Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (8): 2417-2434.doi: 10.11843/j.issn.0366-6964.2022.08.002
• REVIEW • Previous Articles Next Articles
LI Tingting1, LIU Qiuyue2, LI Xiangchen1*, WANG Haitao2*
Received:
2021-12-22
Online:
2022-08-23
Published:
2022-08-23
CLC Number:
LI Tingting, LIU Qiuyue, LI Xiangchen, WANG Haitao. Research Progress and Applications of Genes Associated with Economic Traits in Sheep[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2417-2434.
[1] | ZEDER M A.Domestication and early agriculture in the Mediterranean Basin:origins, diffusion, and impact[J].Proc Natl Acad Sci USA, 2008, 105(33):11597-11604. |
[2] | WANG H H, ZHANG L, CAO J X, et al.Genome-wide specific selection in three domestic sheep breeds[J].PLos One, 2015, 10(6):e0128688. |
[3] | ZHANG X M, LI W R, LIU C X, et al.Alteration of sheep coat color pattern by disruption of ASIP gene via CRISPR Cas9[J].Sci Rep, 2017, 7(1):8149. |
[4] | NIU Y, JIN M, LI Y, et al.Biallelic β-carotene oxygenase 2 knockout results in yellow fat in sheep via CRISPR/Cas9[J].Anim Genet, 2017, 48(2):242-244. |
[5] | CHANG Y Y, SHAO J J, GAO Y, et al.Reporter gene knock-in into Marc-145 cells using CRISPR/Cas9-mediated homologous recombination[J].Biotechnol Lett, 2020, 42(8):1317-1325. |
[6] | MENCHACA A, DOS SANTOS-NETO P C, SOUZA-NEVES M, et al.Otoferlin gene editing in sheep via CRISPR-assisted ssODN-mediated homology directed repair[J].Sci Rep, 2020, 10(1):5995. |
[7] | KOMOR A C, KIM Y B, PACKER M S, et al.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J].Nature, 2016, 533(7603):420-424. |
[8] | GAUDELLI N M, KOMOR A C, REES H A, et al.Publisher correction:programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J].Nature, 2018, 559(7714):E8. |
[9] | ANZALONE A V, RANDOLPH P B, DAVIS J R, et al.Search-and-replace genome editing without double-strand breaks or donor DNA[J].Nature, 2019, 576(7785):149-157. |
[10] | WALDRON D F, THOMAS D L.Increased litter size in Rambouillet sheep:I.Estimation of genetic parameters[J].J Anim Sci, 1992, 70(11):3333-3344. |
[11] | BODIN L, SANCRISTOBAL M, LECERF F, et al.Segregation of a major gene influencing ovulation in progeny of Lacaune meat sheep[J].Genet Sel Evol, 2002, 34(4):447-464. |
[12] | MONTGOMERY G W, LORD E A, PENTY J M, et al.The booroola fecundity (FecB) gene maps to sheep chromosome 6[J].Genomics, 1994, 22(1):148-153. |
[13] | CHEN S, GUO X F, HE X Y, et al.Transcriptome analysis reveals differentially expressed genes and long non-coding RNAs associated with fecundity in sheep hypothalamus with different FecB genotypes[J].Front Cell Dev Biol, 2021, 9:633747. |
[14] | KUMAR S, RAJPUT P K, BAHIRE S V, et al.Differential expression of BMP/SMAD signaling and ovarian-associated genes in the granulosa cells of FecB introgressed GMM sheep[J].Syst Biol Reprod Med, 2020, 66(3):185-201. |
[15] | MOTTERSHEAD D G, SUGIMURA S, AL-MUSAWI S L, et al.Cumulin, an oocyte-secreted heterodimer of the transforming growth factor-β family, is a potent activator of granulosa cells and improves oocyte quality[J].J Biol Chem, 2015, 290(39):24007-24020. |
[16] | CHANTEPIE L, BODIN L, SARRY J, et al.Genome-wide identification of a regulatory mutation in BMP15 controlling prolificacy in sheep[J].Front Genet, 2020, 11:585. |
[17] | BRAVO S, LARAMA G, PAZ E, et al.Polymorphism of the GDF9 gene associated with litter size in Araucana creole sheep[J].Anim Genet, 2016, 47(3):390-391. |
[18] | ZHOU S W, DING Y G, LIU J, et al.Highly efficient generation of sheep with a defined FecBB mutation via adenine base editing[J].Genet Sel Evol, 2020, 52(1):35. |
[19] | ZHOU S W, YU H H, ZHAO X E, et al.Generation of gene-edited sheep with a defined Booroola fecundity gene (FecBB) mutation in bone morphogenetic protein receptor type 1B (BMPR1B) via clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) 9[J].Reprod Fertil Dev, 2018, 30(12):1616-1621. |
[20] | 吴艳芳.MSTN基因敲除和FecB基因突变滩羊扩繁试验[D].杨凌:西北农林科技大学, 2021.WU Y F.Breeding experiment of MSTN gene knockout tan sheep and FecB gene mutation tan sheep[D].Yangling:Northwest A&F University, 2021.(in Chinese) |
[21] | FLOSSMANN G, WURMSER C, PAUSCH H, et al.A nonsense mutation of bone morphogenetic protein-15 (BMP15) causes both infertility and increased litter size in pigs[J].Bmc Genomics, 2021, 22(1):38. |
[22] | ÇELIKELOǦLU K, TEKERLI M, ERDOǦAN M, et al.An investigation of the effects of BMPR1B, BMP15, and GDF9 genes on litter size in Ramlιç and Daǧlιç sheep[J].Arch Anim Breed, 2021, 64(1):223-230. |
[23] | NAJAFABADI H A, KHANSEFID M, MAHMOUD G G, et al.Identification of sequence variation in the oocyte-derived bone morphogenetic protein 15 (BMP15) gene (BMP15) associated with litter size in New Zealand sheep (Ovisaries) breeds[J].Mol Biol Rep, 2021, 48(9):6335-6342. |
[24] | NAJAFABADI H A, KHANSEFID M, MAHMOUD G G, et al.Identification of polymorphisms in the oocyte-derived growth differentiation growth factor 9 (GDF9) gene associated with litter size in New Zealand sheep (Ovisaries) breeds[J].Reprod Domest Anim, 2020, 55(11):1585-1591. |
[25] | WANG F Y, CHU M X, PAN L X, et al.Polymorphism detection of GDF9 gene and its association with litter size in Luzhong mutton sheep (Ovisaries)[J].Animals (Basel), 2021, 11(2):571. |
[26] | WEN Y L, GUO X F, MA L, et al.The expression and mutation of BMPR1B and its association with litter size in small-tail Han sheep (Ovisaries)[J].Arch Anim Breed, 2021, 64(1):211-221. |
[27] | LI H X, XU H W, AKHATAYEVA Z, et al.Novel indel variations of the sheep FecB gene and their effects on litter size[J].Gene, 2021, 767:145176. |
[28] | LI Z F, HE X Y, ZHANG X S, et al.Analysis of expression profiles of circRNA and miRNA in oviduct during the follicular and luteal phases of sheep with two fecundity (FecB gene) genotypes[J].Animals (Basel), 2021, 11(10):2826. |
[29] | JIA J L, JIN J P, CHEN Q, et al.Eukaryotic expression, Co-IP and MS identify BMPR-1B protein-protein interaction network[J].Biol Res, 2020, 53(1):24. |
[30] | GUO X F, WANG X Y, DI R, et al.Metabolic effects of FecB gene on follicular fluid and ovarian vein serum in sheep (Ovis aries)[J].Int J Mol Sci, 2018, 19(2):539. |
[31] | DROUILHET L, TARAGNAT C, FONTAINE J, et al.Endocrine characterization of the reproductive axis in highly prolific Lacaune sheep homozygous for the FecLLmutation[J]. Biol Reprod, 2010, 82(5):815-824. |
[32] | DROUILHET L, MANSANET C, SARRY J, et al.The highly prolific phenotype of lacaune sheep is associated with an ectopic expression of the B4GALNT2 gene within the ovary[J].PLoS Genet, 2013, 9(9):e1003809. |
[33] | GOOTWINE E.Invited review:opportunities for genetic improvement toward higher prolificacy in sheep[J].Small Ruminant Res, 2020, 186:106090. |
[34] | WANG W M, LIU S J, LI F D, et al.Polymorphisms of the ovine BMPR-IB, BMP-15 and FSHR and their associations with litter size in two Chinese indigenous sheep breeds[J].Int J Mol Sci, 2015, 16(5):11385-11397. |
[35] | JUENGEL J L, FRENCH M C, O'CONNELL A R, et al.Mutations in the leptin receptor gene associated with delayed onset of puberty are also associated with decreased ovulation and lambing rates in prolific Davisdale sheep[J].Reprod Fertil Dev, 2016, 28(9):1318-1325. |
[36] | ZHOU M, PAN Z Y, CAO X H, et al.Single nucleotide polymorphisms in the HIRA gene affect litter size in small tail han sheep[J].Animals (Basel), 2018, 8(5):71. |
[37] | MA H Y, FANG C, LIU L L, et al.Identification of novel genes associated with litter size of indigenous sheep population in Xinjiang, China using specific-locus amplified fragment sequencing technology[J].Peer J, 2019, 7:e8079. |
[38] | LI C Y, HE X Y, ZHANG Z J, et al.Pineal gland transcriptomic profiling reveals the differential regulation of lncRNA and mRNA related to prolificacy in STH sheep with two FecB genotypes[J].BMC Genomic Data, 2021, 22(1):9. |
[39] | ZHANG Z B, TANG J S, DI R, et al.Integrated hypothalamic transcriptome profiling reveals the reproductive roles of mRNAs and miRNAs in sheep[J].Front Genet, 2020, 10:1296. |
[40] | XU S S, GAO L, SHEN M, et al.Whole-genome selective scans detect genes associated with important phenotypic traits in sheep (Ovis aries)[J].Front Genet, 2021, 12:738879. |
[41] | CHEN S, TAO L, HE X Y, et al.Single-nucleotide polymorphisms in FLT3, NLRP5, and TGIF1 are associated with litter size in Small-tailed Han sheep[J].Arch Anim Breed, 2021, 64(2):475-486. |
[42] | EBLING F J P.Photoperiodic regulation of puberty in seasonal species[J].Mol Cell Endocrinol, 2010, 324(1-2):95-101. |
[43] | RUBIN C J, ZODY M C, ERIKSSON J, et al.Whole-genome resequencing reveals loci under selection during chicken domestication[J].Nature, 2010, 464(7288):587-591. |
[44] | FARIELLO M I, SERVIN B, TOSSER-KLOPP G, et al.Selection signatures in worldwide sheep populations[J].PLoS One, 2014, 9(8):e103813. |
[45] | DARDENTE H, WYSE C A, BIRNIE M J, et al.A molecular switch for photoperiod responsiveness in mammals[J].Curr Biol, 2010, 20(24):2193-2198. |
[46] | KARLSSON AC, FALLAHSHAHROUDI A, JOHNSEN H, et al.A domestication related mutation in the thyroid stimulating hormone receptor gene (TSHR) modulates photoperiodic response and reproduction in chickens[J].Gen Comp Endocrinol, 2016, 228:69-78. |
[47] | HANON E A, LINCOLN G A, FUSTIN J M, et al.Ancestral TSH mechanism signals summer in a photoperiodic mammal[J].Curr Biol, 2008, 18(15):1147-1152. |
[48] | 窦立静, 赵 赓, 高 磊, 等.TSHR基因T315A位点在不同繁殖特性绵羊群体中的多态性研究[J].家畜生态学报, 2016, 37(4):9-15.DOU L J, ZHAO G, GAO L, et al.Study on distribution of T315A locus of TSHR gene in sheep populations with different reproductive characteristics[J].Acta Ecologae Animalis Domastici, 2016, 37(4):9-15.(in Chinese) |
[49] | 夏 青, 狄 冉, 刘艳琴, 等.绵羊TSHR基因表达及其多态性与季节性发情之间的关系[J].家畜生态学报, 2020, 41(3):15-20.XIA Q, DI R, LIU Y Q, et al.Expression and polymorphism of TSHR gene and its association with seasonal estrus in sheep[J].Acta Ecologae Animalis Domastici, 2020, 41(3):15-20.(in Chinese) |
[50] | 轩俊丽, 马晓萌, 王慧华, 等.绵羊季节性繁殖相关基因TSHR外显子多态性研究[J].畜牧兽医学报, 2016, 47(7):1342-1353.XUAN J L, MA X M, WANG H H, et al.Study on exon polymorphism of seasonal breeding related gene TSHR in sheep[J].Acta Veterinaria et Zootechnica Sinica, 2016, 47(7):1342-1353.(in Chinese) |
[51] | WEAVERD R, LIU C, REPPERTS M.Nature's knockout:the Mel1b receptor is not necessary for reproductive and circadian responses to melatonin in Siberian hamsters[J].Mol Endocrinol, 1996, 10(11):1478-1487. |
[52] | HE X Y, ZHANG Z B, LIU Q Y, et al.Polymorphisms of the melatonin receptor 1A gene that affects the reproductive seasonality and litter size in Small Tail Han sheep[J].Reprod Domest Anim, 2019, 54(10):1400-1410. |
[53] | LURIDIANA S, COSSO G, PULINAS L, et al.New polymorphisms at MTNR1A gene and their association with reproductive resumption in sarda breed sheep[J]. Theriogenology, 2020, 158:438-444. |
[54] | MURA M C, LURIDIANA S, PULINAS L, et al.Reproductive response to male joining with ewes with different allelic variants of the MTNR1A gene[J].Anim Reprod Sci, 2019, 200:67-74. |
[55] | CALVO J H, SERRANO M, MARTINEZ-ROYO A, et al.SNP rs403212791 in exon 2 of the MTNR1A gene is associated with reproductive seasonality in the Rasa aragonesa sheep breed[J].Theriogenology, 2018, 113:63-72. |
[56] | ABECIA J A, MURA M C, CARVAJAL-SERNA M, et al.Polymorphisms of the melatonin receptor 1A (MTNR1A) gene influence the age at first mating in autumn-born ram-lambs and sexual activity of adult rams in spring[J].Theriogenology, 2020, 157:42-47. |
[57] | KABLAR B, ASAKURA A, KRASTEL K, et al.MyoD and Myf-5 define the specification of musculature of distinct embryonic origin[J].Biochem Cell Biol, 1998, 76(6):1079-1091. |
[58] | HASTY P, BRADLEY A, MORRIS J H, et al.Muscle deficiency and neonatal death in mice with a targeted mutation in the myogeningene[J].Nature, 1993, 364(6437):501-506. |
[59] | KOBAYASHI T, KRONENBERG H M.Overview of skeletal development[M]//HILTON M J.Skeletal Development and Repair.New York:Humana, 2021:3-16. |
[60] | KAWAMOTO T, KAWAMOTO K.Preparation of thin frozen sections from nonfixed and undecalcified hard tissues using kawamot's film method (2012)[M]//HILTON M J.Skeletal Development and Repair:Methods and Protocols.Totowa:Humana Press, 2014. |
[61] | LONG F X, CHUNG U I, OHBA S, et al.Ihh signaling is directly required for the osteoblast lineage in the endochondral skeleton[J].Development, 2004, 131(6):1309-1318. |
[62] | HAMMER RE, PURSEL V G, REXROADC E Jr, et al.Production of transgenic rabbits, sheep and pigs by microinjection[J].Nature, 1985, 315(6021):680-683. |
[63] | MURRAYJ D, NANCARROWC D, MARSHALLJ T, et al.Production of transgenic merino sheep by microinjection of ovine metallothionein-ovine growth hormone fusion genes[J]. Reprod Fertil Dev, 1989, 1(2):147-155. |
[64] | ADAMS N R, BRIEGEL J R, WARD K A.The impact of a transgene for ovine growth hormone on the performance of two breeds of sheep[J].J Anim Sci, 2002, 80(9):2325-2333. |
[65] | MCPHERRON AC, GUO T, WANG Q, et al.Soluble activin receptor type IIB treatment does not cause fat loss in mice with diet-induced obesity[J].Diabet Obes Metab, 2012, 14(3):279-282. |
[66] | HAN D S, HUANG H P, WANG T G, et al.Transcription activation of myostatin by trichostatin A in differentiated C2C12myocytes via ASK1-MKK3/4/6-JNK and p38 mitogen-activated protein kinase pathways[J].J Cell Biochem, 2010, 111(3):564-573. |
[67] | LANGLEY B, THOMAS M, BISHOP A, et al.Myostatin inhibits myoblast differentiation by down-regulating MyoD expression[J].J Biol Chem, 2002, 277(51):49831-49840. |
[68] | CHEN M M, ZHAO Y P, ZHAO Y, et al.Regulation of myostatin on the growth and development of skeletal muscle[J].Front Cell Dev Biol, 2021, 9:785712. |
[69] | GROCHOWSKA E, BORYS B, LISIAK D, et al.Genotypic and allelic effects of the myostatin gene (MSTN) on carcass, meat quality, and biometric traits in Colored Polish Merino sheep[J].Meat Sci, 2019, 151:4-17. |
[70] | GROCHOWSKA E, BORYS B, MROCZKOWSKI S.Effects of intronic SNPs in the myostatin gene on growth and carcass traits in colored polish merino sheep[J].Genes (Basel), 2019, 11(1):2. |
[71] | OSMAN N M, SHAFEY H I, ABDELHAFEZ M A, et al.Genetic variations in the Myostatin gene affecting growth traits in sheep[J].Vet World, 2021, 14(2):475-482. |
[72] | KIJAS J W, MCCULLOCH R, EDWARDS J E H, et al.Evidence for multiple alleles effecting muscling and fatness at the OvineGDF8 locus[J].BMC Genet, 2007, 8:80. |
[73] | LI H H, WANG G, HAO Z Q, et al.Generation of biallelic knock-out sheep via gene-editing and somatic cell nuclear transfer[J].Sci Rep, 2016, 6:33675. |
[74] | CRISPO M, MULET A P, TESSON L, et al.Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes[J].PLoS One, 2015, 10(8):e0136690. |
[75] | DOBIE R, MACRAE V E, HUESA C, et al.Direct stimulation of bone mass by increased GH signalling in the osteoblasts of Socs2-/- mice[J].J Endocrinol, 2014, 223(1):93-106. |
[76] | GREENHALGH C J, BERTOLINO P, ASA S L, et al.Growth enhancement in suppressor of cytokine signaling 2 (SOCS-2)-deficient mice is dependent on signal transducer and activator of transcription 5b (STAT5b)[J].Mol Endocrinol, 2002, 16(6):1394-1406. |
[77] | METCALF D, GREENHALGH C J, VINEY E, et al.Gigantism in mice lacking suppressor of cytokine signalling-2[J].Nature, 2000, 405(6790):1069-1073. |
[78] | PASS C, MACRAE V E, HUESA C, et al.SOCS2 is the critical regulator of GH action in murine growth plate chondrogenesis[J].J Bone Miner Res, 2012, 27(5):1055-1066. |
[79] | RUPP R, SENIN P, SARRY J, et al.A point mutation in suppressor of cytokine signaling 2 (Socs2) increases the susceptibility to inflammation of the mammary gland while associated with higher body weight and size and higher milk production in a sheep model[J].PLoS Genet, 2015, 11(12):e1005629. |
[80] | ZHOU S W, CAI B, HE C, et al.Programmable base editing of the sheep genome revealed no genome-wide off-target mutations[J].Front Genet, 2019, 10:215. |
[81] | MA D Y, YU Q Q, HEDRICK V E, et al.Proteomic and metabolomic profiling reveals the involvement of apoptosis in meat quality characteristics of ovine M.longissimus from different callipyge genotypes[J].Meat Sci, 2020, 166:108140. |
[82] | LI C Y, LI M, LI X Y, et al.Whole-genome resequencing reveals loci associated with thoracic vertebrae number in sheep[J].Front Genet, 2019, 10:674. |
[83] | COCKETT N E, SMIT M A, BIDWELL C A, et al.The callipyge mutation and other genes that affect muscle hypertrophy in sheep[J].Genet Sel Evol, 2005, 37(Suppl 1):S65-S81. |
[84] | BAKHTIARIZADEH M R, SALAMI S A.Identification and expression analysis of long noncoding RNAs in fat-tail of sheep breeds[J].G3 (Bethesda), 2019, 9(4):1263-1276. |
[85] | MORADI M H, NEJATI-JAVAREMI A, MORADI-SHAHRBABAK M, et al.Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition[J].BMC Genet, 2012, 13:10. |
[86] | ROSEN E D, MACDOUGALD O A.Adipocyte differentiation from the inside out[J].Nat Rev Mol Cell Biol, 2006, 7(12):885-896. |
[87] | DAVIS G H, MONTGOMERY G W, ALLISON A J, et al.Segregation of a major gene influencing fecundity in progeny of Booroola sheep[J].New Zeal J Agr Res, 1982, 25(4):525-529. |
[88] | BAKHTIARIZADEH M R, SALEHI A, ALAMOUTI A A, et al.Deep transcriptome analysis using RNA-Seq suggests novel insights into molecular aspects of fat-tail metabolism in sheep[J].SciRep, 2019, 9(1):9203. |
[89] | HU G, WANG S Z, WANG Z P, et al.Genetic epistasis analysis of 10 peroxisome proliferator-activated receptorγ-correlated genes in broiler lines divergently selected for abdominal fat content[J].Poult Sci, 2010, 89(11):2341-2350. |
[90] | ZHANG W, XU M S, WANG J J, et al.Comparative transcriptome analysis of key genes and pathways activated in response to fat deposition in two sheep breeds with distinct tail phenotype[J].Front Genet, 2021, 12:639030. |
[91] | WEI C H, WANG H H, LIU G, et al.Genome-wide analysis reveals population structure and selection in Chinese indigenous sheep breeds[J].BMC Genomics, 2015, 16(1):194. |
[92] | MOIOLI B, PILLA F, CIANI E.Signatures of selection identify loci associated with fat tail in sheep[J].J Anim Sci, 2015, 93(10):4660-4669. |
[93] | YUAN Z, LIU E, LIU Z, et al.Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep[J].Anim Genet, 2017, 48(1):55-66. |
[94] | PAN Z Y, LI S D, LIU Q Y, et al.Rapid evolution of a retro-transposable hotspot of ovine genome underlies the alteration of BMP2 expression and development of fat tails[J].BMC Genomics, 2019, 20(1):261. |
[95] | ZHAO F P, DENG T Y, SHI L Y, et al.Genomic scan for selection signature reveals fat deposition in Chinese indigenous sheep with extreme tail types[J].Animals (Basel), 2020, 10(5):773. |
[96] | DONG K Z, YANG M, HAN J G, et al.Genomic analysis of worldwide sheep breeds reveals PDGFD as a major target of fat-tail selection in sheep[J].BMC Genomics, 2020, 21(1):800. |
[97] | LI X, YANG J, SHEN M, et al.Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits[J].Nat Commun, 2020, 11(1):2815. |
[98] | GUIU-JURADO E, UNTHAN M, BÖHLER N, et al.Bone morphogenetic protein 2 (BMP2) may contribute to partition of energy storage into visceral and subcutaneous fat depots[J].Obesity, 2016, 24(10):2092-2100. |
[99] | ZHU C Y, LI N, CHENG H P, et al.Genome wide association study for the identification of genes associated with tail fat deposition in Chinese sheep breeds[J].Biol Open, 2021, 10(5):bio054932. |
[100] | FAN H Y, HOU Y L, SAHANA G, et al.A transcriptomic study of the tail fat deposition in two types of Hulun Buir Sheep according to tail size and sex[J].Animals (Basel), 2019, 9(9):655. |
[101] | ZHU C Y, FAN H Y, YUAN Z H, et al.Genome-wide detection of CNVs in Chinese indigenous sheep with different types of tails using ovine high-density 600K SNP arrays[J].Sci Rep, 2016, 6:27822. |
[102] | LUO R S, ZHANG X R, WANG L K, et al.GLIS1, a potential candidate gene affect fat deposition in sheep tail[J].Mol Biol Rep, 2021, 48(5):4925-4931. |
[103] | LANE J, SHEPHARD R, WEBB-WARE J, et al.Priority list of endemic diseases for the red meat industries[R].Final Report, North Sydney:Meat &Livestock Australia Limited, 2015. |
[104] | TESFAYE T.Prevalence, species composition, and associated risk factors of small ruminant gastrointestinal nematodes in South Omo zone, South-western Ethiopia[J].J Adv Vet Anim Res, 2021, 8(4):597-605. |
[105] | ATLIJA M, ARRANZ J J, MARTINEZ-VALLADARES M, et al.Detection and replication of QTL underlying resistance to gastrointestinal nematodes in adult sheep using the ovine 50K SNP array[J].Genet Sel Evol, 2016, 48:4. |
[106] | AL KALALDEH M, GIBSON J, LEE S H, et al.Detection of genomic regions underlying resistance to gastrointestinal parasites in Australian sheep[J].Genet Sel Evol, 2019, 51(1):37. |
[107] | SAYRE B L, HARRIS G C.Systems genetics approach reveals candidate genes for parasite resistance from quantitative trait loci studies in agricultural species[J].Anim Genet, 2012, 43(2):190-198. |
[108] | BECKER G M, DAVENPORT K M, BURKE J M, et al.Genome-wide association study to identify genetic loci associated with gastrointestinal nematode resistance in Katahdin sheep[J].Anim Genet, 2020, 51(2):330-335. |
[109] | RASCHIA M A, DONZELLI M V, MEDUS P D, et al.Single nucleotide polymorphisms from candidate genes associated with nematode resistance and resilience in Corriedale and Pampinta sheep in Argentina[J].Gene, 2021, 770:145345. |
[110] | LI G D, LV D Y, YAO Y J, et al.Overexpression of ASMT likely enhances the resistance of transgenic sheep to brucellosis by influencing immune-related signaling pathways and gut microbiota[J].FASEB J, 2021, 35(9):e21783. |
[111] | LI X L, WU Q M, ZHANG X X, et al.Whole-genome resequencing to study brucellosis susceptibility in sheep[J].Front Genet, 2021, 12:653927. |
[112] | HARLAND D P, PLOWMAN J E.Development of hair fibres[M]//PLOWMAN J E, HARLAND D P, DEB-CHOUDHURY S.The Hair Fibre:Proteins, Structure and Development. Singapore:Springer, 2018:109-154. |
[113] | MATSUNAGA R, ABE R, ISHII D, et al.Bidirectional binding property of high glycine-tyrosine keratin-associated protein contributes to the mechanical strength and shape of hair[J].J Struct Biol, 2013, 183(3):484-494. |
[114] | HE D Q, CHEN L Y, LUO F, et al.Differentially phosphorylated proteins in the crimped and straight wool of Chinese Tan sheep[J].J Proteomics, 2021, 235:104115. |
[115] | HÉBERT J M, ROSENQUIST T, GÖTZ J, et al.FGF5 as a regulator of the hairgrowth cycle:evidence from targeted and spontaneous mutations[J].Cell, 1994, 78(6):1017-1025. |
[116] | LI W R, LIU C X, ZHANG X M, et al.CRISPR/Cas9-mediated loss of FGF5 function increases wool staple length in sheep[J].FEBS J, 2017, 284(17):2764-2773. |
[117] | ZHANG R, LI Y, JIA K, et al.Crosstalk between androgen and Wnt/β-catenin leads to changes of wool density in FGF5-knockout sheep[J].Cell Death Dis, 2020, 11(5):407. |
[118] | 胡馨予, 姚逸安, 胡情情, 等.羊毛角蛋白基因家族及其启动子调控作用研究进展[J].中国细胞生物学学报, 2021, 43(8):1705-1713.HU X Y, YAO Y A, HU Q Q, et al.Research progress of wool keratin gene family and its promoter regulation role[J].Chinese Journal of Cell Biology, 2021, 43(8):1705-1713.(in Chinese) |
[119] | ULLAH F, JAMAL S M, ZHOU H T, et al.Variation in the KRTAP6-3 gene and its association with wool characteristics in Pakistani sheep breeds and breed-crosses[J].Trop Anim Health Prod, 2020, 52(6):3035-3043. |
[120] | RAMIREZ J M, FOLKOW L P, BLIX A S.Hypoxia tolerance in mammals and birds:from the wilderness to the clinic[J].Annu Rev Physiol, 2007, 69:113-143. |
[121] | BIGHAM A W, LEE F S.Human high-altitude adaptation:forward genetics meets the HIF pathway[J].Genes Dev, 2014, 28(20):2189-2204. |
[122] | LIU X X, ZHANG Y L, LI Y F, et al.EPAS1 gain-of-function mutation contributes to high-altitude adaptation in Tibetan horses[J].Mol Biol Evol, 2019, 36(11):2591-2603. |
[123] | MA Y F, HAN X M, HUANG C P, et al.Population genomics analysis revealed origin and high-altitude adaptation of Tibetan pigs[J].Sci Rep, 2019, 9(1):11463. |
[124] | XU X H, HUANG X W, QUN L, et al.Two functional loci in the promoter of EPAS1 gene involved in high-altitude adaptation of Tibetans[J].Sci Rep, 2014, 4:7465. |
[125] | LORENZO F R, HUFF C, MYLLYMÄKI M, et al.A genetic mechanism for Tibetan high-altitude adaptation[J].Nat Genet, 2014, 46(9):951-956. |
[126] | SONG S, YAO N, YANG M, et al.Exome sequencing reveals genetic differentiation due to high-altitude adaptation in the Tibetan cashmere goat (Caprahircus)[J].BMC Genomics, 2016, 17:122. |
[127] | SASAZAKI S, TOMITA K, NOMURA Y, et al.FGF5 and EPAS1 gene polymorphisms are associated with high-altitude adaptation in Nepalese goat breeds[J].Anim Sci J, 2021, 92(1):e13640. |
[128] | WEI C H, WANG H H, LIU G, et al.Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep[J].Sci Rep, 2016, 6:26770. |
[129] | LIU J B, YUAN C, GUO T T, et al.Genetic signatures of high-altitude adaptation and geographic distribution in Tibetan sheep[J].Sci Rep, 2020, 10(1):18332. |
[130] | GORKHALI N A, DONG K Z, YANG M, et al.Genomic analysis identified a potential novel molecular mechanism for high-altitude adaptation in sheep at the Himalayas[J].Sci Rep, 2016, 6:29963. |
[131] | WU P P, ZHANG B, HAN X Y, et al.HucMSC exosome-delivered 14-3-3ζ alleviates ultraviolet radiation-induced photodamage via SIRT1 pathway modulation[J]. Aging, 2021, 13(8):11542-11563. |
[132] | ZHANG Q, GOU W Y, WANG X T, et al.Genome resequencing identifies unique adaptations of Tibetan chickens to hypoxia and high-Dose ultraviolet radiation in high-altitude environments[J].Genome Biol Evol, 2016, 8(3):765-776. |
[133] | HU X J, YANG J, XIE X L, et al.The genome landscape of Tibetan sheep reveals adaptive introgression from argali and the history of early human settlements on the Qinghai-Tibetan plateau[J].Mol Biol Evol, 2019, 36(2):283-303. |
[134] | MWACHARO J M, KIM E S, ELBELTAGY A R, et al.Genomic footprints of dryland stress adaptation in Egyptian fat-tail sheep and their divergence from East African and Western Asia cohorts[J].Sci Rep, 2017, 7(1):17647. |
[135] | EDEA Z, DADI H, DESSIE T, et al.Genomic signatures of high-altitude adaptation in Ethiopian sheep populations[J].Genes Genom, 2019, 41(8):973-981. |
[136] | NOWACK J, GIROUD S, ARNOLD W, et al.Muscle non-shivering thermogenesis and its role in the evolution of endothermy[J].Front Physiol, 2017, 8:889. |
[137] | GAUDRY M J, JASTROCH M.Comparative functional analyses of UCP1 to unravel evolution, ecophysiology and mechanisms of mammalian thermogenesis[J].Comp Biochem Physiol PartB:Biochem Mol Biol, 2021, 255:110613. |
[138] | SLEE J, STOTT A W.Genetic selection for cold resistance in Scottish Blackface lambs[J].Anim Sci, 1986, 43(3):397-404. |
[139] | WANG Z H, YU X F, CHEN Y.Recruitment of thermogenic fat:trigger of fat burning[J].Front Endocrinol, 2021, 12:696505. |
[140] | POHL E E, RUPPRECHT A, MACHER G, et al.Important trends in UCP3 investigation[J].Front Physiol, 2019, 10:470. |
[141] | CARON A, LABBÉ S M, CARTER S, et al.Loss of UCP2 impairs cold-induced non-shivering thermogenesis by promoting a shift toward glucose utilization in brown adipose tissue[J].Biochimie, 2017, 134:118-126. |
[142] | HENRY B A, ANDREWS Z B, RAO A, et al.Central leptin activates mitochondrial function and increases heat production in skeletal muscle[J].Endocrinology, 2011, 152(7):2609-2618. |
[143] | AHMAD S F, MEHROTRA A, CHARLES S, et al.Analysis of selection signatures reveals important insights into the adaptability of high-altitude Indian sheep breed Changthangi[J]. Gene, 2021, 799:145809. |
[144] | BAUMGARD L H, RHOADS R P Jr.Effects of heat stress on postabsorptive metabolism and energetics[J].Annu Rev Anim Biosci, 2013, 1:311-337. |
[145] | ABDELNOUR S A, EL-HACK M E A, KHAFAGA A F, et al.Stress biomarkers and proteomics alteration to thermal stress in ruminants:a review[J].J Therm Biol, 2019, 79:120-134. |
[146] | QUINN C M, DURAN R M, AUDET G N, et al.Cardiovascular and thermoregulatory biomarkers of heat stroke severity in a conscious rat model[J].J Appl Physiol, 2014, 117(9):971-978. |
[147] | ROMO-BARRON C B, DIAZ D, PORTILLO-LOERA J J, et al.Impact of heat stress on the reproductive performance and physiology of ewes:a systematic review and meta-analyses[J]. Int J Biometeorol, 2019, 63(7):949-962. |
[148] | PIRKKALA L, NYKÄNEN P, SISTONEN L.Roles of the heat shock transcription factors in regulation of the heat shock response and beyond[J].FASEB J, 2001, 15(7):1118-1131. |
[149] | SALCES-ORTIZ J, GONZÁLEZ C, BOLADO-CARRANCIO A, et al.Ovine HSP90AA1 gene promoter:functional study and epigenetic modifications[J].Cell Stress Chaperon, 2015, 20(6):1001-1012. |
[150] | AL-THUWAINI T M, AL-SHUHAIB M B S, HUSSEIN Z M.A novel T177P missense variant in the HSPA8 gene associated with the low tolerance of Awassi sheep to heat stress[J].Trop Anim Health Prod, 2020, 52(5):2405-2416. |
[151] | WANG W M, ZHANG X X, ZHOU X, et al.Deep genome resequencing reveals artificial and natural selection for visual deterioration, plateau adaptability and high prolificacy in Chinese domestic sheep[J].Front Genet, 2019, 10:300. |
[152] | LAMPIS A, CAROTENUTO P, VLACHOGIANNIS G, et al.MIR21 drives resistance to Heat Shock Protein 90 inhibition in cholangiocarcinoma[J]. Gastroenterology, 2018, 154(4):1066-1079.e5. |
[1] | WANG Yaxin, WANG Jing, TIAN Xuekai, YANG Gongshe, YU Taiyong. Application of Multi-omics Technology in the Study of Important Economic Traits of Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1842-1853. |
[2] | NIU Jiajia, XU Dan, LIU Yang, ZHAO Xiaoling. Research Progress on Genetic Regulation Mechanism of Barring Feather Trait in Chicken [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1883-1892. |
[3] | PENG Peiya, CHEN Yuhan, YANG Long, WANG Ming, ZHAO Ruiting, HE Jun, YIN Yulong, LIU Mei. Research Progress of Copy Number Variation in Livestock [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1356-1369. |
[4] | ZHANG Shaohua, WANG Shuai, ZOU Yang, LIU Zhongli, CAI Xuepeng. Advances in Detection Approaches for Ovine Haemonchosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1499-1510. |
[5] | CAO Yuzhu, XING Yuxin, MA Chenglin, GUAN Hongbo, JIA Qihui, KANG Xiangtao, TIAN Yadong, LI Zhuanjian, LIU Xiaojun, LI Hong. Biological Characterization of Chicken FGF6 Gene and Association of Its Polymorphisms with Economic Traits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1536-1550. |
[6] | YANG Yang, YU Qian, LIU Yucheng, YANG Hua, ZHAO Zhuo, WANG Limin, ZHOU Ping, YANG Qingyong, DAI Rong. Identification and Tissue Expression Analysis of the Sheep MYL Gene Family [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1551-1564. |
[7] | CHANG Xindan, HU Fan, WU Zhiwu, YE Bingsen, LIU Tiehai, LIN Jie, HE Zhixiong, TAN Zhiliang. Effect of High Proportion Rumen Bypass Fat Diet on Feeding Behavior of Growing Mutton Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1077-1084. |
[8] | GAO Hui, FANG Min, JIANG Lingling, MA Yaoyu, LIU Qiang, ZHANG Gang, NIU Xiaoxia, WANG Pu, LI Yong, ZHANG Sinong. Meta-analysis of Bluetongue Virus Prevalence in Sheep Flocks in China from 2012—2022 [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 706-717. |
[9] | WANG Haibo, ZHAN Jinshun, GU Zhiyong, CHEN Xinfeng, PAN Yue, JIA Haobin, ZHONG Xiaojun, LI Kairong, ZHAO Shengguo, HUO Junhong. Comparative Study on Meat Quality Characteristics of Three-Way Hybrid Sheep Charolais×Duper×Hu and Charolais×Australian White×Hu and Hu Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 110-119. |
[10] | DUAN Xiangru, KANG Jia, YANG Ruochen, SHAN Xinyu, LI Taichun, ZHAO Wen, ZHANG Yingjie, LIU Yueqin. Effect of L-cysteine on Proliferation, Apoptosis and the Secretion of Steroid Hormone in Ovine Ovarian Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 179-191. |
[11] | ZHANG Hanyue, ZHAO Dan, LIANG Yu, ZHAO Bishi, FAN Mengdan, QIAO Liying, LIU Jianhua, YANG Kaijie, PAN Yangyang, LIU Wenzhong. miR-150 Regulates Ovine Preadipocyte Differentiation by Targeting AOC3 [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3262-3274. |
[12] | LIU Linli, PENG Xuelan, LI Bo, CHENG Lefan, CIREN Lamu, ZHANG Enping. Effect of Overexpression of UCP3 Gene on the Differentiation of Sahu Sheep Preadipocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3275-3285. |
[13] | HE Mingyang, MA Yujing, WANG Yong, YANG Ruochen, LIU Yueqin, ZHANG Yingjie, DUAN Chunhui. Effects of Melatonin on Proliferation, Apoptosis of Ovarian Granulosa Cells, and Its Secretion of Steroid Hormones of Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3313-3324. |
[14] | SONG Meijun, HAO Kexing, HAI Siyu, CHEN Yan, WANG Jing, HU Guangdong. Effects of SRIF-14 on Proliferation and Apoptosis of Endometrial Epithelial Cells in Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3325-3334. |
[15] | LI Yuexin, LIU Aiju, MA Xiaofei, ZHENG Zhong, HU Boxin, ZHI Yunxia, TIAN Shujun. Effect of TGFβR1 on the Function of Sheep Granulosa Cells Mediated by TGF-β/Smad Signaling Pathway [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3335-3347. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||