Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (10): 4417-4427.doi: 10.11843/j.issn.0366-6964.2024.10.015
• Animal Genetics and Breeding • Previous Articles Next Articles
Congcong LI1(), Zike HUANG1, Nianni HUANG1, Shiyu MA1, Han LIU1, Zhibiao XIAO2, Guo SONG2, Liang JIANG2, Weibo PENG2, Lianxi YANG3, Yuntao GUO4, Shengqiang HUANG1,*(
)
Received:
2024-03-07
Online:
2024-10-23
Published:
2024-11-04
Contact:
Shengqiang HUANG
E-mail:lcc199308@126.com;hsq07@126.com
CLC Number:
Congcong LI, Zike HUANG, Nianni HUANG, Shiyu MA, Han LIU, Zhibiao XIAO, Guo SONG, Liang JIANG, Weibo PENG, Lianxi YANG, Yuntao GUO, Shengqiang HUANG. Mitochondrial Genome Assembly and Phylogenetic Analysis of the Jiuyishan Rabbit[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4417-4427.
Table 1
Published mitochondrial genomes involed in the study"
分类 Classification | 拉丁名 Latin name | 中文名 Chinese name | GenBank登录号 GenBank accession No. |
家兔Rabbit | Oryctolagus cuniculus | 新西兰白兔 | MH985853.1 |
Oryctolagus cuniculus | 川白獭兔 | MN953621.1 | |
Oryctolagus cuniculus | 沂蒙毛兔 | MN296708.1 | |
Oryctolagus cuniculus | 欧洲穴兔 | NC_001913.1 | |
Oryctolagus cuniculus | 福建黄兔 | MN518689.1 | |
野兔Hare | Lepus oiostolus | 高原兔 | NC_050983.1 |
Lepus yarkandensis | 塔里木兔 | NC_050569.1 | |
Lepus hainanus | 海南兔 | NC_025902.1 | |
Lepus europaeus | 欧洲野兔 | NC_004028.1 | |
Lepus americanus | 白靴兔 | NC_024043.1 | |
Lepus timidus | 雪兔 | NC_024040.1 | |
Lepus capensis | 草兔-开普野兔 | NC_015841.1 | |
Lepus tibetanus pamirensis | 藏兔 | LC073697.1 | |
Lepus sinensis | 华南兔 | NC_025316.1 | |
Lepus tolai | 草兔-托氏兔 | NC_025748.1 | |
Lepus coreanus | 韩国野兔 | NC_024259.1 | |
Lepus granatensis | 格拉纳达野兔 | NC_024042.1 | |
Lepus townsendii | 白尾长耳大野兔 | NC_024041.1 | |
Lepus arcticus | 北极兔 | NC_044769.1 | |
外群External species | Ovis aries | 绵羊 | NC_001941.1 |
Capricornis crispus | 山羊 | NC_005044.2 | |
Homo sapiens | 人 | NC_012920.1 | |
Bos taurus | 牛 | NC_006853.1 | |
Equus caballus | 马 | NC_001640.1 | |
Sus scrofa | 猪 | NC_012095.1 | |
Gallus gallus | 鸡 | NC_040902.1 | |
Danio rerio | 斑马鱼 | NC_002333.2 | |
Drosophila immigrans | 果蝇 | NC_044669.1 | |
Mus musculus | 小鼠 | NC_005089.1 | |
Rattus norvegicus | 大鼠 | NC_001665.2 |
Table 2
The statistics of sequencing data quality"
样本编号 Sample ID | 总数据量/G Total data amount | Q30/% | GC含量/% GC content | 插入片段长度/bp Insert size | 比对率/% Mapping rate | 平均深度(×) Average depth | 线粒体平均深度(×) Average depth of the mitochondria genome |
S1 | 58.83 | 93.79 | 45.20 | 290 | 99.02 | 18.83 | 3 741.22 |
S2 | 52.51 | 93.06 | 43.87 | 324 | 99.15 | 17.32 | 3 110.19 |
S3 | 53.71 | 92.77 | 43.67 | 343 | 99.11 | 18.15 | 5 757.16 |
S4 | 52.11 | 92.72 | 43.13 | 324 | 99.21 | 17.35 | 6 505.76 |
S5 | 53.98 | 92.86 | 43.12 | 334 | 99.28 | 18.33 | 10 553.55 |
S6 | 51.34 | 93.09 | 43.97 | 334 | 99.08 | 17.34 | 9 259.27 |
S7 | 52.34 | 93.35 | 43.72 | 321 | 99.14 | 17.32 | 4 583.41 |
S8 | 53.22 | 93.27 | 43.34 | 326 | 99.18 | 17.85 | 5 490.54 |
S9 | 51.09 | 89.87 | 42.61 | 374 | 99.21 | 17.71 | 5 217.01 |
S10 | 54.63 | 92.57 | 43.21 | 349 | 99.11 | 18.69 | 8 937.94 |
S11 | 55.35 | 93.06 | 43.32 | 327 | 99.21 | 18.53 | 6 778.39 |
S12 | 58.89 | 93.26 | 43.44 | 337 | 99.12 | 19.93 | 8 297.15 |
S13 | 52.44 | 93.81 | 42.75 | 356 | 99.17 | 18.03 | 5 308.23 |
S14 | 52.72 | 94.20 | 42.99 | 332 | 99.20 | 17.84 | 5 193.53 |
S15 | 58.10 | 94.03 | 43.38 | 331 | 99.17 | 19.68 | 2 968.24 |
S16 | 56.20 | 93.55 | 43.20 | 348 | 99.17 | 19.13 | 3 254.84 |
S17 | 56.34 | 93.27 | 43.14 | 339 | 99.21 | 19.12 | 3 918.06 |
S18 | 60.49 | 93.33 | 43.16 | 349 | 99.16 | 20.65 | 3 944.40 |
S19 | 48.38 | 93.09 | 43.70 | 364 | 99.12 | 16.63 | 2 805.76 |
S20 | 53.52 | 93.79 | 43.16 | 341 | 99.18 | 18.18 | 3 922.48 |
Mean | 54.31 | 93.14 | 43.40 | 337 | 99.16 | 18.33 | 5 477.36 |
Min | 48.38 | 89.87 | 42.61 | 290 | 99.02 | 16.63 | 2 805.76 |
Max | 60.49 | 94.20 | 45.20 | 374 | 99.28 | 20.65 | 10 553.55 |
Table 3
Genome structure in Jiuyishan rabbit's mitochondrial genome"
基因 Gene | 开始 Start | 结束 End | 长度/bp Length | 链 Strand | A含量/% Per_A | T含量/% Per_T | C含量/% Per_C | G含量/% Per_G | AT含量/% Per_AT | CG含量/% Per_CG |
tRNA-Phe | 1 | 69 | 69 | H | 37.68 | 21.74 | 23.19 | 17.39 | 59.42 | 40.58 |
rrnS | 70 | 1 026 | 957 | H | 35.84 | 23.93 | 22.05 | 18.18 | 59.77 | 40.23 |
tRNA-Val | 1 027 | 1 092 | 66 | H | 30.30 | 27.27 | 25.76 | 16.67 | 57.58 | 42.42 |
rrnL | 1 093 | 2 671 | 1 579 | H | 36.35 | 25.46 | 20.39 | 17.80 | 61.81 | 38.19 |
tRNA-Leu | 2 672 | 2 746 | 75 | H | 32.00 | 26.67 | 22.67 | 18.67 | 58.67 | 41.33 |
ND1 | 2 749 | 3 705 | 957 | H | 28.74 | 28.84 | 30.09 | 12.33 | 57.58 | 42.42 |
tRNA-Ile | 3 704 | 3 773 | 70 | H | 37.14 | 34.29 | 11.43 | 17.14 | 71.43 | 28.57 |
tRNA-Gln | 3 771 | 3 842 | 72 | L | 31.94 | 25.00 | 29.17 | 13.89 | 56.94 | 43.06 |
tRNA-Met | 3 851 | 3 919 | 69 | H | 28.99 | 27.54 | 24.64 | 18.84 | 56.52 | 43.48 |
ND2 | 3 920 | 4 963 | 1 044 | H | 34.96 | 28.26 | 27.68 | 9.10 | 63.22 | 36.78 |
tRNA-Trp | 4 971 | 5 037 | 67 | H | 34.33 | 22.39 | 23.88 | 19.40 | 56.72 | 43.28 |
tRNA-Ala | 5 040 | 5 106 | 67 | L | 32.84 | 29.85 | 22.39 | 14.93 | 62.69 | 37.31 |
tRNA-Asn | 5 107 | 5 179 | 73 | L | 28.77 | 24.66 | 28.77 | 17.81 | 53.42 | 46.58 |
tRNA-Cys | 5 212 | 5 280 | 69 | L | 24.64 | 28.99 | 24.64 | 21.74 | 53.62 | 46.38 |
tRNA-Tyr | 5 281 | 5 346 | 66 | L | 27.27 | 33.33 | 22.73 | 16.67 | 60.61 | 39.39 |
COX1 | 5 354 | 6 895 | 1 542 | H | 26.39 | 31.06 | 25.23 | 17.32 | 57.46 | 42.54 |
tRNA-Ser | 6 898 | 6 966 | 69 | L | 33.33 | 21.74 | 27.54 | 17.39 | 55.07 | 44.93 |
tRNA-Asp | 6 970 | 7 038 | 69 | H | 36.20 | 39.13 | 14.49 | 10.14 | 75.36 | 24.64 |
COX2 | 7 039 | 7 722 | 684 | H | 30.26 | 28.65 | 26.61 | 14.47 | 58.92 | 41.08 |
tRNA-Lys | 7 726 | 7 794 | 69 | H | 31.88 | 26.09 | 18.84 | 23.19 | 57.97 | 42.03 |
ATP8 | 7 796 | 7 999 | 204 | H | 34.31 | 28.43 | 29.41 | 7.84 | 62.75 | 37.25 |
ATP6 | 7 957 | 8 637 | 681 | H | 29.52 | 29.66 | 29.52 | 11.31 | 59.18 | 40.82 |
COX3 | 8 637 | 9 419 | 783 | H | 27.20 | 28.74 | 28.74 | 15.33 | 55.94 | 44.06 |
tRNA-Gly | 9 421 | 9 490 | 70 | H | 32.86 | 30.00 | 22.86 | 14.29 | 62.86 | 37.14 |
ND3 | 9 491 | 9 847 | 357 | H | 31.37 | 33.05 | 23.81 | 11.76 | 64.43 | 35.57 |
tRNA-Arg | 9 838 | 9 904 | 67 | H | 40.30 | 35.82 | 10.45 | 13.43 | 76.12 | 23.88 |
ND4L | 9 906 | 10 202 | 297 | H | 29.63 | 34.34 | 25.59 | 10.44 | 63.97 | 36.03 |
ND4 | 10 196 | 11 572 | 1 377 | H | 30.14 | 29.27 | 29.19 | 11.40 | 59.40 | 40.60 |
tRNA-His | 11 574 | 11 642 | 69 | H | 37.68 | 30.43 | 17.39 | 14.49 | 68.12 | 31.88 |
tRNA-Ser | 11 643 | 11 701 | 59 | H | 25.42 | 28.81 | 28.81 | 16.95 | 54.24 | 45.76 |
tRNA-Leu | 11 702 | 11 771 | 70 | H | 41.43 | 25.71 | 14.29 | 18.57 | 67.14 | 32.86 |
ND5 | 11 772 | 13 583 | 1 812 | H | 30.85 | 30.63 | 27.04 | 11.48 | 61.48 | 38.52 |
ND6 | 13 579 | 14 103 | 525 | L | 40.38 | 19.81 | 33.33 | 6.48 | 60.19 | 39.81 |
tRNA-Glu | 14 104 | 14 171 | 68 | L | 36.76 | 30.88 | 17.65 | 14.71 | 67.65 | 32.35 |
CYTB | 14 175 | 15 314 | 1 140 | H | 27.98 | 28.95 | 30.35 | 12.72 | 56.93 | 43.07 |
tRNA-Thr | 15 314 | 15 379 | 66 | H | 28.79 | 27.27 | 21.21 | 22.73 | 56.06 | 43.94 |
tRNA-Pro | 15 380 | 15 445 | 66 | L | 28.79 | 21.21 | 34.85 | 15.15 | 50.00 | 50.00 |
D-loop | 15 446 | 17 306 | 1 861 | H | 31.06 | 24.61 | 30.63 | 13.70 | 55.67 | 44.33 |
Table 4
Mutation sites on the mitochondrial conserved regions in the Jiuyishan rabbit population"
线粒体位置 Location | 参考碱基 Reference base | 突变碱基 Alternative base | 突变功能 Mutation function | 突变类型 Mutation type | 突变所在基因名 Gene name | HGVS写法(外显子) HGVS.c | HGVS写法(蛋白) HGVS.p | 杂合个体数 Heterozygote number | 纯合个体数 Homozygote number | 群体等位基因频率 MAF | 携带突变个体 Rabbits carrying mutations |
1647 | A | T | ncRN$\underline{\rm{A}}$ exonic | . | rrnaL | . | . | 0 | 1 | 0.05 | S12 |
2228 | T | C | ncRN$\underline{\rm{A}}$ exonic | . | rrnaL | . | . | 0 | 3 | 0.15 | S4/S6/S10 |
4643 | T | G | exonic | missens$\underline{\rm{e}}$ variant | ND2 | c.724T>G | p.Ser242Ala | 0 | 1 | 0.05 | S12 |
5195 | - | A | intergentic | . | . | . | . | 2 | 0 | 0.05 | S15/S18 |
5870 | G | C | exonic | missens$\underline{\rm{e}}$ variant | COX1 | c.517G>C | p.Ala173Pro | 0 | 20 | 1 | S1/S2/S3/S4/S5/ S6/S7/S8/S9/S10/ S11/S12/S13/S14/ S15/S16/S17/S18/ S19/S20 |
6781 | C | T | exonic | synonymou$\underline{\rm{s}}$ variant | COX1 | c.1428C>T | p.Phe476Phe | 0 | 6 | 0.3 | S13/S14/S16/ S17/S19/S20 |
7379 | A | G | exonic | missens$\underline{\rm{e}}$ variant | COX2 | c.341A>G | p.Glu114Gly | 0 | 2 | 0.1 | S16/S20 |
10402 | G | A | exonic | synonymou$\underline{\rm{s}}$ variant | ND4 | c.207G>A | p.Thr69Thr | 0 | 1 | 0.05 | S3 |
10894 | T | C | exonic | synonymou$\underline{\rm{s}}$ variant | ND4 | c.699T>C | p.Ala233Ala | 0 | 2 | 0.1 | S5/S9 |
11565 | T | C | exonic | missens$\underline{\rm{e}}$ variant | ND4 | c.1370T>C | p.Leu457Pro | 0 | 19 | 0.95 | S2/S3/S4/S5/S6/ S7/S8/S9/S10/ S11/S12/S13/S14/ S15/S16/S17/S18/ S19/S20 |
12400 | T | C | exonic | missens$\underline{\rm{e}}$ variant | ND5 | c.629T>C | p.Ile210Thr | 0 | 1 | 0.05 | S12 |
15341 | T | C | ncRN$\underline{\rm{A}}$ exonic | . | tRNA-Thr | . | . | 0 | 17 | 0.85 | S1/S2/S3/S4/S6/ S7/S8/S10/S11/ S13/S14/S15/ S16/S17/S18/ S19/S20 |
1 |
秦应和.家兔的起源驯化与育种[J].生物学通报,2011,46(1):9-11.
doi: 10.3969/j.issn.0006-3193.2011.01.003 |
QINY H.Origin, domestication and breeding of the rabbit[J].Bulletin of Biology,2011,46(1):9-11.
doi: 10.3969/j.issn.0006-3193.2011.01.003 |
|
2 |
肖志标,黄冬云,李之平,等.九疑山兔畜禽遗传资源介绍、保护与利用[J].湖南畜牧兽医,2013,(2):13-16.
doi: 10.3969/j.issn.1006-4907.2013.02.006 |
XIAOZ B,HUANGD Y,LIZ P,et al.Introduction, protection and utilization of livestock and poultry genetic resources of Jiuyishan rabbit[J].Hunan Journal of Animal Science & Veterinary Medicine,2013,(2):13-16.
doi: 10.3969/j.issn.1006-4907.2013.02.006 |
|
3 |
BIRÓB,GÁLZ,SCHIAVOG,et al.Nuclear mitochondrial DNA sequences in the rabbit genome[J].Mitochondrion,2022,66,1-6.
doi: 10.1016/j.mito.2022.07.003 |
4 |
LIUC M,WANGS H,DONGX G,et al.Exploring the genomic resources and analysing the genetic diversity and population structure of Chinese indigenous rabbit breeds by RAD-seq[J].BMC Genomics,2021,22(1):573.
doi: 10.1186/s12864-021-07833-6 |
5 |
TAPANAINENR,AASUMETSK,FEKETEZ,et al.Species-specific variation in mitochondrial genome tandem repeat polymorphisms in hares (Lepus spp., Lagomorpha, Leporidae) provides insight into their evolution[J].Gene,2024,926,148644.
doi: 10.1016/j.gene.2024.148644 |
6 |
NITSCHL,LAREAUC A,LUDWIGL S.Mitochondrial genetics through the lens of single-cell multi-omics[J].Nat Genet,2024,56(7):1355-1365.
doi: 10.1038/s41588-024-01794-8 |
7 | 曹萍,徐宇辉,刘瑞林,等.天祝白牦牛全线粒体基因组母系遗传多样性[J].青海大学学报,2024,42(2):28-34. |
CAOP,XUY H,LIUR L,et al.Maternal genetic diversity of complete mitogenome of Tianzhu white yak[J].Journal of Qinghai University,2024,42(2):28-34. | |
8 |
何金明,徐凯,杜亚丽,等.蜜蜂线粒体基因组多态性应用研究进展[J].环境昆虫学报,2024,46(2):341-353.
doi: 10.3969/j.issn.1674-0858.2024.02.5 |
HEJ M,XUK,DUY L,et al.Progress in research on mitochondrial genome of honey bees and their polymorphisms[J].Journal of Environmental Entomology,2024,46(2):341-353.
doi: 10.3969/j.issn.1674-0858.2024.02.5 |
|
9 |
李广祯,马志杰,陈生梅,等.野牦牛及青海地方牦牛品种全线粒体基因组母系遗传多样性、分化及系统发育分析[J].畜牧兽医学报,2022,53(5):1420-1430.
doi: 10.11843/j.issn.0366-6964.2022.05.010 |
LIG Z,MAZ J,CHENS M,et al.Maternal genetic diversity, differentiation and phylogeny of mitogenome sequence variations of wild yak and local yak breeds in Qinghai[J].Acta Veterinaria et Zootechnica Sinica,2022,53(5):1420-1430.
doi: 10.11843/j.issn.0366-6964.2022.05.010 |
|
10 | 王利丹,谢跃.动物寄生性线虫线粒体基因组研究进展[J].中国畜牧兽医,2023,50(11):4600-4611. |
WANGL D,XIEY.Research progress of animal parasitic nematode mitogenomes[J].China Animal Husbandry & Veterinary Medicine,2023,50(11):4600-4611. | |
11 |
LÓPEZ-CUAMATZII L,ORTEGAJ,BAEZAJ A.The complete mitochondrial genome of the 'Zacatuche' Volcano rabbit (Romerolagus diazi), an endemic and endangered species from the volcanic belt of central mexico[J].Mol Biol Rep,2022,49(2):1141-1149.
doi: 10.1007/s11033-021-06940-7 |
12 |
GISSIC,GULLBERGA,ARNASONU.The complete mitochondrial DNA sequence of the rabbit, Oryctolagus cuniculus[J].Genomics,1998,50(2):161-169.
doi: 10.1006/geno.1998.5282 |
13 |
WANGX,ZENGH M,WANGY,et al.The complete mitochondrial DNA sequence of Chuanbai Rex rabbit (Oryctolagus cuniculus)[J].Mitochondrial DNA B,2021,6(1):129-130.
doi: 10.1080/23802359.2020.1848476 |
14 |
YAOC Y,LIY Y,LIUL X,et al.The complete mitochondrial DNA sequence of Yimeng wool rabbit[J].Mitochondrial DNA B,2019,4(2):3858-3859.
doi: 10.1080/23802359.2019.1687022 |
15 | 周娟,李佳丽,陈秋燃,等.獭兔线粒体基因组全序列的测定与分析[J].中国兽医学报,2020,40(4):823-827. |
ZHOUJ,LIJ L,CHENQ R,et al.Complete sequence determination and analysis of mitochondrial genome of Rex rabbit[J].Chinese Journal of Veterinary Science,2020,40(4):823-827. | |
16 | 周彤,周娟,梁爽,等.福建黄兔线粒体基因组全序列测定与分析[J].西北农业学报,2020,29(9):1295-1303. |
ZHOUT,ZHOUJ,LIANGS,et al.Complete mitochondrial genome sequence and analysis of Fujian yellow rabbit[J].Acta Agriculturae Boreali-occidentalis Sinica,2020,29(9):1295-1303. | |
17 |
XIEK R,NINGC,YANGA G,et al.Resequencing analyses revealed genetic diversity and selection signatures during rabbit breeding and improvement[J].Genes,2024,15(4):433.
doi: 10.3390/genes15040433 |
18 |
CHENS F,ZHOUY Q,CHENY R,et al.fastp: an ultra-fast all-in-one FASTQ preprocessor[J].Bioinformatics,2018,34(17):i884-i890.
doi: 10.1093/bioinformatics/bty560 |
19 |
LIH,DURBINR.Fast and accurate short read alignment with burrows-wheeler transform[J].Bioinformatics,2009,25(14):1754-1760.
doi: 10.1093/bioinformatics/btp324 |
20 |
LIH,HANDSAKERB,WYSOKERA,et al.The sequence alignment/map format and SAMtools[J].Bioinformatics,2009,25(16):2078-2079.
doi: 10.1093/bioinformatics/btp352 |
21 |
TARASOVA,VILELLAA J,CUPPENE,et al.Sambamba: fast processing of NGS alignment formats[J].Bioinformatics,2015,31(12):2032-2034.
doi: 10.1093/bioinformatics/btv098 |
22 |
KOBOLDTD C,ZHANGQ Y,LARSOND E,et al.VarScan 2:somatic mutation and copy number alteration discovery in cancer by exome sequencing[J].Genome Res,2012,22(3):568-576.
doi: 10.1101/gr.129684.111 |
23 |
WANGK,LIM Y,HAKONARSONH.ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data[J].Nucleic Acids Res,2010,38(16):e164.
doi: 10.1093/nar/gkq603 |
24 |
CINGOLANIP,PLATTSA,WANGL L,et al.A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2;iso-3[J].Fly (Austin),2012,6(2):80-92.
doi: 10.4161/fly.19695 |
25 |
PEDERSENB S,QUINLANA R.Mosdepth: quick coverage calculation for genomes and exomes[J].Bioinformatics,2018,34(5):867-868.
doi: 10.1093/bioinformatics/btx699 |
26 |
SONGM H,YANC C,LIJ T.MEANGS: an efficient seed-free tool for de novo assembling animal mitochondrial genome using whole genome NGS data[J].Brief Bioinform,2022,23(1):bbab538.
doi: 10.1093/bib/bbab538 |
27 |
ALLIOR,SCHOMAKER-BASTOSA,ROMIGUIERJ,et al.MitoFinder: efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics[J].Mol Ecol Resour,2020,20(4):892-905.
doi: 10.1111/1755-0998.13160 |
28 |
GREINERS,LEHWARKP,BOCKR.Organellar Genome DRAW (OGDRAW) version 1.3.1:expanded toolkit for the graphical visualization of organellar genomes[J].Nucleic Acids Res,2019,47(W1):W59-W64.
doi: 10.1093/nar/gkz238 |
29 |
TAMURAK,STECHERG,KUMARS.MEGA11:molecular evolutionary genetics analysis version 11[J].Mol Biol Evol,2021,38(7):3022-3027.
doi: 10.1093/molbev/msab120 |
30 |
ZHANGX Z,FUL,GUOS C.The sequence and characterization of mitochondrial of Lepus oiostolus (Lagomorpha: Leporidae)[J].Mitochondrial DNA B,2020,5(3):2135-2136.
doi: 10.1080/23802359.2020.1768930 |
31 |
HUANGY L,CHENY X,GUOH T,et al.The complete mitochondrial genome sequence of Yarkand hare (Lepus yarkandensis)[J].Mitochondrial DNA B,2019,4(2):3727-3728.
doi: 10.1080/23802359.2019.1681321 |
32 |
ARNASONU,ADEGOKEJ A,BODINK,et al.Mammalian mitogenomic relationships and the root of the eutherian tree[J].Proc Natl Acad Sci U S A,2002,99(12):8151-8156.
doi: 10.1073/pnas.102164299 |
33 |
HIENDLEDERS,LEWALSKIH,WASSMUTHR,et al.The complete mitochondrial DNA sequence of the domestic sheep (Ovis aries) and comparison with the other major ovine haplotype[J].J Mol Evol,1998,47(4):441-448.
doi: 10.1007/PL00006401 |
34 |
XUX F,ÁRNASONÚ.The complete mitochondrial DNA sequence of the horse, Equus caballus: extensive heteroplasmy of the control region[J].Gene,1994,148(2):357-362.
doi: 10.1016/0378-1119(94)90713-7 |
35 |
DINGL,CHENC M,WANGH,et al.Complete mitochondrial DNA sequence of Lepus tolai (Leporidae: Lepus)[J].Mitochondrial DNA A,2016,27(3):2085-2086.
doi: 10.3109/19401736.2014.982568 |
36 |
MELO-FERREIRAJ,VILELAJ,FONSECAM M,et al.The elusive nature of adaptive mitochondrial DNA evolution of an arctic lineage prone to frequent introgression[J].Genome Biol Evol,2014,6(4):886-896.
doi: 10.1093/gbe/evu059 |
37 | HASSANINA,BONILLOC,NGUYENB X,et al.Comparisons between mitochondrial genomes of domestic goat (Capra hircus) reveal the presence of numts and multiple sequencing errors[J].Mitochondrial DNA,2010,21(3/4):68-76. |
38 |
BROUGHTONR E,MILAMJ E,ROEB A.The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA[J].Genome Res,2001,11(11):1958-1967.
doi: 10.1101/gr.156801 |
39 |
LONGJ R,QIUX P,ZENGF T,et al.Origin of rabbit (Oryctolagus cuniculus) in China: evidence from mitochondrial DNA control region sequence analysis[J].Anim Genet,2003,34(2):82-87.
doi: 10.1046/j.1365-2052.2003.00945.x |
40 |
SETIAJIA,LESTARID A,PANDUPUSPITASARIN S,et al.Genetic characteristics of complete mtDNA genome sequence of Indonesian local rabbit (Oryctolagus cuniculus)[J].J Genet Eng Biotechnol,2023,21(1):96.
doi: 10.1186/s43141-023-00546-1 |
[1] | Meila NA, Kenan LI, Haidong DU, Wenliang GUO, Renhua NA. Study on the Differences of Fungal Diversity in Rumen and Feces of Inner Mongolia Cashmere Goats at Different Ages [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3526-3540. |
[2] | Huanqin ZHENG, Xiaomin JIANG, Hong YUE, Baoyan WANG, Yang LIU, Xingxiao ZHANG, Jianlong ZHANG, Hongwei ZHU. Isolation, Identification and Partial Biological Characteristics Analysis of Feline Herpesvirus-1 [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3040-3048. |
[3] | FU Han, LU Chong, MIAO Ronghao, LU Yabin, LI Jianlong, LIU Jianhua, GENG Mingyang, GUO Qingyong, MAI Zhanhai, KUANG Ling. Effects of Abortion on the Diversity of Vaginal and Intestinal Flora in Mares and the Isolation and Identification of Vaginal Bacteria [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4700-4719. |
[4] | ZHANG Daoliang, DING Hongyan, WANG Liuxing, TAI Wenjun, KONG Hao, ZHAO Chang, FENG Shibin, WANG Xichun, XUE Yanfeng, WU Jinjie, LI Yu. Effect of Rumen Acidosis on Gastrointestinal Function, Morphology, and Microflora in Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4760-4772. |
[5] | WU Yicheng, RAN Tao, ZHOU Chuanshe, TAN Zhiliang. Evaluation of the Viral Community Composition in Goat Rumen Fluid, Based on Metagenomic Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2932-2941. |
[6] | LI Chao, ZHAO Xueyan, WANG Yongjun, WANG Yanping, REN Yifan, LI Jingxuan, WANG Huaizhong, WANG Jiying, SONG Qinye. Analysis on the Structural Composition and Function of Bacterial Microbiota of Caecum and Colon in Laiwu and DLY pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 5033-5045. |
[7] | CHEN Lu, CHANG Xinyu, SHEN Jiachen, SHEN Ruiting, ZHAO Zhenhua, HOU Xiaolin. Transcriptome Sequencing and Analysis of HD11 Cells Infected by Avian Infectious Bronchitis Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4860-4865. |
[8] | REN Man, LIU Xin, TANG Yulin, ZHANG Ruixue, QIN Junjie, ZHU Hao, GUO Yansheng. Regulation of Guiqiyimu Compound Preparation on Rumen Microbes and Short-chain Fatty Acids in Postpartum Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4461-4469. |
[9] | WANG Le, CHEN Hongcen, ZHANG Yonghong, WU Qiong, HOU Jiajia, WANG Tianyi, LU Tianhang, HUANG Chuanfa, ZHANG Hua, CUI Defeng. Effects of Radix Salviae Miltiorrhizae on Intestinal Microflora of Escherichia coli Infected Mice Based on Network Pharmacology and 16S rDNA High-throughput Sequencing Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3695-3711. |
[10] | WU Yicheng, RAN Tao, ZHOU Chuanshe, TAN Zhiliang. Rumen Bacteriophage in Ruminants: Metagenome Analytical Methods and Research Progress [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1): 20-31. |
[11] | LI Ben, GUO Fuqiang, WANG Weiwei, JIN Ningyi, JIN Qiushi, MI Zhiqiang, LI Chang, WANG Maopeng. A Case Report of Feline Infectious Peritonitis based on High-throughput Sequencing Diagnosis and Small-molecule Nucleoside Analogues Treatment [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1): 200-208. |
[12] | ZHU Jingjing, DAI Zhenglie, WANG Han, LI Xiangchen, ZHAO Ayong, ZHOU Xiaolong, YANG Songbai. Analysis of Differential Expression Profile of LncRNA in PK15 Cells Infected with Japanese Encephalitis Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1): 272-281. |
[13] | SUN Qian, WANG Qi, HUANG Jinxiu, QI Renli, YANG Feiyun, WANG Ruisheng, LAN Yunxian. Effect of Lactobacillus reuteri on the Expression Profile of miRNAs in the Jejunum of Piglets [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(9): 2156-2164. |
[14] | LI Yanping, WANG Liqun, LI Huixia, LIANG Panhong, CAI Xuepeng, MAO Li, LUO Xuenong. Identification and Complete Genome Sequencing Analysis of a Cytopathic BVDV-2 from Commercial Fetal Bovine Serum [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(2): 320-328. |
[15] | WANG Xinhua, ZHANG Xingxing, WANG Limin, HUANG Xin, HAN Mengli, ZHANG Yiyuan, GUO Yanhua, TANG Hong, HE Yanhua, ZHONG Fagang, ZHOU Ping. Differences of the Intestinal Microbial Flora Diversity and Composition in IGF-1 Transgenic Superfine Wool Sheep and Non-transgenic Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(10): 2387-2402. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||