Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (7): 2824-2835.doi: 10.11843/j.issn.0366-6964.2023.07.015
• ANIMAL GENETICS AND BREEDING • Previous Articles Next Articles
WANG Wannian, CHEN Sijia, GAO Jinrong, WEN Zhonghao, YUAN Mengjiao, ZHANG Hongzhi, PANG Zhixu, QIAO Liying, LIU Wenzhong*
Received:
2022-12-28
Online:
2023-07-23
Published:
2023-07-21
CLC Number:
WANG Wannian, CHEN Sijia, GAO Jinrong, WEN Zhonghao, YUAN Mengjiao, ZHANG Hongzhi, PANG Zhixu, QIAO Liying, LIU Wenzhong. Simulation Study on Genomic Selection of Sex-limited Traits Using Multilayer Perceptron in Sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2824-2835.
[1] | MEUWISSEN T H E, HAYES B J, GODDARD M E.Prediction of total genetic value using genome-wide dense marker maps[J].Genetics, 2001, 157(4):1819-1829. |
[2] | MEUWISSEN T, HAYES B, GODDARD M.Genomic selection:a paradigm shift in animal breeding[J].Anim Front, 2016, 6(1):6-14. |
[3] | XU Y B, LIU X G, FU J J, et al.Enhancing genetic gain through genomic selection:from livestock to plants[J].Plant Commun, 2020, 1(1):100005. |
[4] | HENDERSON C R.Best linear unbiased estimation and prediction under a selection model[J].Biometrics, 1975, 31(2):423-447. |
[5] | VANRADEN P M.Efficient methods to compute genomic predictions[J].J Dairy Sci, 2008, 91(11):4414-4423. |
[6] | LEGARRA A, CHRISTENSEN O F, AGUILAR I, et al.Single Step, a general approach for genomic selection[J].Livest Sci, 2014, 166:54-65. |
[7] | MONTESINOS-LÓPEZ O A, MONTESINOS-LÓPEZ A, PÉREZ-RODRÍGUEZ P, et al.A review of deep learning applications for genomic selection[J].BMC Genomics, 2021, 22(1):19. |
[8] | LI B, ZHANG N X, WANG Y G, et al.Genomic prediction of breeding values using a subset of SNPs identified by three machine learning methods[J].Front Genet, 2018, 9:237. |
[9] | COWLING W A, STEFANOVA K T, BEECK C P, et al.Using the animal model to accelerate response to selection in a self-pollinating crop[J].G3 (Bethesda), 2015, 5(7):1419-1428. |
[10] | MEHER P K, RUSTGI S, KUMAR A.Performance of Bayesian and BLUP alphabets for genomic prediction:analysis, comparison and results[J].Heredity (Edinb), 2022, 128(6):519-530. |
[11] | CALUS M P L, DE HAAS Y, PSZCZOLA M, et al.Predicted accuracy of and response to genomic selection for new traits in dairy cattle[J].Animal, 2013, 7(2):183-191. |
[12] | GAO N, TENG J Y, PAN R Y, et al.Accuracy of whole genome prediction with single-step GBLUP in a Chinese yellow-feathered chicken population[J].Livest Sci, 2019, 230:103817. |
[13] | LOPEZ B I, VITERBO V, SONG C W, et al.Estimation of genetic parameters and accuracy of genomic prediction for production traits in Duroc pigs[J].Czech J Anim Sci, 2019, 64(4):160-165. |
[14] | SONG H L, ZHANG J X, ZHANG Q, et al.Using different single-step strategies to improve the efficiency of genomic prediction on body measurement traits in pig[J].Front Genet, 2019, 9:730. |
[15] | FISHER R A.The correlation between relatives on the supposition of Mendelian inheritance[J].Trans Roy Soc Edinb, 1918, 52(2):399-433. |
[16] | HENDERSON C R.Estimation of variance and covariance components[J].Biometrics, 1953, 9(2):226-252. |
[17] | HARTLEY H O, RAO J N K.Maximum-likelihood estimation for the mixed analysis of variance model[J].Biometrika, 1967, 54(1-2):93-108. |
[18] | PATTERSON H D, THOMPSON R.Recovery of inter-block information when block sizes are unequal[J].Biometrika, 1971, 58(3):545-554. |
[19] | BRITO LOPES F, MAGNABOSCO C U, PASSAFARO T L, et al.Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks[J].J Anim Breed Genet, 2020, 137(5):438-448. |
[20] | HOWARD R, CARRIQUIRY A L, BEAVIS W D.Parametric and nonparametric statistical methods for genomic selection of traits with additive and epistatic genetic architectures[J].G3 (Bethesda), 2014, 4(6):1027-1046. |
[21] | SARGOLZAEI M, SCHENKEL F S.QMSim:a large-scale genome simulator for livestock[J]. Bioinformatics, 2009, 25(5):680-681. |
[22] | ANDONOV S, LOURENCO D A L, FRAGOMENI B O, et al.Accuracy of breeding values in small genotyped populations using different sources of external information-a simulation study[J].J Dairy Sci, 2017, 100(1):395-401. |
[23] | MADSEN P, SORENSEN P, SU G, et al.DMU-a package for analyzing multivariate mixed models[C]//8th World Congress on Genetics Applied to Livestock Production.Belo Horizonte:WCGALP, 2006:247. |
[24] | NAIR V, HINTON G E.Rectified linear units improve restricted Boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning.Haifa:ACM, 2010:807-814. |
[25] | VIJAYAKUMAR K, KADAM V J, SHARMA S K.Breast cancer diagnosis using multiple activation deep neural network[J]. Concurrent Eng, 2021, 29(3):275-284. |
[26] | DUCHI J, HAZAN E, SINGER Y.Adaptive subgradient methods for online learning and stochastic optimization[J].J Mach Learn Res, 2011, 12:2121-2159. |
[27] | DEMPSTER A P, LAIRD N M, RUBIN D B.Maximum likelihood from incomplete data via the EM algorithm[J].J Roy Stat Soc Ser B Methodol, 1977, 39(1):1-22. |
[28] | JENSEN J, MANTYSAARI E A, MADSEN P, et al.Residual maximum likelihood estimation of (co) variance components in multivariate mixed linear models using average information[J].J Indian Soc Agric Stat, 1997, 49:215-236. |
[29] | OLDEN J D, JOY M K, DEATH R G.An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data[J].Ecol Modell, 2004, 178(3-4):389-397. |
[30] | RATHER M A, BASHIR I, HAMDANI A, et al.Prediction of body weight from linear body measurements in Kashmir Merino sheep[J].Adv Anim Vet Sci, 2021, 9(2):189-193. |
[31] | KUMAR A, MISRA S S, SHARMA R C, et al.Genetic parameters for sex ratio in an organised sheep farm[J].Ind J Small Rum, 2021, 27(1):31-36. |
[32] | POCRNIC I, DZIDIC A.Inheritance of the birth weights in crosses between Istrian, Awassi, East-Friesian and Travnik Pramenka sheep in Croatia:a case study[J].J Cent Eur Agric, 2021, 22(2):250-259. |
[33] | TAKEDA M, INOUE K, OYAMA H, et al.Exploring the size of reference population for expected accuracy of genomic prediction using simulated and real data in Japanese Black cattle[J].BMC Genomics, 2021, 22(1):799. |
[34] | ALKIMIM E R, CAIXETA E T, SOUSA T V, et al.High-throughput targeted genotyping using next-generation sequencing applied in Coffea canephora breeding[J].Euphytica, 2018, 214(3):50. |
[35] | GHOLIZADEH M, HAFEZIAN S H, NOSRATI M.Estimating heritabilities and breeding values for real and predicted milk production in Holstein dairy cows with artificial neural network and multiple linear regression models[J].Iran J Appl Anim Sci, 2021, 11(1):67-78. |
[36] | COELHO DE SOUSA I, NASCIMENTO M, DE CASTRO SANT'ANNA I, et al.Marker effects and heritability estimates using additive-dominance genomic architectures via artificial neural networks in Coffea canephora[J].PLoS One, 2022, 17(1):e0262055. |
[37] | PÉREZ-RODRÍGUEZ P, GIANOLA D, GONZÁLEZ-CAMACHO J M, et al.Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat[J].G3 (Bethesda), 2012, 2(12):1595-1605. |
[38] | MCDOWELL R.Genomic selection with deep neural networks[D].Ames:Iowa State University, 2016. |
[39] | LUAN T, WOOLLIAMS J A, LIEN S, et al.The accuracy of genomic selection in Norwegian red cattle assessed by cross-validation[J].Genetics, 2009, 183(3):1119-1126. |
[40] | DAETWYLER H D, PONG-WONG R, VILLANUEVA B, et al.The impact of genetic architecture on genome-wide evaluation methods[J].Genetics, 2010, 185(3):1021-1031. |
[41] | 张 猛.西门塔尔牛部分经济性状全基因组选择的初步研究[D].北京:中国农业科学院, 2011.ZHANG M.Genomic selection on some economical traits in Simmental[D].Beijing:Chinese Academy of Agricultural Sciences, 2011.(in Chinese) |
[42] | WOLC A, DEKKERS J C M.Application of Bayesian genomic prediction methods to genome-wide association analyses[J]. Genet Sel Evol, 2022, 54(1):31. |
[43] | MELNIKOVA E, KABANOV A, NIKITIN S, et al.Application of genomic data for reliability improvement of pig breeding value estimates[J].Animals (Basel), 2021, 11(6):1557. |
[44] | TERAKADO A P N, COSTA R B, IRANO N, et al.Comparison of methods for predicting genomic breeding values for growth traits in Nellore cattle[J].Trop Anim Health Prod, 2021, 53(3):349. |
[45] | COSTA W G D, CELERI M D O, BARBOSA I D P, et al.Genomic prediction through machine learning and neural networks for traits with epistasis[J].Comput Struct Biotechnol J, 2022, 20:5490-5499. |
[46] | CROSSA J, PÉREZ-RODRÍGUEZ P, CUEVAS J, et al.Genomic selection in plant breeding:methods, models, and perspectives[J]. Trends Plant Sci, 2017, 22(11):961-975. |
[47] | BELLOT P, DE LOS CAMPOS G, PÉREZ-ENCISO M.Can deep learning improve genomic prediction of complex human traits?[J]. Genetics, 2018, 210(3):809-819. |
[48] | MEUWISSEN T, GODDARD M.Accurate prediction of genetic values for complex traits by whole-genome resequencing[J]. Genetics, 2010, 185(2):623-631. |
[49] | ERBE M, HAYES B J, MATUKUMALLI L K, et al.Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels[J].J Dairy Sci, 2012, 95(7):4114-4129. |
[1] | ZHONG Xin, ZHANG Hui, ZHANG Chong, LIU Xiaohong. Research Progress on Genetic Breeding of Reproductive Performance in Sows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 438-450. |
[2] | CHU Chu, ZHANG Jingjing, DING Lei, FAN Yikai, BAO Xiangnan, XIANG Shixin, LIU Rui, LUO Xuelu, REN Xiaoli, LI Chunfang, LIU Wenju, WANG Liang, LIU Li, LI Yongqing, JIANG Han, LI Weiqi, SUN Wei, LI Xihe, WEN Wan, ZHOU Jiamin, ZHANG Shujun. Establishment and Application of Prediction Model of Three Amino Acids in Milk Based on Mid-infrared Spectroscopy [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3299-3312. |
[3] | YE Qianwen, CHEN Zhuo, LI Xin, SUN Yawei, JIN Xiaoye, LI Ziqian, WUMAIERJIANG·Yahefu, ZHONG Qi, MA Xuelian, YAO Gang. Dynamic Changes of Gut Microbiota Composition and Its Predicted Metabolism Function in One-month-old Sucking Lambs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1095-1108. |
[4] | YANG Kai, LU Zhuoda, HE Jian, ZHANG Ruiqi, WANG Suqing, LI Kebiao, ZHAO Yunxiang, ZHU Xiaoping, GUO Jinbiao. The Population Effect of Commercial Pigs on the Accuracy of Genomic Selection for Carcass Traits in Duroc Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4943-4951. |
[5] | XU Xiaojing, DONG Ruiling, WEI Limin, ZHAO Shaomeng, ZHAO Guiping, ZHANG Minhong, FENG Jinghai. Study on Growth Model of Wenchang Chickens [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4952-4961. |
[6] | SUN Dongxiao, ZHANG Shengli, ZHANG Qin, LI Jiao, ZHANG Guixiang, LIU Chousheng, ZHENG Weijie. Application Progress on Genomic Selection Technology for Dairy Cattle in China [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4028-4039. |
[7] | MA Haoran, ZHANG Lupei, JIN Shengyun, BAO Jinshan, LI Hongyan, GAO Huijiang, XU Lingyang, WANG Zezhao, LI Junya. Assessment of the Genomic Relationships for Chinese Indigenous Beef Cattle Using High-density SNP Chip [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4174-4185. |
[8] | SHI Rui, SU Guosheng, CHEN Ziwei, LI Xiang, LUO Hanpeng, LIU Lin, GUO Gang, ZHANG Yi, WANG Yachun, ZHANG Shengli, ZHANG Qin. Comparisons of Genomic Predictions for Fertility Traits in Chinese Holstein Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2944-2954. |
[9] | GAO Yanjun, WANG Meihong, NIE Ya, WANG Zhen, BU Shijin. Reevaluation of the Efficacy of Enrofloxacin Soluble Powder Mixed Drink Administration Regimen in Chicken by Modelling of Pharmacokinetic and Pharmacodynamic Data [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 3199-3207. |
[10] | FAN Tingting, WANG Wenxiang, MA Yi, ZHAO Guoyao, XU Lingyang, CHEN Yan, ZHANG Lupei, GAO Huijiang, LI Junya, GAO Xue. Prediction and Effect Analysis of Heterosis in Simmental, Wagyu and Holstein [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2568-2577. |
[11] | PANG Zhixu, ZHANG Hongzhi, QIAO Liying, WANG Wannian, PAN Yangyang, LIU Wenzhong. Simulation Study on Joint Genomic Breeding Using Metafounders [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2172-2181. |
[12] | DING Jiqiang, LI Qinghe, ZHANG Gaomeng, LI Sen, ZHENG Maiqing, WEN Jie, ZHAO Guiping. Comparing the Accuracy of Estimated Breeding Value by Several Algorithms on Laying Traits in Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1364-1372. |
[13] | LIU Lijia, WANG Yu, ZHANG Huanrong, WANG Jiabo. Whole Gene Analysis of 7 Mycoplasma synoviae Strains from Chicken [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 505-519. |
[14] | XIA Boce, ZHANG Kaiyi, MIAO Jiakun, YANG Yu, PENG Huanqi, WANG Yanfang, YANG Shulin. Cloning and Bioinformatics Study of Alternative Splicing Isoforms of Pig CPB2 Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3377-3390. |
[15] | DU Yongwang, HUANG Chao, WANG Yidong, LI Sen, WEN Jie, CHEN Zhiwu, ZHAO Guiping, ZHENG Maiqing. Genomic Selection for RFI in Broiler Combining GWAS Prior Marker Information [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3403-3411. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||