Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (1): 71-78.doi: 10.11843/j.issn.0366-6964.2024.01.008
• REVIEW • Previous Articles Next Articles
WANG Xinxin1, LIN Shumei1*, ZHAO Dongdong1, WANG Xuesheng2
Received:
2023-02-28
Online:
2024-01-23
Published:
2024-01-24
CLC Number:
WANG Xinxin, LIN Shumei, ZHAO Dongdong, WANG Xuesheng. Role of Exosomes Secreted by Alveolar Epithelial Cells in Regulating Macrophage Polarization in Acute Lung Injury[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 71-78.
[1] | PARK I, KIM M, CHOE K, et al. Neutrophils disturb pulmonary microcirculation in sepsis-induced acute lung injury[J]. Eur Respir, 2019, 53(3):1800786. |
[2] | HUGHES K T, BEASLEY M B. Pulmonary manifestations of acute lung injury:more than just diffuse alveolar damage[J]. Arch Pathol Lab Med, 2017, 141(7):916-922. |
[3] | 林国斌. 猪呼吸道疾病综合征病因及防控[J]. 畜牧兽医科技信息, 2020(12):147-148.LIN G B. Etiology, prevention and control of porcine respiratory disease syndrome[J]. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2020(12):147-148. (in Chinese) |
[4] | SAHEBNASAGH A, MOJTAHEDZADEH M, NAJMEDDIN F, et al. A perspective on erythropoietin as a potential adjuvant therapy for acute lung injury/acute respiratory distress syndrome in patients with COVID-19[J]. Arch Med Res, 2020, 51(7):631-635. |
[5] | KUMAR V. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury[J]. Front Immunol, 2020, 11:1722. |
[6] | LEWIS S R, PRITCHARD M W, THOMAS C M, et al. Pharmacological agents for adults with acute respiratory distress syndrome[J]. Cochrane Database Syst Rev, 2019, 7(7):CD004477. |
[7] | NANCHAL R S, TRUWIT J D. Recent advances in understanding and treating acute respiratory distress syndrome[J]. F1000Res, 2018, 7:F1000 Faculty Rev-1322. |
[8] | MART M F, WARE L B. The long-lasting effects of the acute respiratory distress syndrome[J]. Expert Rev Respir Med, 2020, 14(6):577-586. |
[9] | XIA L J, ZHANG C L, LV N Y, et al. AdMSC-derived exosomes alleviate acute lung injury via transferring mitochondrial component to improve homeostasis of alveolar macrophages[J]. Theranostics, 2022, 12(6):2928-2947. |
[10] | ARORA S, DEV K, AGARWAL B, et al. Macrophages:Their role, activation and polarization in pulmonary diseases[J]. Immunobiology, 2018, 223(4-5):383-396. |
[11] | YANG H H, JIANG H L, TAO J H, et al. Mitochondrial citrate accumulation drives alveolar epithelial cell necroptosis in lipopolysaccharide-induced acute lung injury[J]. Exp Mol Med, 2022, 54(11):2077-2091. |
[12] | 卢姝言, 杨 松, 任李梅, 等. 不同来源外泌体保存方法的研究进展[J]. 中国现代应用药学, 2022, 39(3):410-416.LU S Y, YANG S, REN L M, et al. Research progress on preservation methods of exosomes from different sources[J]. Chinese Journal of Modern Applied Pharmacy, 2022, 39(3):410-416. (in Chinese) |
[13] | LU G D, CHENG P, LIU T, et al. BMSC-derived exosomal miR-29a promotes angiogenesis and osteogenesis[J]. Front Cell Dev Biol, 2020, 8:608521. |
[14] | SCHENA G J, MURRAY E K, HILDEBRAND A N, et al. Cortical bone stem cell-derived exosomes' therapeutic effect on myocardial ischemia-reperfusion and cardiac remodeling[J]. Am J Physiol Heart Circ Physiol, 2021, 321(6):H1014-H1029. |
[15] | XIONG Y Y, GONG Z T, TANG R J, et al. The pivotal roles of exosomes derived from endogenous immune cells and exogenous stem cells in myocardial repair after acute myocardial infarction[J]. Theranostics, 2021, 11(3):1046-1058. |
[16] | HARRELL C R, JOVICIC N, DJONOV V, et al. Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases[J]. Cells, 2019, 8(12):1605. |
[17] | SHEN Z W, HUANG W, LIU J, et al. Effects of mesenchymal stem cell-derived exosomes on autoimmune diseases[J]. Front Immunol, 2021, 12:749192. |
[18] | 胡细佑, 陈 波, 陈泽林. 巨噬细胞极化在脓毒症发生发展中的作用[J]. 中华危重病急救医学, 2022, 34(6):661-665.HU X Y, CHEN B, CHEN Z L. Role of macrophage polarization in the development of sepsis[J]. Chinese Critical Care Medicine, 2022, 34(6):661-665. (in Chinese) |
[19] | PUTTUR F, GREGORY L G, LLOYD C M. Airway macrophages as the guardians of tissue repair in the lung[J]. Immunol Cell Biol, 2019, 97(3):246-257. |
[20] | JOSHI N, WALTER J M, MISHARIN A V. Alveolar macrophages[J]. Cell Immunol, 2018, 330:86-90. |
[21] | EMING S A, MURRAY P J, PEARCE E J. Metabolic orchestration of the wound healing response[J]. Cell Metab, 2021, 33(9):1726-1743. |
[22] | 席 静, 王月丽, 邓肖玉, 等. STAT6介导的巨噬细胞极化对布鲁氏菌胞内存活的影响[J]. 畜牧兽医学报, 2022, 53(1):263-271.XI J, WANG Y L, DENG X Y, et al. Effect of STAT6 mediated macrophage polarization on intracellular survival of Brucella[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1):263-271. (in Chinese). |
[23] | COLIN S, CHINETTI-GBAGUIDI G, STAELS B. Macrophage phenotypes in atherosclerosis[J]. Immunol Rev, 2014, 262(1):153-166. |
[24] | WANG L X, ZHANG S X, WU H J, et al. M2b macrophage polarization and its roles in diseases[J]. J Leukoc Biol, 2019, 106(2):345-358. |
[25] | SHI T, DENNEY L, AN H Z, et al. Alveolar and lung interstitial macrophages:Definitions, functions, and roles in lung fibrosis[J]. J Leukoc Biol, 2021, 110(1):107-114. |
[26] | OISHI Y, MANABE I. Macrophages in inflammation, repair and regeneration[J]. Int Immunol, 2018, 30(11):511-528. |
[27] | JOHNSTON L K, RIMS C R, GILL S E, et al. Pulmonary macrophage subpopulations in the induction and resolution of acute lung injury[J]. Am J Respir Cell Mol Biol, 2012, 47(4):417-426. |
[28] | JIANG K F, YANG J, GUO S, et al. Peripheral circulating exosome-mediated delivery of miR-155 as a novel mechanism for acute lung inflammation[J]. Mol Ther, 2019, 27(10):1758-1771. |
[29] | 彭 巍. 脂多糖诱导肺泡上皮细胞外泌体通过miR-92a-3p调控肺泡巨噬细胞炎症反应[D]. 南昌:南昌大学, 2020.PENG W. LPS-induced exosomes derived from alveolar epithelial cells regulate the inflammatory response of alveolar macrophages via miR-92a-3p[D]. Nanchang:Nanchang University, 2020. (in Chinese) |
[30] | TIAN J K, CUI X Q, SUN J, et al. Retraction notice to "Exosomal microRNA-16-5p from adipose mesenchymal stem cells promotes TLR4-mediated M2 macrophage polarization in septic lung injury" [Int. Immunopharmacol. 98 (2021) 107835] [J]. Int Immunopharmacol, 2022, 111:109078. |
[31] | SONG Y X, DOU H, LI X J, et al. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis[J]. Stem Cells, 2017, 35(5):1208-1221. |
[32] | GU W, YAO L, LI L X, et al. ICAM-1 regulates macrophage polarization by suppressing MCP-1 expression via miR-124 upregulation[J]. Oncotarget, 2017, 8(67):111882-111901. |
[33] | MITTAL M, TIRUPPATHI C, NEPAL S, et al. TNF α-stimulated gene-6 (TSG6) activates macrophage phenotype transition to prevent inflammatory lung injury[J]. Proc Natl Acad Sci U S A, 2016, 113(50):E8151-E8158. |
[34] | SALTON F, CONFALONIERI P, MEDURI G U, et al. Prolonged low-dose methylprednisolone in patients with severe COVID-19 pneumonia[J]. Open Forum Infect Dis, 2020, 7(10):ofaa421. |
[35] | XIA H F, CHEN L, LIU H, et al. Protectin DX increases survival in a mouse model of sepsis by ameliorating inflammation and modulating macrophage phenotype[J]. Sci Rep, 2017, 7(1):99. |
[36] | SUGAHARA K, TOKUMINE J, TERUYA K, et al. Alveolar epithelial cells:differentiation and lung injury[J]. Respirology, 2006, 11(1):S28-S31. |
[37] | LEE H, ABSTON E, ZHANG D, et al. Extracellular vesicle:an emerging mediator of intercellular crosstalk in lung inflammation and injury[J]. Front Immunol, 2018, 9:924. |
[38] | BARKAUSKAS C E, CRONCE M J, RACKLEY C R, et al. Type 2 alveolar cells are stem cells in adult lung[J]. J Clin Invest, 2013, 123(7):3025-3036. |
[39] | DOBBS L G, JOHNSON M D, VANDERBILT J, et al. The great big alveolar TI cell:evolving concepts and paradigms[J]. Cell Physiol Biochem, 2010, 25(1):55-62. |
[40] | SCHNEIDER J P, WREDE C, HEGERMANN J, et al. On the topological complexity of human alveolar epithelial type 1 cells[J]. Am J Respir Crit Care Med, 2019, 199(9):1153-1156. |
[41] | KATHIRIYA J J, BRUMWELL A N, JACKSON J R, et al. Distinct airway epithelial stem cells hide among club cells but mobilize to promote alveolar regeneration[J]. Cell Stem Cell, 2020, 26(3):346-358. e4. |
[42] | ASPAL M, ZEMANS R L. Mechanisms of ATII-to-ATI cell differentiation during lung regeneration[J]. Int J Mol Sci, 2020, 21(9):3188. |
[43] | BONUCCI E. Fine structure of early cartilage calcification[J]. J Ultrastruct Res, 1967, 20(1-2):33-50. |
[44] | ANDERSON H C. Vesicles associated with calcification in the matrix of epiphyseal cartilage[J]. J Cell Biol, 1969, 41(1):59-72. |
[45] | STAHL P D, RAPOSO G. Extracellular vesicles:exosomes and microvesicles, integrators of homeostasis[J]. Physiology (Bethesda), 2019, 34(3):169-177. |
[46] | PEGTEL D M, GOULD S J. Exosomes[J]. Annu Rev Biochem, 2019, 88:487-514. |
[47] | SCHUMACKER P T, GILLESPIE M N, NAKAHIRA K, et al. Mitochondria in lung biology and pathology:more than just a powerhouse[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 306(11):L962-L974. |
[48] | SUPINSKI G S, SCHRODER E A, CALLAHAN L A. Mitochondria and critical illness[J]. Chest, 2020, 157(2):310-322. |
[49] | MORRISON T J, JACKSON M V, CUNNINGHAM E K, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer[J]. Am J Respir Crit Care Med, 2017, 196(10):1275-1286. |
[50] | SILVA J D, SU Y, CALFEE C S, et al. Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS[J]. Eur RESPIR J, 2021, 58(1):2002978. |
[51] | CHEN L, YANG Y, YUE R M, et al. Exosomes derived from hypoxia-induced alveolar epithelial cells stimulate interstitial pulmonary fibrosis through a HOTAIRM1-dependent mechanism[J]. Lab Invest, 2022, 102(9):935-944. |
[52] | YU Y, ZHOU Y, DI C X, et al. Increased airway epithelial cell-derived exosomes activate macrophage-mediated allergic inflammation via CD100 shedding[J]. J Cell Mol Med, 2021, 25(18):8850-8862. |
[53] | KULSHRESHTHA A, AHMAD T, AGRAWAL A, et al. Proinflammatory role of epithelial cell-derived exosomes in allergic airway inflammation[J]. J Allergy Clin Immunol, 2013, 131(4):1194-1203. e14. |
[54] | FENG Z Y, JING Z, LI Q, et al. Exosomal STIMATE derived from type II alveolar epithelial cells controls metabolic reprogramming of tissue-resident alveolar macrophages[J]. Theranostics, 2023, 13(3):991-1009. |
[55] | BISSONNETTE E Y, LAUZON-JOSET J F, DEBLEY J S, et al. Cross-talk between alveolar macrophages and lung epithelial cells is essential to maintain lung homeostasis[J]. Front Immunol, 2020, 11:583042. |
[56] | LEE H, ZHANG D, WU J X, et al. Lung Epithelial cell-derived microvesicles regulate macrophage migration via microRNA-17/221-induced integrin β1 recycling[J]. J Immunol, 2017, 199(4):1453-1464. |
[57] | MOON H G, CAO Y, YANG J, et al. Lung epithelial cell-derived extracellular vesicles activate macrophage-mediated inflammatory responses via ROCK1 pathway[J]. Cell Death Dis, 2015, 6(12):e2016. |
[58] | LIU F, PENG W, CHEN J Q, et al. Exosomes derived from alveolar epithelial cells promote alveolar macrophage activation mediated by miR-92a-3p in sepsis-induced acute lung injury[J]. Front Cell Infect Microbiol, 2021, 11:646546. |
[59] | 李建军, 吴素方, 白丰玺. Mtb感染Ⅱ型肺泡上皮细胞来源外泌体通过miR-145对巨噬细胞极化的影响[J]. 天津医学, 2020, 50(7):678-685.LI J J, WU S F, BAI F X. Effects of Mtb-infected type Ⅱ alveolar epithelial cells-derived exosome on the polarization of macrophages through miR-145[J]. Tianjin Medical Journal, 2020, 50(7):678-685. (in Chinese) |
[60] | BOURDONNAY E, ZASŁONA Z, PENKE L R K, et al. Transcellular delivery of vesicular SOCS proteins from macrophages to epithelial cells blunts inflammatory signaling[J]. J Exp Med, 2015, 212(5):729-742. |
[61] | SPETH J M, PENKE L R, BAZZILL J D, et al. Alveolar macrophage secretion of vesicular SOCS3 represents a platform for lung cancer therapeutics[J]. JCI Insight, 2019, 4(20):e131340. |
[1] | LIU Xinxin, ZHOU Enyou, AN Zhiyuan, CAI Chunxia, ZHANG Lujie, LI Jianzeng, LI Zhuanjian, YAN Fengbin, KANG Xiangtao, GAO Yanling, HAN Ruili. Effects of Exosomes from Different Sources on Bone Development and Bone Diseases [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 419-426. |
[2] | LIU Yangguang, ZHANG Huibin, WEN Haoyu, XIE Fan, ZHAO Shiming, DING Yueyun, ZHENG Xianrui, YIN Zongjun, ZHANG Xiaodong. SNP/Indel Screening Analysis of Porcine Ovarian Granulosa Cells Treated with Follicular Fluid Exosomes [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 576-586. |
[3] | GONG Zhiguo, ZHAO Jiamin, GU Baichen, REN Peipei, YU Zhuoya, BAI Yunjie, LIU Xinyu, WANG Chao, LIU Bo. Exploring the Mechanism of Codonopsis pilosula in Alleviation of Acute Lung Injury in Escherichia coli Infected Mice Based on Network Pharmacology [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3571-3581. |
[4] | CHEN Yongping, KOU Yuhong, JIAO Wenjing, HOU Xiaoyu, FAN Honggang. Effect of Coenzyme Q10 on LPS-induced Acute Lung Injury in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1730-1741. |
[5] | GUO Xinyu, WANG Haotian, ZHANG Xuemei, WANG Xiaolong, LI Heping, YANG Yanbin, ZHONG Kai. Study on the Regulation of Macrophage Polarization by Exosomes Derived from Cow Milk [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4754-4765. |
[6] | DING Jun, FU Zilin, HE Junhao, DUAN Xiaowei, MA Lu, BU Dengpan. Research Progress of Milk-derived Exosomes [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1019-1029. |
[7] | KUANG Jingjing, HE Yanjuan, HU Qun, GU Ting, WU Zhenfang, CAI Gengyuan, HONG Linjun. Effect of TIMP2 Protein Derived from Porcine Uterine Fluid Exosomes on Embryo Implantation During Early Pregnancy [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1122-1132. |
[8] | CHEN Qi, DU Changzheng, ZHENG Xuedi, MA Boli, XU Jinrui, YANG Yi. Regulation on BCG-induced Autophagy by Wnt5a-mediated Wnt/Ca2+ Pathway in BAECs [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 4071-4080. |
[9] | SHEN Jiakun, TANG Qian, CUI Yangyang, JIN Xiaoming, LI Yansen, LI Chunmei. Fine Particulate Matter from Pig House Promote M1 Polarization in Porcine Primary Alveolar Macrophage [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(6): 1717-1726. |
[10] | ZHANG Haiyang, LU Xiangyu, ZHANG Jiahua, LIU Xin, HAN Zhengxuan, CUI An, ZHAO Yuan, SONG Manyu, LIU Tao, FAN Honggang. Protective Effects of Melatonin on LPS-induced Hippocampal Inflammatory Lesion in Rats [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(1): 226-234. |
[11] | NI Aixin, LI Yunlei, GE Pingzhuang, WANG Panlin, Adamu Mani Isa, SHI Lei, FAN Jing, SUN Yanyan, SUN Hong, MA Hui, CHEN Jilan. Extraction and Protein Profiling of Exosomes Derived from Trichomonas gallinae in Pigeon [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(7): 1737-1747. |
[12] | CHU Yunxin, CHEN Yan, MA Yuqing, ZENG Wei, CHEN Songrui, ZHAO Zhiqian, WANG Jingyu, QI Xuefeng. Effect of Exosomes Derived from PPRV Vaccine Strain N75-1 Infected Cells on the Expression of SLAM in Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(10): 2500-2508. |
[13] | BAI Jingchun, YAO Yujie, LIU Tao, DONG Bowen, YU Shiming, FAN Honggang. Pathogenesis of Lipopolysaccharide on Rat Heart Injury and Protective Mechanism of Dexmedetomidine [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(9): 1920-1925. |
[14] | NI Aixin, MA Hui, CHEN Jilan. Research Progress of Parasite-derived Exosomes [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2019, 50(5): 909-917. |
[15] | ZHAO Le, YANG Haili, ZHANG Rong, YANG Yongheng, LI Jialu, ZHOU Heming, WANG Pan, ZHAO Yongju. The Regulation Role of Exosomes in Mammalian Pregnancy [J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50(12): 2371-2378. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||