Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (1): 129-141.doi: 10.11843/j.issn.0366-6964.2024.01.014
• ANIMAL GENETICS AND BREEDING • Previous Articles Next Articles
ZHANG Chenjian1,2, LI Yinxia2, DING Qiang2, LIU Weijia1,2, WANG Huili2, HE Nan3, WU Jiashun3, CAO Shaoxian1,2*
Received:
2023-08-01
Online:
2024-01-23
Published:
2024-01-24
CLC Number:
ZHANG Chenjian, LI Yinxia, DING Qiang, LIU Weijia, WANG Huili, HE Nan, WU Jiashun, CAO Shaoxian. Efficient Preparation of CRISPR/Cas9-mediated Goat SOCS2 Gene Edited Embryos[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 129-141.
[1] | GREENHALGH C J, RICO-BAUTISTA E, LORENTZON M, et al.SOCS2 negatively regulates growth hormone action in vitro and in vivo[J].J Clin Invest, 2005, 115(2):397-406. |
[2] | VESTERLUND M, ZADJALI F, PERSSON T, et al.The SOCS2 ubiquitin ligase complex regulates growth hormone receptor levels[J].PLoS One, 2011, 6(9):e25358. |
[3] | 李亭亭, 刘秋月, 李向臣, 等.绵羊经济性状相关基因研究进展及其应用[J].畜牧兽医学报, 2022, 53(8):2417-2434.LI T T, LIU Q Y, LI X C, et al.Research progress and applications of genes associated with economic traits in sheep[J].Acta Veterinaria et Zootechnica Sinica, 2022, 53(8):2417-2434.(in Chinese) |
[4] | METCALF D, GREENHALGH C J, VINEY E, et al.Gigantism in mice lacking suppressor of cytokine signalling-2[J].Nature, 2000, 405(6790):1069-1073. |
[5] | STARR R, WILLSON T A, VINEY E M, et al.A family of cytokine-inducible inhibitors of signalling[J].Nature, 1997, 387(6636):917-921. |
[6] | LI K L, MEZA GUZMAN L G, WHITEHEAD L, et al.SOCS2 regulation of growth hormone signaling requires a canonical interaction with phosphotyrosine[J].Biosci Rep, 2022, 42(12):BSR20221683. |
[7] | BULLOCK A N, DEBRECZENI J É, EDWARDS A M, et al.Crystal structure of the SOCS2-elongin C-elongin B complex defines a prototypical SOCS box ubiquitin ligase[J].Proc Natl Acad Sci U S A, 2006, 103(20):7637-7642. |
[8] | BULATOV E, MARTIN E M, CHATTERJEE S, et al.Biophysical studies on interactions and assembly of full-size E3 ubiquitin ligase:suppressor of cytokine signaling 2 (SOCS2)-elongin BC-cullin 5-ring box protein 2 (RBX2)[J].J Biol Chem, 2015, 290(7):4178-4191. |
[9] | KUNG W W, RAMACHANDRAN S, MAKUKHIN N, et al.Structural insights into substrate recognition by the SOCS2 E3 ubiquitin ligase[J].Nat Commun, 2019, 10(1):2534. |
[10] | LINOSSI E M, LI K L, VEGGIANI G, et al.Discovery of an exosite on the SOCS2-SH2 domain that enhances SH2 binding to phosphorylated ligands[J].Nat Commun, 2021, 12(1):7032. |
[11] | RUPP R, SENIN P, SARRY J, et al.A point mutation in suppressor of cytokine signalling 2 (Socs2) increases the susceptibility to inflammation of the mammary gland while associated with higher body weight and size and higher milk production in a sheep model[J].PLoS Genet, 2015, 11(12):e1005629. |
[12] | LIU Y, COTTLE W T, HA T.Mapping cellular responses to DNA double-strand breaks using CRISPR technologies[J].Trends Genet, 2023, 39(7):560-574. |
[13] | MATHEW S M.Strategies for generation of mice via CRISPR/HDR-mediated knock-in[J].Mol Biol Rep, 2023, 50(4):3189-3204. |
[14] | BU W, CREIGHTON C J, HEAVENER K S, et al.Efficient cancer modeling through CRISPR-Cas9/HDR-based somatic precision gene editing in mice[J].Sci Adv, 2023, 9(19):eade0059. |
[15] | WANG Y, QI T, LIU J T, et al.A highly specific CRISPR-Cas12j nuclease enables allele-specific genome editing[J].Sci Adv, 2023, 9(6):eabo6405. |
[16] | CONG L, RAN F A, COX D, et al.Multiplex genome engineering using CRISPR/Cas systems[J].Science, 2013, 339(6121):819-823. |
[17] | 季海艳, 朱焕章.基因编辑技术在基因治疗中的应用进展[J].生命科学, 2015, 27(1):71-82.JI H Y, ZHU H Z.Progress of genome editing approaches towards gene therapy[J].Chinese Bulletin of Life Sciences, 2015, 27(1):71-82.(in Chinese) |
[18] | 殷文晶, 陈振概, 黄佳慧, 等.基于CRISPR-Cas9基因编辑技术在作物中的应用[J].生物工程学报, 2023, 39(2):399-424.YIN W J, CHEN Z G, HUANG J H, et al.Application of CRISPR-Cas9 gene editing technology in crop breeding[J].Chinese Journal of Biotechnology, 2023, 39(2):399-424.(in Chinese) |
[19] | 费晓钰, 石超群, 刘雪明, 等.CRISPR/Cas9系统介导的猪MRC1修饰基因降低PCV2复制的研究[J].畜牧兽医学报, 2023, 54(3):934-946.FEI X Y, SHI C Q, LIU X M, et al.CRISPR/Cas9 system mediated gene modificated MRC1 in PK15 cells reduce PCV2 replication[J].Acta Veterinaria et Zootechnica Sinica, 2023, 54(3):934-946.(in Chinese) |
[20] | GUO C T, MA X T, GAO F, et al.Off-target effects in CRISPR/Cas9 gene editing[J].Front Bioeng Biotechnol, 2023, 11:1143157. |
[21] | YANG Q Q, WU L L, MENG J, et al.EpiCas-DL:predicting sgRNA activity for CRISPR-mediated epigenome editing by deep learning[J].Comput Struct Biotechnol J, 2023, 21:202-211. |
[22] | ZHOU S W, CAI B, HE C, et al.Programmable base editing of the sheep genome revealed no genome-wide off-target mutations[J].Front Genet, 2019, 10:215. |
[23] | CHEN W, MCKENNA A, SCHREIBER J, et al.Massively parallel profiling and predictive modeling of the outcomes of CRISPR/Cas9-mediated double-strand break repair[J].Nucleic Acids Res, 2019, 47(15):7989-8003. |
[24] | CRISPO M, VILARIÑO M, DOS SANTOS-NETO P C, et al.Embryo development, fetal growth and postnatal phenotype of eGFP lambs generated by lentiviral transgenesis[J].Transgenic Res, 2015, 24(1):31-41. |
[25] | LEDDA S, IDDA A, KELLY J, et al.A novel technique for in vitro maturation of sheep oocytes in a liquid marble microbioreactor[J]. J Assist Reprod Genet, 2016, 33(4):513-518. |
[26] | UYTTENDAELE I, LEMMENS I, VERHEE A, et al.Mammalian protein-protein interaction trap (MAPPIT) analysis of STAT5, CIS, and SOCS2 interactions with the growth hormone receptor[J].Mol Endocrinol, 2007, 21(11):2821-2831. |
[27] | 尹 智, 袁雪薇, 吕嘉伟, 等.CRISPR/Cas9系统介导的一步法胚胎注射获得猪GGTA1敲除胚胎[J].畜牧与兽医, 2016, 48(4):15-18.YIN Z, YUAN X W, LV J W, et al.One-step generation of GGTA1-knockout pig embryos by injection of CRISPR/Cas9 system[J].Animal Husbandry & Veterinary Medicine, 2016, 48(4):15-18.(in Chinese) |
[28] | 尉翔栋, 吕晨晨, 朱肖亭, 等.利用CRISPR-Cas9基因编辑技术制备牛MSTN基因编辑胚胎[J].河南农业科学, 2019, 48(2):131-136.YU X D, LV C C, ZHU X T, et al.Preparation of bovine MSTN gene edited embryos using CRISPR-Cas9 gene editing technology[J]. Journal of Henan Agricultural Sciences, 2019, 48(2):131-136.(in Chinese) |
[29] | ZHANG X M, LI W R, WU Y S, et al.Disruption of the sheep BMPR-IB gene by CRISPR/Cas9 in in vitro-produced embryos[J].Theriogenology, 2017, 91:163-172.e2. |
[30] | HUSZÁR K, WELKER Z, GYÖRGYPÁL Z, et al.Position-dependent sequence motif preferences of SpCas9 are largely determined by scaffold-complementary spacer motifs[J].Nucleic Acids Res, 2023, 51(11):5847-5863. |
[31] | NOSHAY J M, WALKER T, ALEXANDER W G, et al.Quantum biological insights into CRISPR-Cas9 sgRNA efficiency from explainable-AI driven feature engineering[J].Nucleic Acids Res, 2023, doi:10.1093/nar/gkad736. |
[32] | LIU Y, FAN R, YI J K, et al.A fusion framework of deep learning and machine learning for predicting sgRNA cleavage efficiency[J].Comput Biol Med, 2023, 165:107476. |
[33] | DYKE E, BIJNAGTE-SCHOENMAKER C, WU K M, et al.Generation of induced pluripotent stem cell line carrying frameshift variants in NPHP1 (UCSFi001-A-68) using CRISPR/Cas9[J].Stem Cell Res, 2023, 68:103053. |
[34] | ABEUOVA L, KALI B, TUSSIPKAN D, et al.CRISPR/Cas9-mediated multiple guide RNA-targeted mutagenesis in the potato[J].Transgenic Res, 2023, doi:10.1007/s11248-023-00356-8. |
[35] | JEONG Y J, CHO J, KWAK J, et al.Immortalization of primary marmoset skin fibroblasts by CRISPR-Cas9-mediated gene targeting[J].Anim Cells Syst (Seoul), 2022, 26(6):266-274. |
[36] | QIU Z W, LIU M Z, CHEN Z H, et al.High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases[J].Nucleic Acids Res, 2013, 41(11):e120. |
[37] | HU R, FAN Z Y, WANG B Y, et al.RAPID COMMUNICATION:generation of FGF5 knockout sheep via the CRISPR/Cas9 system[J].J Anim Sci, 2017, 95(5):2019-2024. |
[38] | XU C L, RUAN M Z, RAGI S D, et al.CRISPR off-target analysis platforms[J].Methods Mol Biol, 2023, 2560:279-285. |
[39] | TIAN R, CAO C, HE D, et al.Massively parallel CRISPR off-target detection enables rapid off-target prediction model building[J].Med, 2023, 4(7):478-492.e6. |
[40] | WIENERT B, CROMER M K.CRISPR nuclease off-target activity and mitigation strategies[J].Front Genome Ed, 2022, 4:1050507. |
[41] | 郭日红.Cas9技术介导兔和山羊MSTN与CLPG1基因编辑的研究[D].南京:南京农业大学, 2017.GUO R H.Genome editing at MSTN and CLPG1 locus of rabbit and goat using Cas9[D].Nanjing:Nanjing Agricultural University, 2017.(in Chinese) |
[42] | 赵为民, 王慧利, 曹少先, 等.猪CD163基因的单碱基编辑研究[J].畜牧兽医学报, 2022, 53(4):1041-1050.ZHAO W M, WANG H L, CAO S X, et al.The study of base editing of porcine CD163 gene[J].Acta Veterinaria et Zootechnica Sinica, 2022, 53(4):1041-1050.(in Chinese) |
[1] | QIU Meiyu, ZHANG Xuemei, ZHANG Ning, LIU Mingjun. Approach and Application of Prime Editing System [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1345-1355. |
[2] | WANG Jiali, YANG Fan, SHAO Wenhua, HUANG Mengyao, CAO Weijun, PU Xiuying, ZHANG Wei, ZHENG Haixue. Construction of Tollip Knockout Pig Kidney Cell Line [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1810-1818. |
[3] | FEI Xiaoyu, SHI Chaoqun, LIU Xueming, SU Feng, JIANG Yunliang. CRISPR/Cas9 System Mediated Gene Modificated MRC1 in PK15 Cells Reduce PCV2 Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 934-946. |
[4] | LIU Ling, WANG Dandan, CUI Kai, MA Yuehui, JIANG Lin. Advances of Disease-Resistant Breeding on Porcine Reproductive and Respiratory Syndrome [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 434-442. |
[5] | CHEN Junzhen, QUAN Ran, FU Qiang, GE Lijuan, YUAN Yuanyuan, ZHANG Chengyuan, LI Jianlin, SHI Huijun. Study on the Effect of Heat Shock Protein HSP90B1 on the Replication of Bovine Viral Diarrhea Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 683-693. |
[6] | ZHANG Shuo, ZHOU Yuxiao, WU Haibo, SUO Lun. Dynamics of Gene Editing Consequence Mediated by Long-term CRISPR/Cas9 System [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4196-4208. |
[7] | DENG Min'er, LI Na, GUO Yaqiong, FENG Yaoyu, XIAO Lihua. Application of CRISPR/Cas9 System on Gene Editing of Parasitic Protozoa [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 69-79. |
[8] | ZHAO Weimin, WANG Huili, CAO Shaoxian, GUO Rihong, WANG Zeping, CHEN Zhe, XU Kui, FU Yanfeng, LI Bixia, REN Shouwen, CHENG Jinhua. The Study of Base Editing of Porcine CD163 Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1041-1050. |
[9] | LI Zhaolong, ZHANG Huifang, FENG Zhihua, FANG Zhou. Therapeutic Effect of Recombinant Adeno-Associated Virus Carrying CRISPR/Cas9 on Pseudorabies Virus-infected Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 834-846. |
[10] | ZOU Huiying, LI Junliang, ZHU Huabin. Progress on Research and Application of Prime Editing System [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3721-3730. |
[11] | LUO Jun, LIU Jinling, ZHENG Luping, LUO Qin, TENG Man. Recent Advances in Engineering Avian Herpesviruses by CRISPR/Cas9-based Gene Editing Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3335-3344. |
[12] | WANG Pei, WANG Meng, LI Tingting, ZHENG Xiaonan, LIANG Qinli, CHEN Xiaoqing. Generation and Basic Functional Characterization of Four Hypothetical Protein Genes Deletion Strains of Toxoplasma gondii [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3598-3608. |
[13] | LI Chen, HE Wenfeng, ZHAO Lina, FAN Qi, YANG Guoqing, LIU Huimin. Effect of Interferon Stimulated Gene 15 Knockout in PK-15 Cell Line on Replication of Pseudorabies Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3621-3630. |
[14] | WANG Shengnan, WANG Dandan, TIAN Wenjie, PU Yabin, PAN Dengke, XING Xiangyang, MA Yuehui, JIANG Lin. Mechanism of ZBED6 Gene on Spleen Development of Bama Xiang Pig [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(9): 2394-2405. |
[15] | WANG Huan, ZOU Huiying, ZHU Huabin, ZHAO Shanjiang. Advances in Evaluation of Livestock Breeding New Materials by Using the CRISPR/Cas9 Gene Editing Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(4): 851-861. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||