Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (7): 2775-2785.doi: 10.11843/j.issn.0366-6964.2024.07.001
• Review • Previous Articles Next Articles
Jinbu WANG(), Jia LI, Deming REN, Lixian WANG, Ligang WANG*(
)
Received:
2023-10-10
Online:
2024-07-23
Published:
2024-07-24
Contact:
Ligang WANG
E-mail:w18439393365@163.com;wangligang01@caas.cn
CLC Number:
Jinbu WANG, Jia LI, Deming REN, Lixian WANG, Ligang WANG. Progress in the Application of Machine Learning in Livestock and Poultry Genomic Selection[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2775-2785.
1 |
GODDARD M E , HAYES B J . Genomic selection[J]. J Anim Breed Genet, 2007, 124 (6): 323- 330.
doi: 10.1111/j.1439-0388.2007.00702.x |
2 |
MEUWISSEN T H E , HAYES B J , GODDARD M E . Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157 (4): 1819- 1829.
doi: 10.1093/genetics/157.4.1819 |
3 | 孙东晓, 张胜利, 张勤, 等. 我国奶牛基因组选择技术应用进展[J]. 畜牧兽医学报, 2023, 54 (10): 4028- 4039. |
SUN D X , ZHANG S L , ZHANG Q , et al. Application progress on genomic selection technology for dairy cattle in China[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (10): 4028- 4039. | |
4 | 邢文凯, 刘建, 刘燊, 等. 猪基因组选择育种研究进展[J]. 中国畜牧杂志, 2021, 57 (7): 31- 37. |
XING W K , LIU J , LIU S , et al. Research progress on the genomic selection breeding in swine[J]. Chinese Journal of Animal Science, 2021, 57 (7): 31- 37. | |
5 | 张瑞锋, 黄珍, 谢水华, 等. 猪全基因组选择技术发展现状和应用前景[J]. 中国畜牧杂志, 2023, 59 (10): 21- 29. |
ZHANG R F , HUANG Z , XIE S H , et al. The development status and application prospect of genomic selection for pigs[J]. Chinese Journal of Animal Science, 2023, 59 (10): 21- 29. | |
6 | 成海建, 姜富贵, 张清峰, 等. 全基因组选择技术在肉牛育种中的应用[J]. 中国牛业科学, 2018, 44 (6): 68- 72. |
CHENG H J , JIANG F G , ZHANG Q F , et al. Application of genomic selection in beef cattle[J]. China Cattle Science, 2018, 44 (6): 68- 72. | |
7 | 吴桂琴, 闫奕源, 李花妮, 等. 基因组选择技术在家禽育种中的应用[J]. 中国家禽, 2018, 40 (9): 1- 5. |
WU G Q , YAN Y Y , LI H N , et al. Application of genomic selection in poultry breeding[J]. China Poultry, 2018, 40 (9): 1- 5. | |
8 | 张统雨, 魏霞, 张勤, 等. 基因组选择在羊育种中的应用研究进展[J]. 畜牧兽医学报, 2018, 49 (12): 2535- 2542. |
ZHANG T Y , WEI X , ZHANG Q , et al. Progress on application of genomic selection in sheep and goat breeding[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49 (12): 2535- 2542. | |
9 | 宋海亮, 胡红霞. 基因组选择及其在水产动物育种中的研究进展[J]. 农业生物技术学报, 2022, 30 (2): 379- 392. |
SONG H L , HU H X . Genomic selection and its research progress in breeding of aquaculture species[J]. Journal of Agricultural Biotechnology, 2022, 30 (2): 379- 392. | |
10 | 李棉燕, 王立贤, 赵福平. 机器学习在动物基因组选择中的研究进展[J]. 中国农业科学, 2023, 56 (18): 3682- 3692. |
LI M Y , WANG L X , ZHAO F P . Research progress on machine learning for genomic selection in animals[J]. Scientia Agricultura Sinica, 2023, 56 (18): 3682- 3692. | |
11 | 李航. 统计学习方法[M]. 2版 北京: 清华大学出版社, 2019. |
LI H . Statistical learning methods[M]. 2nd ed Beijing: Tsinghua University Press, 2019. | |
12 | HANSEN K B , BORCH C . The absorption and multiplication of uncertainty in machine-learning-driven finance[J]. Br J Sociol, 2021, 72 (4): 1015- 1029. |
13 | HANDELMAN G S , KOK H K , CHANDRA R V , et al. eDoctor: machine learning and the future of medicine[J]. J Intern Med, 2018, 284 (6): 603- 619. |
14 | WEISKITTEL T M , CORREIA C , YU G T , et al. The trifecta of single-cell, systems-biology, and machine-learning approaches[J]. Genes (Basel), 2021, 12 (7): 1098. |
15 | BOWLER A L , POUND M P , WATSON N J . A review of ultrasonic sensing and machine learning methods to monitor industrial processes[J]. Ultrasonics, 2022, 124, 106776. |
16 | AN B X , LIANG M , CHANG T P , et al. KCRR: a nonlinear machine learning with a modified genomic similarity matrix improved the genomic prediction efficiency[J]. Brief Bioinform, 2021, 22 (6): bbab132. |
17 | WANG X , SHI S L , WANG G J , et al. Using machine learning to improve the accuracy of genomic prediction of reproduction traits in pigs[J]. J Anim Sci Biotechnol, 2022, 13 (1): 60. |
18 | 张哲, 张勤, 丁向东. 畜禽基因组选择研究进展[J]. 科学通报, 2011, 56 (26): 2212- 2222. |
ZHANG Z , ZHANG Q , DING X D . Advances in genomic selection in domestic animals[J]. Chin Sci Bull, 2011, 56 (25): 2655- 2663. | |
19 | VANRADEN P M . Efficient methods to compute genomic predictions[J]. J Dairy Sci, 2008, 91 (11): 4414- 4423. |
20 | LEGARRA A , AGUILAR I , MISZTAL I . A relationship matrix including full pedigree and genomic information[J]. J Dairy Sci, 2009, 92 (9): 4656- 4663. |
21 | 王重龙, 丁向东, 刘剑锋, 等. 基因组育种值估计的贝叶斯方法[J]. 遗传, 2014, 36 (2): 111- 118. |
WANG C L , DING X D , LIU J F , et al. Bayesian methods for genomic breeding value estimation[J]. Hereditas (Beijing), 2014, 36 (2): 111- 118. | |
22 | HABIER D , FERNANDO R L , KIZILKAYA K , et al. Extension of the Bayesian alphabet for genomic selection[J]. BMC Bioinformatics, 2011, 12, 186. |
23 | YI N J , XU S Z . Bayesian LASSO for quantitative trait loci mapping[J]. Genetics, 2008, 179 (2): 1045- 1055. |
24 | MOSER G , LEE S H , HAYES B J , et al. Simultaneous discovery, estimation and prediction analysis of complex traits using a Bayesian mixture model[J]. PLoS Genet, 2015, 11 (4): e1004969. |
25 | GONZÁLEZ-RECIO O , ROSA G J M , GIANOLA D . Machine learning methods and predictive ability metrics for genome-wide prediction of complex traits[J]. Livest Sci, 2014, 166, 217- 231. |
26 | CORTES C , VAPNIK V . Support-vector networks[J]. Mach Learn, 1995, 20 (3): 273- 297. |
27 | VAPNIK V N. Methods of function estimation[M]//VAPNIK V N. The Nature of Statistical Learning Theory. 2nd ed. New York: Springer, 2000: 181-224. |
28 | 梁忙. 基于机器学习算法的全基因组选择研究[D]. 北京: 中国农业科学院, 2021. |
LIANG M. The algorithms research for genomic selection study based on machine learning[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese) | |
29 | BREIMAN L . Random forests[J]. Mach Learn, 2001, 45 (1): 5- 32. |
30 | CHEN X , ISHWARAN H . Random forests for genomic data analysis[J]. Genomics, 2012, 99 (6): 323- 329. |
31 | GONZÁLEZ-RECIO O , FORNI S . Genome-wide prediction of discrete traits using Bayesian regressions and machine learning[J]. Genet Sel Evol, 2011, 43 (1): 7. |
32 | SRIVASTAVA S , LOPEZ B I , KUMAR H , et al. Prediction of Hanwoo cattle phenotypes from genotypes using machine learning methods[J]. Animals (Basel), 2021, 11 (7): 2066. |
33 | ABDOLLAHI-ARPANAHI R , GIANOLA D , PEÑAGARICANO F . Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes[J]. Genet Sel Evol, 2020, 52 (1): 12. |
34 | OGUTU J O , PIEPHO H P , SCHULZ-STREECK T . A comparison of random forests, boosting and support vector machines for genomic selection[J]. BMC Proc, 2011, 5 Suppl 3 (Suppl 3): S11. |
35 | WALDMANN P . Genome-wide prediction using Bayesian additive regression trees[J]. Genet Sel Evol, 2016, 48 (1): 42. |
36 | RUMELHART D E , HINTON G E , WILLIAMS R J . Learning representations by back-propagating errors[J]. Nature, 1986, 323 (6088): 533- 536. |
37 | WALDMANN P , PFEIFFER C , MÉSZÁROS G . Sparse convolutional neural networks for genome-wide prediction[J]. Front Genet, 2020, 11, 25. |
38 | WALDMANN P . Approximate Bayesian neural networks in genomic prediction[J]. Genet Sel Evol, 2018, 50 (1): 70. |
39 | PÉREZ-ENCISO M , ZINGARETTI L M . A guide on deep learning for complex trait genomic prediction[J]. Genes (Basel), 2019, 10 (7): 553. |
40 | LONG N Y , GIANOLA D , ROSA G J M , et al. Application of support vector regression to genome-assisted prediction of quantitative traits[J]. Theor Appl Genet, 2011, 123 (7): 1065- 1074. |
41 | LI B , ZHANG N X , WANG Y G , et al. Genomic prediction of breeding values using a subset of SNPs identified by three machine learning methods[J]. Front Genet, 2018, 9, 237. |
42 | LIANG M , MIAO J , WANG X Q , et al. Application of ensemble learning to genomic selection in Chinese Simmental beef cattle[J]. J Anim Breed Genet, 2021, 138 (3): 291- 299. |
43 | LIANG M , CHANG T P , AN B X , et al. A stacking ensemble learning framework for genomic prediction[J]. Front Genet, 2021, 12, 600040. |
44 | LIANG M , AN B X , CHANG T P , et al. Incorporating kernelized multi-omics data improves the accuracy of genomic prediction[J]. J Anim Sci Biotechnol, 2022, 13 (1): 103. |
45 | ZHAO W , LAI X S , LIU D Y , et al. Applications of support vector machine in genomic prediction in pig and maize populations[J]. Front Genet, 2020, 11, 598318. |
46 | XIANG T , LI T , LI J L , et al. Using machine learning to realize genetic site screening and genomic prediction of productive traits in pigs[J]. FASEB J, 2023, 37 (6): e22961. |
47 | 陈健梅. 大白猪繁殖性状的全基因组关联分析和基因组选择研究[D]. 郑州: 河南农业大学, 2023. |
CHEN J M. Genome-wide association study and genomic selection for reproductive traits in large white pigs[D]. Zhengzhou: Henan Agricultural University, 2023. (in Chinese) | |
48 | LONG N , GIANOLA D , ROSA G J M , et al. Machine learning classification procedure for selecting SNPs in genomic selection: application to early mortality in broilers[J]. J Anim Breed Genet, 2007, 124 (6): 377- 389. |
49 | 丁纪强, 李庆贺, 张高猛, 等. 比较机器学习等算法对肉鸡产蛋性状育种值估计的准确性[J]. 畜牧兽医学报, 2022, 53 (5): 1364- 1372. |
DING J Q , LI Q H , ZHANG G M , et al. Comparing the accuracy of estimated breeding value by several algorithms on laying traits in broilers[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (5): 1364- 1372. | |
50 | LI Z D , ZHENG J M , AN B X , et al. Several models combined with ultrasound techniques to predict breast muscle weight in broilers[J]. Poult Sci, 2023, 102 (10): 102911. |
51 | PEDREGOSA F , VAROQUAUX G , GRAMFORT A , et al. Scikit-learn: machine learning in python[J]. J Mach Learn Res, 2011, 12, 2825- 2830. |
52 | CHOLLET F. Keras[Z]. GitHub, 2015. |
53 | CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA: Association for Computing Machinery, 2016: 785-794. |
54 | KE G L, MENG Q, FINLEY T, et al. LightGBM: a highly efficient gradient boosting decision tree[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA: Curran Associates Inc., 2017: 3149-3157. |
55 | YIN L L , ZHANG H H , ZHOU X , et al. KAML: improving genomic prediction accuracy of complex traits using machine learning determined parameters[J]. Genome Biol, 2020, 21 (1): 146. |
56 | CHARMET G , TRAN L G , AUZANNEAU J , et al. BWGS: a R package for genomic selection and its application to a wheat breeding programme[J]. PLoS One, 2020, 15 (4): e0222733. |
57 | 于广宁. 全基因组预测软件包predhy的研发及其应用[D]. 扬州: 扬州大学, 2023. |
YU G N. Development and application of genomic prediction software package predhy[D]. Yangzhou: Yangzhou University, 2023. (in Chinese) | |
58 | ZENG S , MAO Z T , REN Y J , et al. G2PDeep: a web-based deep-learning framework for quantitative phenotype prediction and discovery of genomic markers[J]. Nucleic Acids Res, 2021, 49 (W1): W228- W236. |
59 | WANG K L , ABID M A , RASHEED A , et al. DNNGP, a deep neural network-based method for genomic prediction using multi-omics data in plants[J]. Mol Plant, 2023, 16 (1): 279- 293. |
60 | ALVES A A C , ESPIGOLAN R , BRESOLIN T , et al. Genome-enabled prediction of reproductive traits in Nellore cattle using parametric models and machine learning methods[J]. Anim Genet, 2021, 52 (1): 32- 46. |
61 | LIANG M , AN B X , LI K A N , et al. Improving genomic prediction with machine learning incorporating TPE for hyperparameters optimization[J]. Biology (Basel), 2022, 11 (11): 1647. |
62 | 袁泽湖, 葛玲, 李发弟, 等. 整合生物学先验信息的全基因组选择方法及其在家畜育种中的应用进展[J]. 畜牧兽医学报, 2021, 52 (12): 3323- 3334. |
YUAN Z H , GE L , LI F D , et al. The Method of genomic selection by integrating biological prior information and its application in livestock breeding[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52 (12): 3323- 3334. |
[1] | GUO Zijiao, ZHENG Weijie, SUN Wei, WU Baojiang, BAO Xiangnan, ZHANG Qi, HE Jinfeng, BAO Siqin, ZHAO Gaoping, WANG Zixin, HAN Bo, LI Xihe, SUN Dongxiao. Study on Genomic Selection of Embryos in Holstein Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2940-2950. |
[2] | Jing LI, Yuanxu ZHANG, Zezhao WANG, Yan CHEN, Lingyang XU, Lupei ZHANG, Xue GAO, Huijiang GAO, Junya LI, Bo ZHU, Peng GUO. Research Progress in Machine Learning Genomic Selection [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2281-2292. |
[3] | Huaxuan WU, Zhiqiang DU. Methods of Genotype Feature Extraction Affecting the Prediction Accuracy of Genomic Selection [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2431-2440. |
[4] | ZHANG Yuanxu, LI Jing, WANG Zezhao, CHEN Yan, XU Lingyang, ZHANG Lupei, GAO Xue, GAO Huijiang, LI Junya, ZHU Bo, GUO Peng. Advances in Animal Genetic Evaluation Software [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1827-1841. |
[5] | WANG Yaxin, WANG Jing, TIAN Xuekai, YANG Gongshe, YU Taiyong. Application of Multi-omics Technology in the Study of Important Economic Traits of Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1842-1853. |
[6] | DUAN Yixin, ZHANG Linyun, ZHAO Yongju. The Evaluated Methods and Influencing Factors of SNP Heritability and Its Application in Farmer Animal Breeding [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1854-1865. |
[7] | DU Gaimei, WANG Yue, MAO Huihua, LEI Weiqiang, CHU Yuefeng, LIU Maojun. Establishment of the Mice Model Infected with Mycoplasma ovipneumoniae [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1728-1737. |
[8] | LUO Chenghui, GAO Jiangrui, CHEN Junwei, WEI Chunjie, WEI Shuangshuang, PEI Yechun. Construction of Mouse Model of Dust Mite Induced Atopic Dermatitis and Asthma [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1257-1267. |
[9] | WU Wenying, XIA Qing, HU Mengjie, ZHAO Yixuan, WANG Chen, ZHANG Yuhao, HAO Chengwu, HE Sun, GUO Aizhen, CHEN Jianguo, CHEN Yingyu. Establishment of Rabbit Challenge Model of Mycoplasma bovis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1268-1277. |
[10] | ZHONG Xin, ZHANG Hui, ZHANG Chong, LIU Xiaohong. Research Progress on Genetic Breeding of Reproductive Performance in Sows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 438-450. |
[11] | LI Ke, WANG Yulong, LI Dong, SHI Xin'e, YANG Gongshe, YU Taiyong. Advances in Pan-genome Study of Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3595-3604. |
[12] | CHU Chu, ZHANG Jingjing, DING Lei, FAN Yikai, BAO Xiangnan, XIANG Shixin, LIU Rui, LUO Xuelu, REN Xiaoli, LI Chunfang, LIU Wenju, WANG Liang, LIU Li, LI Yongqing, JIANG Han, LI Weiqi, SUN Wei, LI Xihe, WEN Wan, ZHOU Jiamin, ZHANG Shujun. Establishment and Application of Prediction Model of Three Amino Acids in Milk Based on Mid-infrared Spectroscopy [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3299-3312. |
[13] | HUANG Jiang, LI Chuang, CUI Yueqi, YUAN Xueying, ZHAO Zhicheng, LIU Yu, ZHOU Yulong, ZHU Zhanbo, ZHANG Zecai. Study on the Effect of Gut Microbiota Disturbance on Susceptibility to BVDV Based on a Mouse Model [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3466-3473. |
[14] | LIAN Yuju, ZHANG Zhiyuan, LIAO Xiaobo, WEI Hongjiang, YIN Yulong, LIU Mei. Breeding Methods and Application Progress of Medical Miniature Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2667-2682. |
[15] | WANG Wannian, CHEN Sijia, GAO Jinrong, WEN Zhonghao, YUAN Mengjiao, ZHANG Hongzhi, PANG Zhixu, QIAO Liying, LIU Wenzhong. Simulation Study on Genomic Selection of Sex-limited Traits Using Multilayer Perceptron in Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2824-2835. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||