Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (3): 867-873.doi: 10.11843/j.issn.0366-6964.2024.03.001
• REVIEW • Previous Articles Next Articles
LIANG Shuyi, LI Fan, JIANG Qingyan, WANG Songbo*
Received:
2023-08-21
Online:
2024-03-23
Published:
2024-03-27
CLC Number:
LIANG Shuyi, LI Fan, JIANG Qingyan, WANG Songbo. Regulation and Mechanism of Proline Hydroxylases(PHDs) on Skeletal Muscle Development and Fat Deposition in Animals[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 867-873.
[1] MOHAMMADABADI M, BORDBAR F, JENSEN J, et al.Key genes regulating skeletal muscle development and growth in farm animals[J].Animals (Basel), 2021, 11(3):835. [2] GHABEN A L, SCHERER P E.Adipogenesis and metabolic health[J].Nat Rev Mol Cell Biol, 2019, 20(4):242-258. [3] 夏冰清, 杨 帆, 张 硕.脯氨酰羟化酶研究进展及其与肿瘤的关系[J].南通大学学报(医学版), 2010, 30(2):142-145, 147. XIA B Q, YANG F, ZHANG S.Research progress of prolyl hydroxylase and the relationship with tumor[J].Journal of Nantong University (Medical Sciences), 2010, 30(2):142-145, 147.(in Chinese) [4] 刘思雨, 任彩霞.脯氨酸羟化酶在乳腺癌中的研究进展[J].中华肿瘤防治杂志, 2023, 30(14):876-880, 886. LIU S Y, REN C X.Research progress of prolyl hydroxylase domain in breast cancer[J].Chinese Journal of Cancer Prevention and Treatment, 2023, 30(14):876-880, 886.(in Chinese) [5] APPELHOFF R J, TIAN Y M, RAVAL R R, et al.Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor[J].J Biol Chem, 2004, 279(37):38458-38465. [6] IVAN M, HABERBERGER T, GERVASI D C, et al.Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor[J].Proc Natl Acad Sci U S A, 2002, 99(21):13459-13464. [7] ELTZSCHIG H K, BRATTON D L, COLGAN S P.Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases[J].Nat Rev Drug Discov, 2014, 13(11):852-869. [8] RABINOWITZ M H.Inhibition of hypoxia-inducible factor prolyl hydroxylase domain oxygen sensors:tricking the body into mounting orchestrated survival and repair responses[J].J Med Chem, 2013, 56(23):9369-9402. [9] ZHAO Y C, XIONG W D, LI C F, et al.Hypoxia-induced signaling in the cardiovascular system:pathogenesis and therapeutic targets[J].Signal Transduct Target Ther, 2023, 8(1):431. [10] KUROKAWA H, ITO H, TERASAKI M, et al.Nitric oxide regulates the expression of heme carrier protein-1 via hypoxia inducible factor-1α stabilization[J].PLoS One, 2019, 14(9):e0222074. [11] FISCHER A P, MILES S L.Ascorbic acid, but not dehydroascorbic acid increases intracellular vitamin C content to decrease Hypoxia Inducible Factor-1 alpha activity and reduce malignant potential in human melanoma[J].Biomed Pharmacother, 2017, 86:502-513. [12] LI L, SHEN S S, BICKLER P, et al.Searching for molecular hypoxia sensors among oxygen-dependent enzymes[J].eLife, 2023, 12:e87705. [13] OGAWA C, TSUCHIYA K, MAEDA K.Hypoxia-inducible factor prolyl hydroxylase inhibitors and iron metabolism[J].Int J Mol Sci, 2023, 24(3):3037. [14] ASCHNER M, SKALNY A V, LU R Z, et al.The role of hypoxia-inducible factor 1 alpha (HIF-1α) modulation in heavy metal toxicity[J].Arch Toxicol, 2023, 97(5):1299-1318. [15] FRUMP A L, SELEJ M, WOOD J A, et al.Hypoxia upregulates estrogen receptor β in pulmonary artery endothelial cells in a HIF-1α-dependent manner[J].Am J Respir Cell Mol Biol, 2018, 59(1):114-126. [16] NGUYEN T L, DURÁN R V.Prolyl hydroxylase domain enzymes and their role in cell signaling and cancer metabolism[J].Int J Biochem Cell Biol, 2016, 80:71-80. [17] INFANTINO V, SANTARSIERO A, CONVERTINI P, et al.Cancer cell metabolism in hypoxia:role of HIF-1 as key regulator and therapeutic target[J].Int J Mol Sci, 2021, 22(11):5703. [18] GLORIEUX C, CALDERON P B.Vitamin C (ascorbate) and redox topics in cancer[J].Antioxid Redox Signal, 2021, 35(14):1157-1175. [19] BARROS D, MARQUES E A, MAGALHÃES J, et al.Energy metabolism and frailty:the potential role of exercise-induced myokines-A narrative review[J].Ageing Res Rev, 2022, 82:101780. [20] SMITH J A B, MURACH K A, DYAR K A, et al.Exercise metabolism and adaptation in skeletal muscle[J].Nat Rev Mol Cell Biol, 2023, 24(9):607-632. [21] YAN X, ZHU M J, DODSON M V, et al.Developmental programming of fetal skeletal muscle and adipose tissue development[J]. J Genomics, 2013, 1:29-38. [22] RIM E Y, CLEVERS H, NUSSE R.The wnt pathway:from signaling mechanisms to synthetic modulators[J].Annu Rev Biochem, 2022, 91:571-598. [23] SHEN X M, TANG J, JIANG R, et al.CircRILPL1 promotes muscle proliferation and differentiation via binding miR-145 to activate IGF1R/PI3K/AKT pathway[J].Cell Death Dis, 2021, 12(2):142. [24] SAKUSHIMA K, YOSHIKAWA M, OSAKI T, et al.Moderate hypoxia promotes skeletal muscle cell growth and hypertrophy in C2C12 cells[J].Biochem Biophys Res Commun, 2020, 525(4):921-927. [25] FU J, MENZIES K, FREEMAN R S, et al.EGLN3 prolyl hydroxylase regulates skeletal muscle differentiation and myogenin protein stability[J].J Biol Chem, 2007, 282(17):12410-12418. [26] 付 玉, 张 博, 凌 遥, 等.骨骼肌生长发育过程及调控研究现状[J].中国畜牧兽医, 2021, 48(10):3565-3574. FU Y, ZHANG B, LING Y, et al.Reviews on process and regulation of skeletal muscle growth and development[J].China Animal Husbandry & Veterinary Medicine, 2021, 48(10):3565-3574.(in Chinese) [27] D'HULST G, SORO-ARNAIZ I, MASSCHELEIN E, et al.PHD1 controls muscle mTORC1 in a hydroxylation-independent manner by stabilizing leucyl tRNA synthetase[J].Nat Commun, 2020, 11(1):174. [28] DESCHOEMAEKER S, DI CONZA G, LILLA S, et al.PHD1 regulates p53-mediated colorectal cancer chemoresistance[J]. EMBO Mol Med, 2015, 7(10):1350-1365. [29] WOLFSON R L, SABATINI D M.The Dawn of the age of amino acid sensors for the mTORC1 pathway[J].Cell Metab, 2017, 26(2):301-309. [30] SHIN J, NUNOMIYA A, KITAJIMA Y, et al.Prolyl hydroxylase domain 2 deficiency promotes skeletal muscle fiber-type transition via a calcineurin/NFATc1-dependent pathway[J].Skelet Muscle, 2016, 6:5. [31] NUNOMIYA A, SHIN J, KITAJIMA Y, et al.Activation of the hypoxia-inducible factor pathway induced by prolyl hydroxylase domain 2 deficiency enhances the effect of running training in mice[J].Acta Physiol (Oxf), 2017, 220(1):99-112. [32] YOON H, SPINELLI J B, ZAGANJOR E, et al.PHD3 loss promotes exercise capacity and fat oxidation in skeletal muscle[J].Cell Metab, 2020, 32(2):215-228.e7. [33] LADEROUTE K R, AMIN K, CALAOAGAN J M, et al.5'-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments[J].Mol Cell Biol, 2006, 26(14):5336-5347. [34] GERMAN N J, YOON H, YUSUF R Z, et al.PHD3 loss in cancer enables metabolic reliance on fatty acid oxidation via deactivation of ACC2[J].Mol Cell, 2016, 63(6):1006-1020. [35] CAI X C, YUAN Y X, LIAO Z R, et al.α-Ketoglutarate prevents skeletal muscle protein degradation and muscle atrophy through PHD3/ADRB2 pathway[J].FASEB J, 2018, 32(1):488-499. [36] LI F, YIN C, MA Z W, et al.PHD3 mediates denervation skeletal muscle atrophy through Nf-κB signal pathway[J].FASEB J, 2021, 35(4):e21444. [37] MERRICK M A.Secondary injury after musculoskeletal trauma:a review and update[J].J Athl Train, 2002, 37(2):209-217. [38] ZHANG J, KASIM V, XIE Y D, et al.Inhibition of PHD3 by salidroside promotes neovascularization through cell-cell communications mediated by muscle-secreted angiogenic factors[J].Sci Rep, 2017, 7:43935. [39] RISHI M T, SELVARAJU V, THIRUNAVUKKARASU M, et al.Deletion of prolyl hydroxylase domain proteins (PHD1, PHD3) stabilizes hypoxia inducible factor-1 alpha, promotes neovascularization, and improves perfusion in a murine model of hind-limb ischemia[J].Microvasc Res, 2015, 97:181-188. [40] SETTELMEIER S, SCHREIBER T, MÄKI J, et al.Prolyl hydroxylase domain 2 reduction enhances skeletal muscle tissue regeneration after soft tissue trauma in mice[J].PLoS One, 2020, 15(5):e0233261. [41] SINHA I, SAKTHIVEL D, OLENCHOCK B A, et al.Prolyl hydroxylase domain-2 inhibition improves skeletal muscle regeneration in a male murine model of obesity[J].Front Endocrinol (Lausanne), 2017, 8:153. [42] GHABEN A L, SCHERER P E.Adipogenesis and metabolic health[J].Nat Rev Mol Cell Biol, 2019, 20(4):242-258. [43] CHO Y K, LEE S, LEE J, et al.Lipid remodeling of adipose tissue in metabolic health and disease[J].Exp Mol Med, 2023, 55(9):1955-1973. [44] FLOYD Z E, KILROY G, WU X Y, et al.Effects of prolyl hydroxylase inhibitors on adipogenesis and hypoxia inducible factor 1 alpha levels under normoxic conditions[J].J Cell Biochem, 2007, 101(6):1545-1557. [45] KIM J, KWAK H J, CHA J Y, et al.The role of prolyl hydroxylase domain protein (PHD) during rosiglitazone-induced adipocyte differentiation[J].J Biol Chem, 2014, 289(5):2755-2764. [46] RAHTU-KORPELA L, KARSIKAS S, HÖRKKÖ S, et al.HIF prolyl 4-hydroxylase-2 inhibition improves glucose and lipid metabolism and protects against obesity and metabolic dysfunction[J].Diabetes, 2014, 63(10):3324-3333. [47] SUGAHARA M, TANAKA S, TANAKA T, et al.Prolyl hydroxylase domain inhibitor protects against metabolic disorders and associated kidney disease in obese type 2 diabetic mice[J].J Am Soc Nephrol, 2020, 31(3):560-577. [48] ZHANG L, LI M M, CORCORAN M, et al.Essential roles of insulin, AMPK signaling and lysyl and prolyl hydroxylases in the biosynthesis and multimerization of adiponectin[J].Mol Cell Endocrinol, 2015, 399:164-177. [49] LEFERE S, VAN STEENKISTE C, VERHELST X, et al.Hypoxia-regulated mechanisms in the pathogenesis of obesity and non-alcoholic fatty liver disease[J].Cell Mol Life Sci, 2016, 73(18):3419-3431. [50] THOMAS A, BELAIDI E, ARON-WISNEWSKY J, et al.Hypoxia-inducible factor prolyl hydroxylase 1 (PHD1) deficiency promotes hepatic steatosis and liver-specific insulin resistance in mice[J].Sci Rep, 2016, 6:24618. [51] NASTESKA D, CUOZZO F, VILORIA K, et al.Prolyl-4-hydroxylase 3 maintains β cell glucose metabolism during fatty acid excess in mice[J].JCI Insight, 2021, 6(16):e140288. [52] TANIGUCHI C M, FINGER E C, KRIEG A J, et al.Cross-talk between hypoxia and insulin signaling through Phd3 regulates hepatic glucose and lipid metabolism and ameliorates diabetes[J].Nat Med, 2013, 19(10):1325-1330. [53] BERTHOLET A M, KIRICHOK Y.UCP1:a transporter for H+ and fatty acid anions[J].Biochimie, 2017, 134:28-34. [54] GOMEZ SALAZAR M, PRUÑONOSA CERVERA I, WANG R L, et al.Adipocyte-specific deletion of the oxygen-sensor PHD2 sustains elevated energy expenditure at thermoneutrality[J].bioRxiv, 2021, 1(5):425401. [55] LI F, ZHANG F L, YI X, et al.Proline hydroxylase 2 (PHD2) promotes brown adipose thermogenesis by enhancing the hydroxylation of UCP1[J].Mol Metab, 2023, 73:101747. |
[1] | HAN Haozhe, TIE Zihang, PANG Weijun, CAI Rui. Advances of IGF2BP2-Mediated m6A Modification on Animal Fat Deposition [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3605-3612. |
[2] | JIN Meilin, LI Taotao, SUN Dongxiao, WEI Caihong. Research Progress of Epigenetic Regulation in Fat Deposition Mechanism of Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 855-867. |
[3] | WANG Lin, MA Li, ZHANG Bo, DENG Jun, ZHANG Hao, OUYANG Xiaofang, YAN Dawei, DONG Xinxing. Key Genes and Regulatory Network Analysis of Lipid Metabolism Differences between Back Fat and Abdominal Fat of Large Diqing Tibetan Pigs at Different Growth Stages [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 520-533. |
[4] | SONG Shuzhen, LIU Junbin, ZHU Caiye, XU Hongwei, LIU Lishan, KONG Yanlong. The Effect of Tail Docking on Growth Performance, Fat Deposition Distribution and Slaughter Performance in Lanzhou Fat-tailed Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 642-655. |
[5] | ZHAI Liwei, ZHAO Yanhui, LI Wenjun, XING Kai, WANG Chuduan. System Analysis of Multi Tissue Transcriptome to Identify Key Genes Affecting Porcine Fat Deposition [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(6): 1702-1711. |
[6] | WANG Yuanxia, LIU Xiuting, ZHANG Xiaojun, XIANG Yun, XU E, LÜ Wentao, YANG Hua, XIAO Yingping. The Developmental Changes of Ileal Microbiota and Fatty Acid Binding Proteins and Its Correlation with Fat Deposition in Jinhua Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 723-732. |
[7] | LI Wufeng, SUN Yutong, GUAN Jiawei, ZHAO Jingwei, DU Min. Key Regulatory Factors of Intramuscular Fat Deposition in Donkey [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(2): 364-375. |
[8] | LIU Tianyi, FENG Hui, Salsabeel Yousuf, XIE Lingli, MIAO Xiangyang. Transcriptome Analysis of Subcutaneous Adipose Tissue of Duolang Sheep and Small Tail Han Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(12): 3403-3412. |
[9] | ZHANG Hailiang, CHANG Yao, MU Baiyu, WANG Kai, YANG Minglu, WANG Lei, MA Longgang, NING Jingyang, GUO Gang, WANG Yachun. Genetic Analysis on Skinfold Thickness and Body Condition Score Traits in Holstein Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(11): 3089-3098. |
[10] | YUE Yongqi, HUA Yonglin, XIONG Yan, LIN Yaqiu, XIONG Xianrong, LI Jian. Research Progress of microRNA Regulation on the Fat Deposition of Subcutaneous Adipose Tissue and Intramuscular Fat in Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(10): 2698-2709. |
[11] | SHI Tianpei, HOU Haobin, WANG Xinyue, ZHAO Zhida, SHANG Mingyu, ZHANG Li. Weighted Gene Co-expression Network Analysis for Embryo Development of Skeletal Muscle in Chinese Merino Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(3): 452-464. |
[12] | YUAN Hongxia, LUO Jinhong, FENG Wenwu, CHEN Xiang. Study on the Effect of LYRM1 Gene on the Fat Deposition of Pig [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(4): 677-687. |
[13] | BAO Jingjing, PU Yabin, MA Yuehui, ZHAO Qianjun. Research Progress of Long Intergenic Noncoding RNA in Skeletal Muscle Development [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(3): 461-473. |
[14] | ZHANG Tong-yu, FAN Hong-ying, ZHU Cai-ye, LIU Jia-xin, DENG Tian-yu, DU Li-xin, WANG Li-xian, ZHAO Fu-ping. Identification of Candidate Genes Involved in Fat Deposition in Hulun Buir Sheep Tails Using FST within the Variable Window Sizes [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2018, 49(7): 1354-1365. |
[15] | LI Ai, ZHANG Xiu-xiu, HUANG Wan-long, XIE Ling-li, MIAO Xiang-yang. Identification and Analysis of circRNAs in Intramuscular Adipose Tissues between Large White and Laiwu Pigs [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2018, 49(7): 1343-1353. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||