG Linshu, TONG Jinjin. The Mechanism of Artemisia carvifolia Alleviating Dairy Cow Oxidative Stress Predicted by Network Pharmacology [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1071-1084. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||