Acta Veterinaria et Zootechnica Sinica ›› 2023, Vol. 54 ›› Issue (1): 69-79.doi: 10.11843/j.issn.0366-6964.2023.01.007
• REVIEW • Previous Articles Next Articles
DENG Min'er, LI Na, GUO Yaqiong, FENG Yaoyu, XIAO Lihua*
Received:
2022-05-18
Online:
2023-01-23
Published:
2023-01-17
CLC Number:
DENG Min'er, LI Na, GUO Yaqiong, FENG Yaoyu, XIAO Lihua. Application of CRISPR/Cas9 System on Gene Editing of Parasitic Protozoa[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 69-79.
[1] | KIM K, SOLDATI D, BOOTHROYD J C. Gene replacement in Toxoplasma gondii with chloramphenicol acetyltransferase as selectable marker[J]. Science, 1993, 262(5135):911-914. |
[2] | SOLDATI D, BOOTHROYD J C. Transient transfection and expression in the obligate intracellular parasite Toxoplasma gondii[J]. Science, 1993, 260(5106):349-352. |
[3] | GOONEWARDENE R, DAILY J, KASLOW D, et al. Transfection of the malaria parasite and expression of firefly luciferase[J]. Proc Natl Acad Sci U S A, 1993, 90(11):5234-5236. |
[4] | ZIRPEL H, CLOS J. Gene replacement by homologous recombination[J]. Methods Mol Biol, 2019, 1971:169-188. |
[5] | 宋海洋, 吴杰, 邹丰才, 等. CRISPR/Cas系统作用机制及其在寄生虫学研究中的应用[J]. 中国畜牧兽医, 2017, 44(1):208-213.SONG H Y, WU J, ZOU F C, et al. Mechanism of CRISPR/Cas system and its application in parasitology[J]. China Animal Husbandry & Veterinary Medicine, 2017, 44(1):208-213. (in Chinese) |
[6] | CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823. |
[7] | MALI P, YANG L, ESVELT K M, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121):823-826. |
[8] | SIDIK S M, HUET D, GANESAN S M, et al. A Genome-wide CRISPR screen in Toxoplasma identifies essential apicomplexan genes[J]. Cell, 2016, 166(6):1423-1435.e12. |
[9] | SUAREZ C E, BISHOP R P, ALZAN H F, et al. Advances in the application of genetic manipulation methods to apicomplexan parasites[J]. Int J Parasitol, 2017, 47(12):701-710. |
[10] | SOARES MEDEIROS L C, SOUTH L, PENG D, et al. Rapid, selection-free, high-efficiency genome editing in protozoan parasites using CRISPR-Cas9 ribonucleoproteins[J]. mBio, 2017, 8(6):e01788-17. |
[11] | LU H Y, BUCK G A. Expression of an exogenous gene in Trypanosoma cruzi epimastigotes[J]. Mol Biochem Parasitol, 1991, 44(1):109-114. |
[12] | HARIHARAN S, AJIOKA J, SWINDLE J. Stable transformation of Trypanosoma cruzi:inactivation of the PUB12. 5 polyubiquitin gene by targeted gene disruption[J]. Mol Biochem Parasitol, 1993, 57(1):15-30. |
[13] | OTSU K, DONELSON J E, KIRCHHOFF L V. Interruption of a Trypanosoma cruzi gene encoding a protein containing 14-amino acid repeats by targeted insertion of the neomycin phosphotransferase gene[J]. Mol Biochem Parasitol, 1993, 57(2):317-330. |
[14] | UPTON S J, TILLEY M, BRILLHART D B. Comparative development of Cryptosporidium parvum (Apicomplexa) in 11 continuous host cell lines[J]. FEMS Microbiol Lett, 1994, 118(3):233-236. |
[15] | VAN DIJK M R, WATERS A P, JANSE C J. Stable transfection of malaria parasite blood stages[J]. Science, 1995, 268(5215):1358-1362. |
[16] | WU Y, SIFRI C D, LEI H H, et al. Transfection of Plasmodium falciparum within human red blood cells[J]. Proc Natl Acad Sci U S A, 1995, 92(4):973-977. |
[17] | SHEN B, BROWN K M, LEE T D, et al. Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9[J]. mBio, 2014, 5(3):e01114-14. |
[18] | ZHANG W W, MATLASHEWSKI G. CRISPR-Cas9-mediated genome editing in Leishmania donovani[J]. mBio, 2015, 6(4):e00861. |
[19] | HU D D, TANG X M, BEN MAMOUN C, et al. Efficient single-gene and gene family editing in the apicomplexan parasite Eimeria tenella using CRISPR-Cas9[J]. Front Bioeng Biotechnol, 2020, 8:128. |
[20] | BROWN K M, LONG S J, SIBLEY L D. Conditional knockdown of proteins using auxin-inducible degron (AID) fusions in Toxoplasma gondii[J]. Bio Protoc, 2018, 8(4):e2728. |
[21] | BRYANT J M, BAUMGARTEN S, DINGLI F, et al. Exploring the virulence gene interactome with CRISPR/dCas9 in the human malaria parasite[J]. Mol Syst Biol, 2020, 16(8):e9569. |
[22] | XIAO B, YIN S G, HU Y, et al. Epigenetic editing by CRISPR/dCas9 in Plasmodium falciparum[J]. Proc Natl Acad Sci U S A, 2019, 116(1):255-260. |
[23] | WAGNER J C, PLATT R J, GOLDFLESS S J, et al. Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum[J]. Nat Methods, 2014, 11(9):915-918. |
[24] | GHORBAL M, GORMAN M, MACPHERSON C R, et al. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system[J]. Nat Biotechnol, 2014, 32(8):819-821. |
[25] | NACER A, CLAES A, ROBERTS A, et al. Discovery of a novel and conserved Plasmodium falciparum exported protein that is important for adhesion of PfEMP1 at the surface of infected erythrocytes[J]. Cell Microbiol, 2015, 17(8):1205-1216. |
[26] | MOGOLLON C M, VAN PUL F J A, IMAI T, et al. Rapid generation of marker-free P. falciparum fluorescent reporter lines using modified CRISPR/Cas9 constructs and selection protocol[J]. PLoS One, 2016, 11(12):e0168362. |
[27] | BRYANT J M, REGNAULT C, SCHEIDIG-BENATAR C, et al.CRISPR/Cas9 genome editing reveals that the intron is not essential for var2csa gene activation or silencing in Plasmodium falciparum[J]. mBio, 2017(8):e00729-17. |
[28] | MOHRING F, HART M N, RAWLINSON T A, et al. Rapid and iterative genome editing in the malaria parasite Plasmodium knowlesi provides new tools for P. vivax research[J]. Elife, 2019, 8:e45829. |
[29] | BOLTRYK S D, PASSECKER A, ALDER A, et al. CRISPR/Cas9-engineered inducible gametocyte producer lines as a valuable tool for Plasmodium falciparum malaria transmission research[J]. Nat Commun, 2021, 12(1):4806. |
[30] | SHEN B, BROWN K, LONG S J, et al. Development of CRISPR/Cas9 for efficient genome editing in Toxoplasma gondii[J]. Methods Mol Biol, 2017, 1498:79-103. |
[31] | LONG S, BROWN K M, DREWRY L L, et al. Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii[J]. PLoS Pathog, 2017, 13(5):e1006379. |
[32] | BROWN K M, LONG S J, SIBLEY L D. Plasma membrane association by N-acylation governs PKG function in Toxoplasma gondii[J]. mBio, 2017, 8(3):e00375-17. |
[33] | SIDIK S M, HACKETT C G, TRAN F, et al. Efficient genome engineering of Toxoplasma gondii using CRISPR/Cas9[J]. PLoS One, 2014, 9(6):e100450. |
[34] | MARKUS B M, BELL G W, LORENZI H A, et al. Optimizing systems for Cas9 expression in Toxoplasma gondii[J]. mSphere, 2019, 4(3):e00386-19. |
[35] | WANG Y F, SANGARÉ L O, PAREDES-SANTOS T C, et al. Genome-wide screens identify Toxoplasma gondii determinants of parasite fitness in IFNγ-activated murine macrophages[J]. Nat Commun, 2020, 11(1):5258. |
[36] | HARDING C R, SIDIK S M, PETROVA B, et al. Genetic screens reveal a central role for heme metabolism in artemisinin susceptibility[J]. Nat Commun, 2020, 11(1):4813. |
[37] | YOUNG J, DOMINICUS C, WAGENER J, et al. A CRISPR platform for targeted in vivo screens identifies Toxoplasma gondii virulence factors in mice[J]. Nat Commun, 2019, 10(1):3963. |
[38] | DELGADO I L S, TAVARES A, FRANCISCO S, et al. Characterization of a MOB1 homolog in the apicomplexan parasite Toxoplasma gondii[J]. Biology (Basel), 2021, 10(12):1233. |
[39] | 王沛, 王萌, 李婷婷, 等. 弓形虫4个假定蛋白基因缺失株的构建及其基本生物功能学研究[J]. 畜牧兽医学报, 2022, 53(10):3598-3608.WANG P, WANG M, LI T T, et al. Generation and basic functional characterization of four hypothetical protein genes deletion strains of Toxoplasma gondii[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10):3598-3608.(in Chinese) |
[40] | LIANG Q L, NIE L B, LI T T, et al. Functional characterization of 17 protein serine/threonine phosphatases in Toxoplasma gondii using CRISPR-Cas9 system[J]. Front Cell Dev Biol, 2022, 9:738794. |
[41] | LIU J, LI T T, LIANG Q L, et al. Characterization of functions in parasite growth and virulence of four Toxoplasma gondii genes involved in lipid synthesis by CRISPR-Cas9 system[J]. Parasitol Res, 2021, 120(11):3749-3759. |
[42] | XU L Q, YAO L J, JIANG D, et al. A uracil auxotroph Toxoplasma gondii exerting immunomodulation to inhibit breast cancer growth and metastasis[J]. Parasit Vectors, 2021, 14(1):601. |
[43] | CHEN Y, LIU Q, XUE J X, et al. Genome-wide CRISPR/Cas9 screen identifies new genes critical for defense against oxidant stress in Toxoplasma gondii[J]. Front Microbiol, 2021, 12:670705. |
[44] | THEISEN D J, DAVIDSON J T, BRISE? O C G, et al. WDFY4 is required for cross-presentation in response to viral and tumor antigens[J]. Science, 2018, 362(6415):694-699. |
[45] | XU X P, ELSHEIKHA H M, LIU W G, et al. The role of type II fatty acid synthesis enzymes FabZ, ODSCI, and ODSCII in the pathogenesis of Toxoplasma gondii infection[J]. Front Microbiol, 2021, 12:703059. |
[46] | ROSENBERG A, LUTH M R, WINZELER E A, et al. Evolution of resistance in vitro reveals mechanisms of artemisinin activity in Toxoplasma gondii[J]. Proc Natl Acad Sci U S A, 2019, 116(52):26881-26891. |
[47] | RAMAKRISHNAN C, MAIER S, WALKER R A, et al. An experimental genetically attenuated live vaccine to prevent transmission of Toxoplasma gondii by cats[J]. Sci Rep, 2019, 9(1):1474. |
[48] | MARKUS B M, BOYDSTON E A, LOURIDO S. CRISPR-mediated transcriptional repression in Toxoplasma gondii[J]. mSphere, 2021, 6(5):e0047421. |
[49] | PENG D, KURUP S P, YAO P Y, et al. CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi[J]. mBio, 2015, 6(1):e02097-14. |
[50] | CRUZ A, BEVERLEY S M. Gene replacement in parasitic protozoa[J]. Nature, 1990, 348(6297):171-173. |
[51] | SOLLELIS L, GHORBAL M, MACPHERSON C R, et al. First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites[J]. Cell Microbiol, 2015, 17(10):1405-1412. |
[52] | LI W, ZHANG N, LIANG X Y, et al. Transient transfection of Cryptosporidium parvum using green fluorescent protein (GFP) as a marker[J]. Mol Biochem Parasitol, 2009, 168(2):143-148. |
[53] | VINAYAK S, PAWLOWIC M C, SATERIALE A, et al. Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum[J]. Nature, 2015, 523(7561):477-480. |
[54] | KELLEHER M, TOMLEY F M. Transient expression of β-galactosidase in differentiating sporozoites of Eimeria tenella[J]. Mol Biochem Parasitol, 1998, 97(1-2):21-31. |
[55] | HAO L L, LIU X Y, ZHOU X Y, et al. Transient transfection of Eimeria tenella using yellow or red fluorescent protein as a marker[J]. Mol Biochem Parasitol, 2007, 153(2):213-215. |
[56] | YAN W C, LIU X Y, SHI T Y, et al. Stable transfection of Eimeria tenella:constitutive expression of the YFP-YFP molecule throughout the life cycle[J]. Int J Parasitol, 2009, 39(1):109-117. |
[57] | TANG X M, SUO J X, LIANG L, et al. Genetic modification of the protozoan Eimeria tenella using the CRISPR/Cas9 system[J]. Vet Res, 2020, 51(1):41. |
[58] | SUAREZ C E, MCELWAIN T F. Transient transfection of purified Babesia bovis merozoites[J]. Exp Parasitol, 2008, 118(4):498-504. |
[59] | SUAREZ C E, MCELWAIN T F. Stable expression of a GFP-BSD fusion protein in Babesia bovis merozoites[J]. Int J Parasitol, 2009, 39(3):289-297. |
[60] | HAKIMI H, ISHIZAKI T, KEGAWA Y, et al. Genome editing of Babesia bovis using the CRISPR/Cas9 system[J]. mSphere, 2019, 4(3):e00109-19. |
[61] | HOWE D K, MERCIER C, MESSINA M, et al. Expression of Toxoplasma gondii genes in the closely-related apicomplexan parasite Neospora caninum[J]. Mol Biochem Parasitol, 1997, 86(1):29-36. |
[62] | BECKERS C J M, WAKEFIELD T, JOINER K A. The expression of Toxoplasma proteins in Neospora caninum and the identification of a gene encoding a novel rhoptry protein[J]. Mol Biochem Parasitol, 1997, 89(2):209-223. |
[63] | ARRANZ-SOLÍS D, REGIDOR-CERRILLO J, LOURIDO S, et al. Toxoplasma CRISPR/Cas9 constructs are functional for gene disruption in Neospora caninum[J]. Int J Parasitol, 2018, 48(8):597-600. |
[64] | CHENG P P, ZHANG Z H, YANG F Y, et al. FnCas12a/crRNA-mediated genome editing in Eimeria tenella[J]. Front Genet, 2021, 12:738746. |
[65] | MOHSIN M, LI Y G, ZHANG X, et al. Development of CRISPR-CAS9 based RNA drugs against Eimeria tenella infection[J]. Genomics, 2021, 113(6):4126-4135. |
[66] | LANDER N, LI Z H, NIYOGI S, et al. CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment[J]. mBio, 2015, 6(4):e01012. |
[67] | BENEKE T, MADDEN R, MAKIN L, et al. A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids[J]. R Soc Open Sci, 2017, 4(5):170095. |
[68] | BENEKE T, DEMAY F, HOOKWAY E, et al. Genetic dissection of a Leishmania flagellar proteome demonstrates requirement for directional motility in sand fly infections[J]. PLoS Pathog, 2019, 15(6):e1007828. |
[69] | CHIURILLO M A, LANDER N. The long and winding road of reverse genetics in Trypanosoma cruzi[J]. Microb Cell, 2021, 8(9):203-207. |
[70] | ZHANG W W, LYPACZEWSKI P, MATLASHEWSKI G. Optimized CRISPR-Cas9 genome editing for Leishmania and its use to target a multigene family, induce chromosomal translocation, and study DNA break repair mechanisms[J]. mSphere, 2017, 2(1):e00340-16. |
[71] | SHRIVASTAVA R, TUPPERWAR N, DRORY-RETWITZER M, et al. Deletion of a single LeishIF4E-3 allele by the CRISPR-Cas9 system alters cell morphology and infectivity of Leishmania[J]. mSphere, 2019, 4(5):e00450-19. |
[72] | BAKER N, CATTA-PRETA C M C, NEISH R, et al. Systematic functional analysis of Leishmania protein kinases identifies regulators of differentiation or survival[J]. Nat Commun, 2021, 12(1):1244. |
[73] | PAWLOWIC M C, VINAYAK S, SATERIALE A, et al. Generating and maintaining transgenic Cryptosporidium parvum parasites[J]. Curr Protoc Microbiol, 2017, 46:20B.2.1-20B.2.32. |
[74] | VINAYAK S, JUMANI R S, MILLER P, et al. Bicyclic azetidines kill the diarrheal pathogen Cryptosporidium in mice by inhibiting parasite phenylalanyl-tRNA synthetase[J]. Sci Transl Med, 2020, 12(563):eaba8412. |
[75] | CHOUDHARY H H, NAVA M G, GARTLAN B E, et al. A conditional protein degradation system to study essential gene function in Cryptosporidium parvum[J]. mBio, 2020, 11(4):e01231-20. |
[76] | XU R, FENG Y Y, XIAO L H, et al. Insulinase-like protease 1 contributes to macrogamont formation in Cryptosporidium parvum[J]. mBio, 2021, 12(2):e03405-20. |
[77] | HASAN M M, STEBBINS E E, CHOY R K M, et al. Spontaneous selection of Cryptosporidium drug resistance in a calf model of infection[J]. Antimicrob Agents Chemother, 2021, 65(6):e00023-21. |
[78] | NISHIKAWA Y, SHIMODA N, FEREIG R M, et al. Neospora caninum dense granule protein 7 regulates the pathogenesis of Neosporosis by modulating host immune response[J]. Appl Environ Microbiol, 2018, 84(18):e01350-18. |
[79] | MINEO T W P, CHERN J H, THIND A C, et al. Efficient gene knockout and knockdown systems in Neospora caninum enable rapid discovery and functional assessment of novel proteins[J]. mSphere, 2022, 7(1):e0089621. |
[1] | QIU Meiyu, ZHANG Xuemei, ZHANG Ning, LIU Mingjun. Approach and Application of Prime Editing System [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1345-1355. |
[2] | WANG Jiali, YANG Fan, SHAO Wenhua, HUANG Mengyao, CAO Weijun, PU Xiuying, ZHANG Wei, ZHENG Haixue. Construction of Tollip Knockout Pig Kidney Cell Line [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1810-1818. |
[3] | ZHANG Chenjian, LI Yinxia, DING Qiang, LIU Weijia, WANG Huili, HE Nan, WU Jiashun, CAO Shaoxian. Efficient Preparation of CRISPR/Cas9-mediated Goat SOCS2 Gene Edited Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 129-141. |
[4] | LIN Mengjuan, GAO Shasha, ZHAO Xingchen, ZHONG Yuxin, WU Jun, ZHANG Junren, GUO Dawei. Research Progress on Antiprotozoal Activity of Halofuginone [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 924-933. |
[5] | FEI Xiaoyu, SHI Chaoqun, LIU Xueming, SU Feng, JIANG Yunliang. CRISPR/Cas9 System Mediated Gene Modificated MRC1 in PK15 Cells Reduce PCV2 Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 934-946. |
[6] | CHEN Junzhen, QUAN Ran, FU Qiang, GE Lijuan, YUAN Yuanyuan, ZHANG Chengyuan, LI Jianlin, SHI Huijun. Study on the Effect of Heat Shock Protein HSP90B1 on the Replication of Bovine Viral Diarrhea Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 683-693. |
[7] | ZHANG Shuo, ZHOU Yuxiao, WU Haibo, SUO Lun. Dynamics of Gene Editing Consequence Mediated by Long-term CRISPR/Cas9 System [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4196-4208. |
[8] | ZHAO Weimin, WANG Huili, CAO Shaoxian, GUO Rihong, WANG Zeping, CHEN Zhe, XU Kui, FU Yanfeng, LI Bixia, REN Shouwen, CHENG Jinhua. The Study of Base Editing of Porcine CD163 Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1041-1050. |
[9] | LI Zhaolong, ZHANG Huifang, FENG Zhihua, FANG Zhou. Therapeutic Effect of Recombinant Adeno-Associated Virus Carrying CRISPR/Cas9 on Pseudorabies Virus-infected Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 834-846. |
[10] | LUO Jun, LIU Jinling, ZHENG Luping, LUO Qin, TENG Man. Recent Advances in Engineering Avian Herpesviruses by CRISPR/Cas9-based Gene Editing Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3335-3344. |
[11] | WANG Pei, WANG Meng, LI Tingting, ZHENG Xiaonan, LIANG Qinli, CHEN Xiaoqing. Generation and Basic Functional Characterization of Four Hypothetical Protein Genes Deletion Strains of Toxoplasma gondii [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3598-3608. |
[12] | LI Chen, HE Wenfeng, ZHAO Lina, FAN Qi, YANG Guoqing, LIU Huimin. Effect of Interferon Stimulated Gene 15 Knockout in PK-15 Cell Line on Replication of Pseudorabies Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3621-3630. |
[13] | WANG Shengnan, WANG Dandan, TIAN Wenjie, PU Yabin, PAN Dengke, XING Xiangyang, MA Yuehui, JIANG Lin. Mechanism of ZBED6 Gene on Spleen Development of Bama Xiang Pig [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(9): 2394-2405. |
[14] | WANG Huan, ZOU Huiying, ZHU Huabin, ZHAO Shanjiang. Advances in Evaluation of Livestock Breeding New Materials by Using the CRISPR/Cas9 Gene Editing Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(4): 851-861. |
[15] | JI Lin, YANG Qiuyue, FANG Feimin, DOU Hong, YU Jianfeng, XU Lu, GU Zhiliang. Tissue Expression and Construction of CRISPR/Cas9 Knockout System of Apob in Chicken [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 630-640. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||