Acta Veterinaria et Zootechnica Sinica ›› 2021, Vol. 52 ›› Issue (1): 9-18.doi: 10.11843/j.issn.0366-6964.2021.002
• REVIEW • Previous Articles Next Articles
LI Yangguang1,2,3, WU Ying1,2,3, WANG Mingshu1,2,3, CHENG Anchun1,2,3*
Received:
2020-06-18
Online:
2021-01-23
Published:
2021-01-19
CLC Number:
LI Yangguang, WU Ying, WANG Mingshu, CHENG Anchun. Research Progress of Herpes Virus ICP22 Protein[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(1): 9-18.
[1] | OWEN D J, CRUMP C M, GRAHAM S C. Tegument assembly and secondary envelopment of alphaherpesviruses[J]. Viruses, 2015, 7(9):5084-5114. |
[2] | LEFKOWITZ E J, DEMPSEY D M, HENDRICK-SON R C, et al. Virus taxonomy:the database of the International Committee on Taxonomy of Viruses (ICTV)[J]. Nucleic Acids Res, 2018, 46(D1):D708-D717. |
[3] | MATUNDAN H H, JAGGI U, WANG S H, et al. Loss of ICP22 in HSV-1 elicits immune infiltration and maintains stromal keratitis despite reduced primary and latent virus infectivity[J]. Invest Ophthalmol Vis Sci, 2019, 60(10):3398-3406. |
[4] | DEPLEDGE D P, OUWENDIJK W J D, SADAOKA T, et al. A spliced latency-associated VZV transcript maps antisense to the viral transactivator gene 61[J]. Nat Commun, 2018, 9(1):1167. |
[5] | HART J, MACHUGH N D, SHELDRAKE T, et al. Identification of immediate early gene products of bovine herpes virus 1(BHV-1) as dominant antigens recognized by CD8 T cells in immune cattle[J]. J Gen Virol, 2017, 98(7):1843-1854. |
[6] | BOUMART I, FIGUEROA T, DAMBRINE G, et al. GaHV-2 ICP22 protein is expressed from a bicistronic transcript regulated by three GaHV-2 microRNAs[J]. J Gen Virol, 2018, 99(9):1286-1300. |
[7] | CYMERYS J, SŁOŃSKA A, BRZEZICKA J, et al. Replication kinetics of neuropathogenic and non-neuropathogenic equine herpesvirus type 1(EHV-1) strains in primary murine neurons and ED cell line[J]. Pol J Vet Sci, 2016, 19(4):777-784. |
[8] | CAI M S, JIANG S, ZENG Z C, et al. Probing the nuclear import signal and nuclear transport molecular determinants of PRV ICP22[J]. Cell Biosci, 2016, 6:3. |
[9] | GUO Y F, CHENG A C, WANG M S, et al. Purification of anatid herpesvirus 1 particles by tangential-flow ultrafiltration and sucrose gradient ultracentrifugation[J]. J Virol Methods, 2009, 161(1):1-6. |
[10] | JIA R Y, CHENG A C, WANG M S, et al. Development and evaluation of an antigen-capture ELISA for detection of the UL24 antigen of the duck enteritis virus, based on a polyclonal antibody against the UL24 expression protein[J]. J Virol Methods, 2009, 161(1):38-43. |
[11] | ZHAO L C, CHENG A C, WANG M S, et al. Characterization of codon usage bias in the dUTPase gene of duck enteritis virus[J]. Prog Natl Sci, 2008, 18(9):1069-1076. |
[12] | CHANG H, CHENG A C, WANG M S, et al. Complete nucleotide sequence of the duck plague virus gE gene[J]. Arch Virol, 2009, 154(1):163-165. |
[13] | 马云潮, 程安春, 汪铭书, 等. 重组鸭肠炎病毒载体疫苗研究进展[J]. 畜牧兽医学报, 2017, 48(11):2015-2022.MA Y C, CHENG A C, WANG M S, et al. Progress of recombinant duck enteritis virus-vectored vaccines[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(11):2015-2022. (in Chinese) |
[14] | DEMBOWSKI J A, DREMEL S E, DELUCA N A. Replication-Coupled recruitment of viral and cellular factors to herpes simplex virus type 1 replication forks for the maintenance and expression of viral genomes[J]. PLoS Pathog, 2017, 13(1):e1006166. |
[15] | WIDENER R W, WHITLEY R J. Herpes simplex virus[J]. Handb Clin Neurol, 2014, 123:251-263. |
[16] | GINN S L, ALEXANDER I E, EDELSTEIN M L, et al. Gene therapy clinical trials worldwide to 2012-an update[J]. J Gene Med, 2013, 15(2):65-77. |
[17] | RICE S A, DAVIDO D J. HSV-1 ICP22:hijacking host nuclear functions to enhance viral infection[J]. Future Microbiol, 2013, 8(3):311-321. |
[18] | MAJIMA R, SHINDOH K, YAMAGUCHI T, et al. Characterization of a thienylcarboxamide derivative that inhibits the transactivation functions of cytomegalovirus IE2 and varicella zoster virus IE62[J]. Antiviral Res, 2017, 140:142-150. |
[19] | ZERBONI L, SEN N, OLIVER S L, et al. Molecular mechanisms of varicella zoster virus pathogenesis[J]. Nat Rev Microbiol, 2014, 12(3):197-210. |
[20] | LI M L, ZHAO Z Y, CHEN J H, et al. Characterization of synonymous codon usage bias in the pseudorabies virus US1 gene[J]. Virol Sin, 2012, 27(5):303-315. |
[21] | ROBINSON K E, MEERS J, GRAVEL J L, et al. The essential and non-essential genes of bovine herpesvirus 1[J]. J Gen Virol, 2008, 89(11):2851-2863. |
[22] | AHN B, ZHANG Y F, OSTERRIEDER N, et al. Properties of an equine herpesvirus 1 mutant devoid of the internal inverted repeat sequence of the genomic short region[J]. Virology, 2011, 410(2):327-335. |
[23] | WU Y, CHENG A C, WANG M S, et al. Complete genomic sequence of Chinese virulent duck enteritis virus[J]. J Virol, 2012, 86(10):5965. |
[24] | LI Y G, WU Y, WANG M S, et al. Duplicate US1 genes of duck enteritis virus encode a non-essential immediate early protein localized to the nucleus[J]. Front Cell Infect Microbiol, 2020, 9:463. |
[25] | WU Y, CHENG A C, WANG M S, et al. Comparative genomic analysis of duck enteritis virus strains[J]. J Virol, 2012, 86(24):13841-13842. |
[26] | LIN F S, DING Q, GUO H, et al. The herpes simplex virus type 1 infected cell protein 22[J]. Virol Sin, 2010, 25(1):1-7. |
[27] | OSTLER J B, HARRISON K S, SCHROEDER K, et al. The glucocorticoid receptor (GR) stimulates herpes simplex virus 1 productive infection, in part because the infected cell protein 0(ICP0) promoter is cooperatively transactivated by the GR and Krüppel-like transcription factor 15[J]. J Virol, 2019, 93(6):e02063-18. |
[28] | MARUZURU Y, FUJII H, OYAMA M, et al. Roles of p53 in herpes simplex virus 1 replication[J]. J Virol, 2013, 87(16):9323-9332. |
[29] | AMBAGALA A P N, COHEN J I. Varicella-zoster virus IE63, a major viral latency protein, is required to inhibit the alpha interferon-induced antiviral response[J]. J Virol, 2007, 81(15):7844-7851. |
[30] | AMBAGALA A P, BOSMA T, ALI M A, et al. Varicella-zoster virus immediate-early 63 protein interacts with human antisilencing function 1 protein and alters its ability to bind histones h3. 1 and h3. 3[J]. J Virol, 2009, 83(1):200-209. |
[31] | MUELLER N H, WALTERS M S, MARCUS R A, et al. Identification of phosphorylated residues on varicella-zoster virus immediate-early protein ORF63[J]. J Gen Virol, 2010, 91(Pt 5):1133-1137. |
[32] | STELZ G, RVCKER E, ROSORIUS O, et al. Identification of two nuclear import signals in the α-Gene product ICP22 of herpes simplex virus 1[J]. Virology, 2002, 295(2):360-370. |
[33] | BASTIAN T W, RICE S A. Identification of sequences in herpes simplex virus type 1 ICP22 that influence RNA polymerase II modification and viral late gene expression[J]. J Virol, 2009, 83(1):128-139. |
[34] | LEISENFELDER S A, KINCHINGTON P R, MOFFAT J F. Cyclin-dependent kinase 1/Cyclin B1 phosphorylates varicella-zoster virus IE62 and is incorporated into virions[J]. J Virol, 2008, 82(24):12116-12125. |
[35] | REESE T A. Coinfections:another variable in the herpesvirus latency-reactivation dynamic[J]. J Virol, 2016, 90(12):5534-5537. |
[36] | DEPLEDGE D P, SADAOKA T, OUWENDIJK W J D. Molecular aspects of varicella-zoster virus latency[J]. Viruses, 2018, 10(7):349. |
[37] | BAIRD N L, ZHU S Y, PEARCE C M, et al. Current in vitro models to study varicella zoster virus latency and reactivation[J]. Viruses, 2019, 11(2):103. |
[38] | YAO Y X, VASOYA D, KGOSANA L, et al. Activation of gga-miR-155 by reticuloendotheliosis virus T strain and its contribution to transformation[J]. J Gen Virol, 2017, 98(4):810-820. |
[39] | SHERIDAN R M, FONG N, D'ALESSANDRO A, et al. Widespread backtracking by RNA pol II is a major effector of gene activation, 5' pause release, termination, and transcription elongation rate[J]. Mol Cell, 2019, 73(1):107-118. |
[40] | LEI G, WU W J, LIU L D, et al. Herpes simplex virus 1 ICP22 inhibits the transcription of viral gene promoters by binding to and blocking the recruitment of P-TEFb[J]. PLoS One, 2012, 7(9):e45749. |
[41] | OU M, SANDRI-GOLDIN R M. Inhibition of cdk9 during herpes simplex virus 1 infection impedes viral transcription[J]. PLoS One, 2013, 8(10):e79007. |
[42] | ZABOROWSKA J, BAUMLI S, LAITEM C, et al. Herpes simplex virus 1(HSV-1) ICP22 protein directly interacts with cyclin-dependent kinase (CDK)9 to inhibit RNA polymerase II transcription elongation[J]. PLoS One, 2014, 9(9):e107654. |
[43] | FOX H L, DEMBOWSKI J A, DELUCA N A. A herpesviral immediate early protein promotes transcription elongation of viral transcripts[J]. mBio, 2017, 8(3):e00745-17. |
[44] | RICE S A, LONG M C, LAM V, et al. Herpes simplex virus immediate-early protein ICP22 is required for viral modification of host RNA polymerase II and establishment of the normal viral transcription program[J]. J Virol, 1995, 69(9):5550-5559. |
[45] | VAN OPDENBOSCH N, VAN DEN BROEKE C, DE REGGE N, et al. The IE180 protein of pseudorabies virus suppresses phosphorylation of translation initiation factor eIF2α[J]. J Virol, 2012, 86(13):7235-7240. |
[46] | ZERBONI L, SOBEL R A, RAMACHANDRAN V, et al. Expression of varicella-zoster virus immediate-early regulatory protein IE63 in neurons of latently infected human sensory ganglia[J]. J Virol, 2010, 84(7):3421-3430. |
[47] | STOEGER T, ADLER H. "Novel" triggers of herpesvirus reactivation and their potential health relevance[J]. Front Microbiol, 2019, 9:3207. |
[48] | CHARVAT R A, BREITENBACH J E, AHN B, et al. The UL4 protein of equine herpesvirus 1 is not essential for replication or pathogenesis and inhibits gene expression controlled by viral and heterologous promoters[J]. Virology, 2011, 412(2):366-377. |
[49] | 高俊. 马疱疹病毒1型潜伏相关转录体的转录调控机制研究[D]. 呼和浩特:内蒙古农业大学, 2016.GAO J. Transcriptional regulation mechanism research of equine herpesvirus 1 latency associated transcripts[D]. Hohhot:Inner Mongolia Agricultural University, 2016. (in Chinese) |
[50] | ZHANG Y F, CHARVAT R A, KIM S K, et al. The EHV-1 UL4 protein that tempers viral gene expression interacts with cellular transcription factors[J]. Virology, 2014, 449:25-34. |
[51] | DERBIGNY W A, KIM S S, JANG H K, et al. EHV-1 EICP22 protein sequences that mediates its physical interaction with the immediate-early protoin are not sufficient to enhance the trans-activation activity of the IE protein[J].Virus Res, 2002, 84(1-2):1-15. |
[52] | YOU Y, CHENG A C, WANG M S, et al. The suppression of apoptosis by α-herpesvirus[J]. Cell Death Dis, 2017, 8(4):e2749. |
[53] | JING Y C, WU Y, SUN K F, et al. Role of duck plague virus glycoprotein C in viral adsorption:absence of specific interactions with cell surface heparan sulfate[J]. J Integr Agric, 2017, 16(5):1145-1152. |
[54] | ZHANG D X, LAI M Y, CHENG A C, et al. Molecular characterization of the duck enteritis virus US10 protein[J]. Virol J, 2017, 14(1):183. |
[55] | YOU Y, LIU T, WANG M S, et al. Author correction:duck plague virus glycoprotein J is functional but slightly impaired in viral replication and cell-to-cell spread[J]. Sci Rep, 2018, 8(1):6488. |
[56] | FUNK C, OTT M, RASCHBICHLER V, et al. The herpes simplex virus protein pUL31 escorts nucleocapsids to sites of nuclear egress, a process coordinated by its N-terminal domain[J]. PLoS Pathog, 2015, 11(6):e1004957. |
[57] | ARII J, TAKESHIMA K, MARUZURU Y, et al. Roles of the interhexamer contact site for hexagonal lattice formation of the herpes simplex virus 1 nuclear egress complex in viral primary envelopment and replication[J]. J Virol, 2019, 93(14):e00498-19. |
[58] | MARUZURU Y, SHINDO K, LIU Z M, et al. Role of herpes simplex virus 1 immediate early protein ICP22 in viral nuclear egress[J]. J Virol, 2014, 88(13):7445-7454. |
[59] | ZHAO C K, HE T Q, XU Y, et al. Molecular characterization and antiapoptotic function analysis of the duck plague virus Us5 gene[J]. Sci Rep, 2019, 9(1):4851. |
[60] | LAI Y L, ZENG N, WANG M S, et al. The VP3 protein of duck hepatitis A virus mediates host cell adsorption and apoptosis[J]. Sci Rep, 2019, 9(1):16783. |
[61] | SUN D, WEN X J, WANG M S, et al. Apoptosis and autophagy in picornavirus infection[J]. Front Microbiol, 2019, 10:2032. |
[62] | JORGENSEN I, RAYAMAJHI M, MIAO E A. Programmed cell death as a defence against infection[J]. Nat Rev Immunol, 2017, 17(3):151-164. |
[63] | YU X L, HE S D. The interplay between human herpes simplex virus infection and the apoptosis and necroptosis cell death pathways[J]. Virol J, 2016, 13(1):77. |
[64] | 游韶平, 刘岩, 樊建勇, 等. 单纯疱疹病毒Ⅱ型感染细胞蛋白22在Vero细胞中的表达特性及其对细胞凋亡的影响[J]. 实用医学杂志, 2014, 30(3):364-366.YOU S P, LIU Y, FAN J Y, et al. Expression characteristics of herpes simplex virus type II infected cell protein 22 in Vero cells and its effect on cell apoptosis[J]. The Journal of practical medicine, 2014, 30(3):364-366. (in Chinese) |
[65] | WU J X, LIU H H, HUANG H, et al. p53-dependent pathway and the opening of mPTP mediate the apoptosis of co-cultured sertoli-germ cells induced by microcystin-LR[J]. Environ Toxicol, 2019, 34(10):1074-1084. |
[66] | JAMES S F, MAHALINGAM R, GILDEN D. Does apoptosis play a role in varicella zoster virus latency and reactivation?[J]. Viruses, 2012, 4(9):1509-1514. |
[67] | COLLIER A E, WEK R C, SPANDAU D F. Translational repression protects human keratinocytes from UVB-induced apoptosis through a discordant eIF2 kinase stress response[J]. J Invest Dermatol, 2015, 135(10):2502-2511. |
[68] | DENTON D, XU T Q, KUMAR S. Autophagy as a pro-death pathway[J]. Immunol Cell Biol, 2015, 93(1):35-42. |
[69] | WU X L, JIA R Y, WANG M S, et al. Downregulation of microRNA-30a-5p contributes to the replication of duck enteritis virus by regulating beclin-1-mediated autophagy[J]. Virol J, 2019, 16(1):144. |
[70] | WANG S H, XU X L, HU Y L, et al. Sotetsuflavone induces autophagy in non-small cell lung cancer through blocking PI3K/Akt/mTOR signaling pathway in vivo and in vitro[J]. Front Pharmacol, 2019, 10:1460. |
[71] | CHEN H B, DUO Y H, HU B, et al. PICT-1 triggers a pro-death autophagy through inhibiting rRNA transcription and AKT/mTOR/p70S6K signaling pathway[J]. Oncotarget, 2016, 7(48):78747-78763. |
[72] | SALAS-CÁRDENAS S P, OLAYA-GALÁN N N, FERNÁNDEZ K, et al. Decreased rotavirus infection of MA104 cells via probiotic extract binding to Hsc70 and ß3 integrin receptors[J]. Univ Sci, 2018, 23(2):219-239. |
[73] | MOSTAFA H H, DAVIDO D J. Herpes simplex virus 1 ICP22 but not US1. 5 is required for efficient acute replication in mice and VICE domain formation[J]. J Virol, 2013, 87(24):13510-13519. |
[74] | ADLAKHA M, LIVINGSTON C M, BEZSONOVA I, et al. The Herpes simplex virus 1 immediate early protein ICP22 is a functional mimic of a cellular J protein[J]. J Virol, 2020, 94(4):e01564-19. |
[1] | DONG Shucan, MAO Shuaixiang, WU Cuiying, LI Yaokun, SUN Baoli, GUO Yongqing, DENG Ming, LIU Dewu, LIU Guangbin. The Effect of the Androgen Receptor Inhibitor Enzalutamide on Proliferation and Apoptosis of Goat Ovarian Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2022-2031. |
[2] | WANG Jiying, YIN Ruiru, XIE Xing, WANG Haiyan, LIU Hudong, HU Hui, XIONG Qiyan, FENG Zhixin, SHAO Guoqing, YU Yanfei. Effects of LDH in Mesomycoplasma (Mycoplasma) hyopneumoniae on Apoptosis of Porcine Bronchial Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2195-2205. |
[3] | LI Qiuyun, TIAN Xinyuan, LIAO Wensheng, ZHANG Huanrong, REN Yupeng, YANG Falong, ZHU Jiangjiang, XIANG Hua. Effects of SOCS2 on Proliferation, Cycle and Apoptosis of Turbinate Bone Cells in Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2226-2240. |
[4] | LI Feifei, ZHANG Chenmiao, TONG Jinjin, JIANG Linshu. Research Progress on the Mechanism of Mitochondrial Autophagy Regulating the Activity of NLRP3 Inflammatory Corpuscles to Improve Animal Health [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1446-1455. |
[5] | LAN Xinrui, ZHAO Baobao, ZHANG Bihan, LIN Xiaoyu, MA Huiming, WANG Yongsheng. Effects of β-sitosterol on Porcine Oocyte Maturation and Embryonic Development in Vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1629-1637. |
[6] | HU Qiaoyan, ZHAI Xiangqin, LI Yidan, HAN Jiale, LEI Chuzhao, DANG Ruihua. Effects of bta-miR-101 on Proliferation, Apoptosis and Secretion of Bovine Testicular Sertoli Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1040-1051. |
[7] | HUO Yuannan, QIU Meijia, ZHANG Jiaojiao, YANG Weirong, WANG Xianzhong. Arginine and Its Metabolites Attenuate Heat Stress-induced Apoptosis of Immature Boar Sertoli Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 587-597. |
[8] | QIU Wenyue, SU Yiman, YE Jiali, ZHANG Xinting, PANG Xiaoyue, WANG Rongmei, XIE Zimao, ZHANG Hui, TANG Zhaoxin, SU Rongsheng. Study on Asiatic Acid Alleviates LPS-induced Acute Kidney Injury by Regulating Apoptosis and Autophagy of Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 809-821. |
[9] | CHEN Songbiao, LIU Feifei, SHANG Ke, YU Zuhua, HE Lei, WEI Ying, CHEN Jian, ZHANG Chunjie, CHENG Xiangchao, DING Ke. Molecular Mechanism of the “Battle” between Virus Infection and Host Antiviral Immunity-Apoptosis, Necroptosis and Pyroptosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 59-70. |
[10] | DUAN Xiangru, KANG Jia, YANG Ruochen, SHAN Xinyu, LI Taichun, ZHAO Wen, ZHANG Yingjie, LIU Yueqin. Effect of L-cysteine on Proliferation, Apoptosis and the Secretion of Steroid Hormone in Ovine Ovarian Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 179-191. |
[11] | LIU Yueyang, LI Mengyuan, NIE Xueyi, MA Yabo, HOU Yuxin, MA Boli, YANG Yi, XU Jinrui. The Regulation of Calcium-binding Protein S100A4 on Autophagy in THP-1 Cells Infected with Bacillus Calmette-Guérin [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 311-322. |
[12] | WANG Dongliang, REN Jing, HAO Qinqin, LI Pengfei. Identification and Transcriptional Regulation Analysis of Core Promoter of Bovine CART Gene [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3689-3699. |
[13] | SONG Meijun, HAO Kexing, HAI Siyu, CHEN Yan, WANG Jing, HU Guangdong. Effects of SRIF-14 on Proliferation and Apoptosis of Endometrial Epithelial Cells in Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3325-3334. |
[14] | XU Xi, YANG Baigao, ZHANG Hang, FENG Xiaoyi, HAO Haisheng, DU Weihua, ZHU Huabin, ZHANG Peipei, ZHAO Xueming. Effects of NMN on Lipid Droplet Content and Cryopreservation Effect of Bovine Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3348-3357. |
[15] | WANG Wanjie, CHEN Nanzhu, ZOU Huiying, ZHOU Xinyi, HAO Haisheng, PANG Yunwei, ZHU Huabin, ZHAO Xueming, YU Dawei, DU Weihua. Effects of Histone Methyltransferase ASH1L Overexpression on Proliferation and Apoptosis of Bovine Cumulus Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3358-3368. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||