[1] |
SULIMAN G M, AL-OWAIMER A N, EL-WAZIRY A M, et al.A Comparative study of sheep breeds:fattening performance, carcass characteristics, meat chemical composition and quality attributes[J].Front Vet Sci, 2021, 8:647192.
|
[2] |
ZHANG X Y, LIU C Y, KONG Y Y, et al.Effects of intramuscular fat on meat quality and its regulation mechanism in Tan sheep[J].Front Nutr, 2022, 9:908355.
|
[3] |
SCHUMACHER M, DELCURTO-WYFFELS H, THOMSON J, et al.Fat deposition and fat effects on meat quality-a review[J]. Animals (Basel), 2022, 12(12):1550.
|
[4] |
WANG J H, ZHANG X X, WANG X J, et al.Polymorphism and expression of the HMGA1 gene and association with tail fat deposition in Hu sheep[J/OL].Animal Biotechnology, 2021, doi:10.1080/10495398.2021.1998093.
|
[5] |
张 越, 曹贵方.绵羊尾脂沉积的研究进展[J].当代畜禽养殖业, 2022(4):16-18.ZHANG Y, CAO G F.Research progress of tail fat deposition in sheep[J].Modern Animal Husbandry, 2022(4):16-18.(in Chinese)
|
[6] |
於建国.新疆地方品种绵羊尾脂利用现状与展望[J].中国畜禽种业, 2021, 17(10):117-118.YU J G.Current situation and prospect of utilization of tail fat of local breed sheep in Xinjiang[J].The Chinese Livestock and Poultry Breeding, 2021, 17(10):117-118.(in Chinese)
|
[7] |
YOU L H, WANG Y, GAO Y, et al.The role of microRNA-23b-5p in regulating brown adipogenesis and thermogenic program[J]. Endocr Connect, 2020, 9(5):457-470.
|
[8] |
SARJEANT K, STEPHENS J M.Adipogenesis[J].Cold Spring Harb Perspect Biol, 2012, 4(9):a008417.
|
[9] |
LU T X, ROTHENBERG M E.MicroRNA[J].J Allergy Clin Immunol, 2018, 141(4):1202-1207.
|
[10] |
TREIBER T, TREIBER N, MEISTER G.Regulation of microRNA biogenesis and its crosstalk with other cellular pathways[J]. Nat Rev Mol Cell Biol, 2019, 20(1):5-20.
|
[11] |
LIZ J, ESTELLER M.lncRNAs and microRNAs with a role in cancer development[J].Biochim Biophys Acta, 2016, 1859(1):169-176.
|
[12] |
MENS M M J, GHANBARI M.Cell cycle regulation of stem cells by MicroRNAs[J].Stem Cell Rev Rep, 2018, 14(3):309-322.
|
[13] |
KINSER H E, PINCUS Z.MicroRNAs as modulators of longevity and the aging process[J].Hum Genet, 2020, 139(3):291-308.
|
[14] |
YING W, TSENG A, CHANG R C A, et al.miR-150 regulates obesity-associated insulin resistance by controlling B cell functions[J].Sci Rep, 2016, 6:20176.
|
[15] |
DESGAGNÉ V, GUÉRIN R, GUAY S P, et al.Changes in high-density lipoprotein-carried miRNA contribution to the plasmatic pool after consumption of dietary trans fat in healthy men[J].Epigenomics, 2017, 9(5):669-688.
|
[16] |
DESJARLAIS M, DUSSAULT S, DHAHRI W, et al.MicroRNA-150 modulates ischemia-induced neovascularization in atherosclerotic conditions[J].Arterioscler Thromb Vasc Biol, 2017, 37(5):900-908.
|
[17] |
CHEN X Y, RAZA S H A, MA X H, et al.Bovine pre-adipocyte adipogenesis is regulated by bta-miR-150 through mTOR signaling[J].Front Genet, 2021, 12:636550.
|
[18] |
MATZ A J, QU L L, KARLINSEY K, et al.MicroRNA-regulated B cells in obesity[J].Immunometabolism (Cobham), 2022, 4(3):e00005.
|
[19] |
ANDRÉS N, LIZCANO J M, RODRÍGUEZ M J, et al.Tissue activity and cellular localization of human semicarbazide-sensitive amine oxidase[J].J Histochem Cytochem, 2001, 49(2):209-217.
|
[20] |
SHEN S H, WERTZ D L, KLINMAN J P.Implication for functions of the ectopic adipocyte copper amine oxidase (AOC3) from purified enzyme and cell-based kinetic studies[J].PLoS One, 2012, 7(1):e29270.
|
[21] |
BOUR S, CASPAR-BAUGUIL S, IFFIÚ-SOLTÉSZ Z, et al.Semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 deficiency reduces leukocyte infiltration into adipose tissue and favors fat deposition[J].Am J Pathol, 2009, 174(3):1075-1083.
|
[22] |
张 恬, 张龙超, 王立刚, 等.猪脂肪沉积候选基因AOC3、PPARG1及SOD3 DNA甲基化差异研究[J].中国畜牧兽医, 2016, 43(11):2820-2825.ZHANG T, ZHANG L C, WANG L G, et al.Study on methylation difference of fat deposition candidate genes AOC3, PPARG1 and SOD3 in pig[J].China Animal Husbandry & Veterinary Medicine, 2016, 43(11):2820-2825.(in Chinese)
|
[23] |
史明月, 张雪莲, 杨晓奋, 等.NR1H3基因调控猪前体脂肪细胞分化的研究[J].畜牧兽医学报, 2022, 53(7):2094-2103.SHI M Y, ZHANG X L, YANG X F, et al.Study on NR1H3 gene regulating differentiation of porcine preadipocyte[J].Acta Veterinaria et Zootechnica Sinica, 2022, 53(7):2094-2103.(in Chinese)
|
[24] |
MADHUMITA M, PAUL S.A review on methods for predicting miRNA-mRNA regulatory modules[J].J Integr Bioinform, 2022, 19(3):20200048.
|
[25] |
CHAVA S, REYNOLDS C P, PATHANIA A S, et al.miR-15a-5p, miR-15b-5p, and miR-16-5p inhibit tumor progression by directly targeting MYCN in neuroblastoma[J].Mol Oncol, 2020, 14(1):180-196.
|
[26] |
LONG J M, MALONEY B, ROGERS J T, et al.Novel upregulation of amyloid-β precursor protein (APP) by microRNA-346 via targeting of APP mRNA 5'-untranslated region:implications in Alzheimer's disease[J].Mol Psychiatry, 2019, 24(3):345-363.
|
[27] |
ZHANG J T, ZHOU W L, LIU Y Y, et al.Oncogenic role of microRNA-532-5p in human colorectal cancer via targeting of the 5'UTR of RUNX3[J].Oncol Lett, 2018, 15(5):7215-7220.
|
[28] |
NIU Y, JIN Y, DENG S C, et al.MiRNA-646-mediated reciprocal repression between HIF-1α and MIIP contributes to tumorigenesis of pancreatic cancer[J].Oncogene, 2018, 37(13):1743-1758.
|
[29] |
TIAN W H, HAO X, NIE R X, et al.Integrative analysis of miRNA and mRNA profiles reveals that gga-miR-106-5p inhibits adipogenesis by targeting the KLF15 gene in chickens[J].J Anim Sci Biotechnol, 2022, 13(1):81.
|
[30] |
WANG Z, ZHAO Q S, LI X Q, et al.MYOD1 inhibits avian adipocyte differentiation via miRNA-206/KLF4 axis[J].J Anim Sci Biotechnol, 2021, 12(1):55.
|
[31] |
WEN F Y, AN C Q, WU X T, et al.MiR-34a regulates mitochondrial content and fat ectopic deposition induced by resistin through the AMPK/PPARα pathway in HepG2 cells[J].Int J Biochem Cell Biol, 2018, 94:133-145.
|
[32] |
ZHANG P W, LI X R, ZHANG S H, et al.miR-370-3p regulates adipogenesis through targeting Mknk[J].Molecules, 2021, 26(22):6926.
|
[33] |
LIU X F, HE Y, FENG Z L, et al.miR-345-5p regulates adipogenesis via targeting VEGF-B[J].Aging (Albany NY), 2020, 12(17):17114-17121.
|
[34] |
KARKENI E, BONNET L, MARCOTORCHINO J, et al.Vitamin D limits inflammation-linked microRNA expression in adipocytes in vitro and in vivo:a new mechanism for the regulation of inflammation by vitamin D[J].Epigenetics, 2018, 13(2):156-162.
|
[35] |
YAO Y F, WANG H, XI X Q, et al.miR-150 and SRPK1 regulate AKT3 expression to participate in LPS-induced inflammatory response[J].Innate Immun, 2021, 27(4):343-350.
|
[36] |
LI J, ZHANG S H.microRNA-150 inhibits the formation of macrophage foam cells through targeting adiponectin receptor 2[J].Biochem Biophys Res Commun, 2016, 476(4):218-224.
|
[37] |
刘 莉, 彭金富, 郭成贤, 等.miR-150对药物代谢酶CYP3A4的调控作用[J].中国临床药理学与治疗学, 2018, 23(7):749-754.LIU L, PENG J F, GUO C X, et al.Regulative effects of miR-150 on CYP3A4[J].Chinese Journal of Clinical Pharmacology and Therapeutics, 2018, 23(7):749-754.(in Chinese)
|
[38] |
FERREIRA M V, CABRAL E T, COROADINHA A S.Progress and perspectives in the development of lentiviral vector producer cells[J].Biotechnol J, 2021, 16(1):2000017.
|
[39] |
SCHWEIZER M, MERTEN O W.Large-scale production means for the manufacturing of lentiviral vectors[J].Curr Gene Ther, 2010, 10(6):474-486.
|
[40] |
IFFIÚ-SOLTÉSZ Z, WANECQ E, PRÉVOT D, et al.Histamine oxidation in mouse adipose tissue is controlled by the AOC3 gene-encoded amine oxidase[J].Inflamm Res, 2010, 59(S2):227-229.
|
[41] |
AGHA G, HOUSEMAN E A, KELSEY K T, et al.Adiposity is associated with DNA methylation profile in adipose tissue[J].Int J Epidemiol, 2015, 44(4):1277-1287.
|