Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (1): 59-70.doi: 10.11843/j.issn.0366-6964.2024.01.007
• REVIEW • Previous Articles Next Articles
CHEN Songbiao1,2,3, LIU Feifei1,2, SHANG Ke1,2, YU Zuhua1,2, HE Lei1,2, WEI Ying1,2, CHEN Jian1,2, ZHANG Chunjie1,2, CHENG Xiangchao1,2*, DING Ke1,2,3*
Received:
2023-01-04
Online:
2024-01-23
Published:
2024-01-24
CLC Number:
CHEN Songbiao, LIU Feifei, SHANG Ke, YU Zuhua, HE Lei, WEI Ying, CHEN Jian, ZHANG Chunjie, CHENG Xiangchao, DING Ke. Molecular Mechanism of the “Battle” between Virus Infection and Host Antiviral Immunity-Apoptosis, Necroptosis and Pyroptosis[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 59-70.
[1] | 王 冰, 吴红霞, 仇华吉, 等. 病毒工厂:病毒复制的关键场所[J]. 微生物学报, 2021, 61(7):1873-1881.WANG B, WU H X, QIU H J, et al. Viral factory:a critical site for virus replication[J]. Acta Microbiologica Sinica, 2021, 61(7):1873-1881. (in Chinese) |
[2] | GALLUZZI L, BUQUÉ A, KEPP O, et al. Immunogenic cell death in cancer and infectious disease[J]. Nat Rev Immunol, 2017, 17(2):97-111. |
[3] | YATIM N, CULLEN S, ALBERT M L. Dying cells actively regulate adaptive immune responses[J]. Nat Rev Immunol, 2017, 17(4):262-275. |
[4] | HUO J Y, XIE W J, FAN X Y, et al. Pyroptosis, apoptosis, and necroptosis molecular subtype derived prognostic signature universal applicable for gastric cancer-a large sample and multicenter retrospective analysis[J]. Comput Biol Med, 2022, 149:106037. |
[5] | NAILWAL H, CHAN F K M. Necroptosis in anti-viral inflammation[J]. Cell Death Differ, 2019, 26(1):4-13. |
[6] | WHYTE P, BUCHKOVICH K J, HOROWITZ J M, et al. Association between an oncogene and an anti-oncogene:the adenovirus E1A proteins bind to the retinoblastoma gene product[J]. Nature, 1988, 334(6178):124-129. |
[7] | DEBBAS M, WHITE E. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B[J]. Genes Dev, 1993, 7(4):546-554. |
[8] | STEAIN M, BAKER M O D G, PHAM C L L, et al. Varicella zoster virus encodes a viral decoy RHIM to inhibit cell death[J]. PLoS Pathog, 2020, 16(7):e1008473. |
[9] | VERBURG S G, LELIEVRE R M, WESTERVELD M J, et al. Viral-mediated activation and inhibition of programmed cell death[J]. PLoS Pathog, 2022, 18(8):e1010718. |
[10] | NGUYEN L N, KANNEGANTI T D. PANoptosis in viral infection:the missing puzzle piece in the cell death field[J]. J Mol Biol, 2022, 434(4):167249. |
[11] | 张 博, 邓 静, 万 全, 等. 细胞焦亡与自噬、凋亡、坏死的新认知[J]. 中国兽医学报, 2021, 41(12):2511-2520.ZHANG B, DENG J, WAN Q, et al. New cognition of pyrosis, autophagy, apoptosis and necrosis[J]. Chinese Journal of Veterinary Science, 2021, 41(12):2511-2520. (in Chinese) |
[12] | TAIT S W G, GREEN D R. Mitochondria and cell death:outer membrane permeabilization and beyond[J]. Nat Rev Mol Cell Biol, 2010, 11(9):621-632. |
[13] | WILSON N S, DIXIT V, ASHKENAZI A. Death receptor signal transducers:nodes of coordination in immune signaling networks[J]. Nat Immunol, 2009, 10(4):348-355. |
[14] | 付礼胜, 侯 宁, 王晓燕, 等. SPF雏鸡感染REV后中枢免疫器官细胞凋亡及相关因子的变化[J]. 畜牧兽医学报, 2017, 48(10):1983-1989.FU L S, HOU N, WANG X Y, et al. Changes of cell apoptosis and relevant factor in central immune organs of SPF chicks infected with reticuloendotheliosis virus[J]. Acta Veterinaria et Zootechnica Sinica, 2017, 48(10):1983-1989. (in Chinese) |
[15] | ZHOU X C, JIANG W B, LIU Z S, et al. Virus infection and death receptor-mediated apoptosis[J]. Viruses, 2017, 9(11):316. |
[16] | RESTIVO I, ATTANZIO A, GIARDINA I C, et al. Cigarette smoke extract induces p38 MAPK-initiated, Fas-mediated eryptosis[J]. Int J Mol Sci, 2022, 23(23):14730. |
[17] | 葛桂阳, 栾美慧, 宫庆龙, 等. 水貂阿留申病毒诱导CrFK细胞凋亡信号通路的研究[J]. 中国预防兽医学报, 2021, 43(10):1089-1095.GE G Y, LUAN M H, GONG Q L, et al. Study on apoptosis signal pathway of CrFK cells apoptosis induced by Aleutian mink disease virus[J]. Chinese Journal of Preventive Veterinary Medicine, 2021, 43(10):1089-1095. (in Chinese) |
[18] | CASTEDO M, FERRI K F, BLANCO J, et al. Human immunodeficiency virus 1 envelope glycoprotein complex-induced apoptosis involves mammalian target of rapamycin/Fkbp12-rapamycin-associated protein-mediated P53 phosphorylation[J]. J Exp Med, 2001, 194(8):1097-1110. |
[19] | PERFETTINI J L, ROUMIER T, CASTEDO M, et al. NF-κB and p53 are the dominant apoptosis-inducing transcription factors elicited by the HIV-1 envelope[J]. J Exp Med, 2004, 199(5):629-640. |
[20] | LI S F, LI H, ZHANG Y L, et al. SFTSV infection induces BAK/BAX-dependent mitochondrial DNA release to trigger NLRP3 inflammasome activation[J]. Cell Rep, 2020, 30(13):4370-4385. e7. |
[21] | KNOWLTON J J, DERMODY T S, HOLM G H. Apoptosis induced by mammalian reovirus is beta interferon (IFN) independent and enhanced by IFN regulatory factor 3-and NF-κB-dependent expression of noxa[J]. J Virol, 2012, 86(3):1650-1660. |
[22] | HOLZERLAND J, FÉNÉANT L, BANADYGA L, et al. BH3-only sensors bad, noxa and puma are key regulators of tacaribe virus-induced apoptosis[J]. PLoS Pathog, 2020, 16(10):e1008948. |
[23] | AWEYA J J, SZE C W, BAYEGA A, et al. NS5B induces up-regulation of the BH3-only protein, BIK, essential for the hepatitis C virus RNA replication and viral release[J]. Virology, 2015, 474:41-51. |
[24] | JIN H L, XIAO C, ZHAO G, et al. Induction of immature dendritic cell apoptosis by foot and mouth disease virus is an integrin receptor mediated event before viral infection[J]. J Cell Biochem, 2007, 102(4):980-991. |
[25] | PEARCE A F, LYLES D S. Vesicular stomatitis virus induces apoptosis primarily through Bak rather than Bax by inactivating Mcl-1 and Bcl-XL[J]. J Virol, 2009, 83(18):9102-9112. |
[26] | NAGATA S. Apoptosis and clearance of apoptotic cells[J]. Annu Rev Immunol, 2018, 36:489-517. |
[27] | ZHOU Q, SNIPAS S, ORTH K, et al. Target protease specificity of the viral serpin CrmA. analysis of five caspases[J]. J Biol Chem, 1997, 272(12):7797-7800. |
[28] | SURAWEERA C D, HINDS M G, KVANSAKUL M. Poxviral strategies to overcome host cell apoptosis[J]. Pathogens, 2020, 10(1):6. |
[29] | ZHOU Q, KREBS J F, SNIPAS S J, et al. Interaction of the baculovirus anti-apoptotic protein p35 with caspases. Specificity, kinetics, and characterization of the caspase/p35 complex[J]. Biochemistry, 1998, 37(30):10757-10765. |
[30] | XU G Z, CIRILLI M, HUANG Y H, et al. Covalent inhibition revealed by the crystal structure of the caspase-8/p35 complex[J]. Nature, 2001, 410(6827):494-497. |
[31] | FLETCHER-ETHERINGTON A, NOBRE L, NIGHTINGALE K, et al. Human cytomegalovirus protein pUL36:a dual cell death pathway inhibitor[J]. Proc Natl Acad Sci U S A, 2020, 117(31):18771-18779. |
[32] | DALEY-BAUER L P, ROBACK L, CROSBY L N, et al. Mouse cytomegalovirus M36 and M45 death suppressors cooperate to prevent inflammation resulting from antiviral programmed cell death pathways[J]. Proc Natl Acad Sci U S A, 2017, 114(13):E2786-E2795. |
[33] | MOSTAFA H H, THOMPSON T W, KONEN A J, et al. Herpes simplex virus 1 mutant with point mutations in UL39 is impaired for acute viral replication in mice, establishment of latency, and explant-induced reactivation[J]. J Virol, 2018, 92(7):e01654-17. |
[34] | GUO H Y, OMOTO S, HARRIS P A, et al. Herpes simplex virus suppresses necroptosis in human cells[J]. Cell Host Microbe, 2015, 17(2):243-251. |
[35] | BITTEL M, KREMER A E, STVRZL M, et al. Modulation of the extrinsic cell death signaling pathway by viral flip induces acute-death mediated liver failure[J]. Cell Death Dis, 2019, 10(12):878. |
[36] | THOME M, SCHNEIDER P, HOFMANN K, et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors[J]. Nature, 1997, 386(6624):517-521. |
[37] | 刘军亭, 王 涛, 陈妍卉, 等. VDAC蛋白在病毒诱导的细胞凋亡中作用的研究进展[J]. 中国预防兽医学报, 2022, 44(7):792-797.LIU J T, WANG T, CHEN Y H, et al. Research progress on the role of VDAC protein in virus-induced apoptosis[J]. Chinese Journal of Preventive Veterinary Medicine, 2022, 44(7):792-797. (in Chinese) |
[38] | FANG Y J, PENG K. Regulation of innate immune responses by cell death-associated caspases during virus infection[J]. FEBS J, 2022, 289(14):4098-4111. |
[39] | ZHANG Y Q, XU M Q, ZHANG X Y, et al. MAPK/c-jun signaling pathway contributes to the upregulation of the anti-apoptotic proteins Bcl-2 and Bcl-xL induced by Epstein-Barr virus-encoded BARF1 in gastric carcinoma cells[J]. Oncol Lett, 2018, 15(5):7537-7544. |
[40] | ANDERTON E, YEE J, SMITH P, et al. Two Epstein-barr virus (EBV) oncoproteins cooperate to repress expression of the proapoptotic tumour-suppressor Bim:clues to the pathogenesis of Burkitt's lymphoma[J]. Oncogene, 2008, 27(4):421-433. |
[41] | 陈永臣, 温金燕, 祁丹丹, 等. 乙型肝炎病毒上调的lnc-HUR1抑制肝癌细胞凋亡[J]. 生物工程学报, 2022, 38(9):3501-3514.CHEN Y C, WEN J Y, QI D D, et al. HBV-upregulated Lnc-HUR1 inhibits the apoptosis of liver cancer cells[J]. Chinese Journal of Biotechnology, 2022, 38(9):3501-3514. (in Chinese) |
[42] | TAN Y X, TAN T H P, LEE M J R, et al. Induction of apoptosis by the severe acute respiratory syndrome coronavirus 7a protein is dependent on its interaction with the Bcl-XL protein[J]. J Virol, 2007, 81(12):6346-6355. |
[43] | YU E, ZHAI D Y, JIN C F, et al. Structural determinants of caspase-9 inhibition by the vaccinia virus protein, F1L[J]. J Biol Chem, 2011, 286(35):30748-30758. |
[44] | ZHAI D Y, YU E, JIN C F, et al. Vaccinia virus protein F1L is a caspase-9 inhibitor[J]. J Biol Chem, 2010, 285(8):5569-5580. |
[45] | ILKOW C S, GOPING I S, HOBMAN T C. The rubella virus capsid is an anti-apoptotic protein that attenuates the pore-forming ability of Bax[J]. PLoS Pathog, 2011, 7(2):e1001291. |
[46] | HE J, MI S, QIN X W, et al. Tiger frog virus ORF104R interacts with cellular VDAC2 to inhibit cell apoptosis[J]. Fish Shellfish Immunol, 2019, 92:889-896. |
[47] | CHU Z L, WANG C Y, TANG Q X, et al. Newcastle disease virus V protein inhibits cell apoptosis and promotes viral replication by targeting CacyBP/SIP[J]. Front Cell Infect Microbiol, 2018, 8:304. |
[48] | SOLÀ-RIERA C, GUPTA S, LJUNGGREN H G, et al. Orthohantaviruses belonging to three phylogroups all inhibit apoptosis in infected target cells[J]. Sci Rep, 2019, 9(1):834. |
[49] | SAMSON A L, GARNISH S E, HILDEBRAND J M, et al. Location, location, location:a compartmentalized view of TNF-induced necroptotic signaling[J]. Sci Signal, 2021, 14(668):eabc6178. |
[50] | NEWTON K, WICKLIFFE K E, DUGGER D L, et al. Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis[J]. Nature, 2019, 574(7778):428-431. |
[51] | OBERST A, DILLON C P, WEINLICH R, et al. Catalytic activity of the caspase-8-FLIPL complex inhibits RIPK3-dependent necrosis[J]. Nature, 2011, 471(7338):363-367. |
[52] | ZHANG T, YIN C R, BOYD D F, et al. Influenza virus Z-RNAs induce ZBP1-mediated necroptosis[J]. Cell, 2020, 180(6):1115-1129. e13. |
[53] | VERDONCK S, NEMEGEERJ, VANDENABEELE P, et al. Viral manipulation of host cell necroptosis and pyroptosis [J]. Trend in Microbiol, 2022, 30(6):593-605. |
[54] | PHAM C L, SHANMUGAM N, STRANGE M, et al. Viral M45 and necroptosis-associated proteins form heteromeric amyloid assemblies[J]. EMBO Rep, 2019, 20(2):e46518. |
[55] | HUANG Z, WU S Q, LIANG Y J, et al. RIP1/RIP3 binding to HSV-1 ICP6 initiates necroptosis to restrict virus propagation in mice[J]. Cell Host Microbe, 2015, 17(2):229-242. |
[56] | LIU Z J, NAILWAL H, RECTOR J, et al. A class of viral inducer of degradation of the necroptosis adaptor RIPK3 regulates virus-induced inflammation[J]. Immunity, 2021, 54(2):247-258. e7. |
[57] | LIU X L, LI Y S, PENG S L, et al. Epstein-Barr virus encoded latent membrane protein 1 suppresses necroptosis through targeting RIPK1/3 ubiquitination[J]. Cell Death Dis, 2018, 9(2):53. |
[58] | PETRIE E J, SANDOW J J, LEHMANN W I L, et al. Viral MLKL homologs subvert necroptotic cell death by sequestering cellular RIPK3[J]. Cell Rep, 2019, 28(13):3309-3319. e5. |
[59] | KOEHLER H, COTSMIRE S, LANGLAND J, et al. Inhibition of DAI-dependent necroptosis by the Z-DNA binding domain of the vaccinia virus innate immune evasion protein, E3[J]. Proc Natl Acad Sci U S A, 2017, 114(43):11506-11511. |
[60] | UPTON J W, KAISER W J, MOCARSKI E S. Virus inhibition of RIP3-dependent necrosis[J]. Cell Host Microbe, 2010, 7(4):302-313. |
[61] | 高泽乾, 朱学亮, 张志东, 等. 病毒感染激活炎症小体的分子机制[J]. 畜牧兽医学报, 2016, 47(11):2167-2174.GAO Z Q, ZHU X L, ZHANG Z D, et al. The mechanisms of inflammasomes activation by viral components[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(11):2167-2174. (in Chinese) |
[62] | 张 琛, 宋正然, 王培刚. 细胞焦亡在黄病毒致病机制中的作用[J]. 微生物学报, 2022, 62(2):476-488.ZHANG C, SONG Z R, WANG P G. Research progress on the role of pyroptosis in flavivirus infection[J]. Acta Microbiologica Sinica, 2022, 62(2):476-488. (in Chinese) |
[63] | TSU B V, BEIERSCHMITT C, RYAN A P, et al. Diverse viral proteases activate the NLRP1 inflammasome[J]. eLife, 2021, 10:e60609. |
[64] | BAUERNFRIED S, SCHERR M J, PICHLMAIR A, et al. Human NLRP1 is a sensor for double-stranded RNA[J]. Science, 2021, 371(6528):eabd0811. |
[65] | WU M F, CHEN S T, YANG A H, et al. CLEC5A is critical for dengue virus-induced inflammasome activation in human macrophages[J]. Blood, 2013, 121(1):95-106. |
[66] | HE Z J, AN S, CHEN J H, et al. Neural progenitor cell pyroptosis contributes to Zika virus-induced brain atrophy and represents a therapeutic target[J]. Proc Natl Acad Sci U S A, 2020, 117(38):23869-23878. |
[67] | WANG H B, LEI X B, XIAO X, et al. Reciprocal regulation between enterovirus 71 and the NLRP3 inflammasome[J]. Cell Rep, 2015, 12(1):42-48. |
[68] | SHI C S, NABAR N R, HUANG N N, et alr. SARS-coronavirus open reading frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes[J]. Cell Death Discov, 2019, 5:101. |
[69] | DOITSH G, GALLOWAY N L K, GENG X, et al. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection[J]. Nature, 2014, 505(7484):509-514. |
[70] | LU Y Y, LIU X L, HUANG Y, et al. Short-lived AIM2 inflammasome activation relates to chronic MCMV infection in BALB/c mice[J]. Curr Med Sci, 2019, 39(6):899-905. |
[71] | MAN S M, KARKI R, KANNEGANTI T D. AIM2 inflammasome in infection, cancer, and autoimmunity:role in DNA sensing, inflammation, and innate immunity[J]. Eur J Immunol, 2016, 46(2):269-280. |
[72] | ATABAKI R, KHALEGHZADEH-AHANGAR H, ESMAEILI N, et al. Role of pyroptosis, a pro-inflammatory programmed cell death, in epilepsy[J]. Cell Mol Neurobiol, 2023, 43(3):1049-1059. |
[73] | COOKSON B T, BRENNAN M A. Pro-inflammatory programmed cell death[J]. Trends Microbiol, 2001, 9(3):113-114. |
[74] | GREGORY S M, DAVIS B K, WEST J A, et al. Discovery of a viral NLR homolog that inhibits the inflammasome[J]. Science, 2011, 331(6015):330-334. |
[75] | GERLIC M, FAUSTIN B, POSTIGO A, et al. Vaccinia virus F1L protein promotes virulence by inhibiting inflammasome activation[J]. Proc Natl Acad Sci U S A, 2013, 110(19):7808-7813. |
[76] | MARUZURU Y, ICHINOHE T, SATO R, et al. Herpes simplex virus 1 VP22 inhibits AIM2-dependent inflammasome activation to enable efficient viral replication[J]. Cell Host Microbe, 2018, 23(2):254-265. e7. |
[77] | ORZALLI M H, BROEKEMA N M, KNIPE D M. Relative contributions of herpes simplex virus 1 ICP0 and vhs to loss of cellular IFI16 vary in different human cell types[J]. J Virol, 2016, 90(18):8351-8359. |
[78] | SONG Y J, WU X, XU Y H, et al. HPV E7 inhibits cell pyroptosis by promoting TRIM21-mediated degradation and ubiquitination of the IFI16 inflammasome[J]. Int J Biol Sci, 2020, 16(15):2924-2937. |
[79] | DORFLEUTNER A, TALBOTT S J, BRYAN N B, et al. A shope fibroma virus PYRIN-only protein modulates the host immune response[J]. Virus Genes, 2007, 35(3):685-694. |
[80] | JOHNSTON J B, BARRETT J W, NAZARIAN S H, et al. A poxvirus-encoded pyrin domain protein interacts with ASC-1 to inhibit host inflammatory and apoptotic responses to infection[J]. Immunity, 2005, 23(6):587-598. |
[81] | ROBINSON K S, TEO D E T, TAN K S, et al. Enteroviral 3C protease activates the human NLRP1 inflammasome in airway epithelia[J]. Science, 2020, 370(6521):eaay2002. |
[82] | KOMATSU T, TANAKA Y, KITAGAWA Y, et al. Sendai virus V protein inhibits the secretion of interleukin-1β by preventing NLRP3 inflammasome assembly[J]. J Virol, 2018, 92(19):e00842-18. |
[83] | KOMUNE N, ICHINOHE T, ITO M, et al. Measles virus V protein inhibits NLRP3 inflammasome-mediated interleukin-1β secretion[J]. J Virol, 2011, 85(24):13019-13026. |
[84] | SHIL N K, POKHAREL S M, BANERJEE A K, et al. Inflammasome antagonism by human parainfluenza virus type 3 C protein[J]. J Virol, 2018, 92(4):e01776-17. |
[85] | MA J, ZHU F R, ZHAO M, et al. SARS-CoV-2 nucleocapsid suppresses host pyroptosis by blocking Gasdermin D cleavage[J]. EMBO J, 2021, 40(18):e108249. |
[86] | WANG W B, CHEN J Z, YU X Q, et al. Signaling mechanisms of SARS-CoV-2 nucleocapsid protein in viral infection, cell death and inflammation[J]. Int J Biol Sci, 2022, 18(12):4704-4713. |
[87] | ZHANG L, WANG Z Y, ZHANG J, et al. Porcine parvovirus infection impairs progesterone production in luteal cells through mitogen-activated protein kinases, p53, and mitochondria-mediated apoptosis[J]. Biol Reprod, 2018, 98(4):558-569. |
[88] | ZHANG X J, MA P P, SHAO T, et al. Porcine parvovirus triggers autophagy through the AMPK/Raptor/mTOR pathway to promote viral replication in porcine placental trophoblasts[J]. Vet Res, 2022, 53(1):33. |
[89] | ZHANG X J, XIONG Y L, ZHANG J, et al. Autophagy promotes porcine parvovirus replication and induces non-apoptotic cell death in porcine placental trophoblasts[J]. Viruses, 2019, 12(1):15. |
[90] | 张秀娟. 猪细小病毒及其非结构蛋白NS1和NS2诱导猪胎盘滋养层细胞自噬作用与机制研究[D]. 杨凌:西北农林科技大学, 2020.ZHANG X J. The effects and mechanism of porcine placental trophoblast cell autophagy induced by porcine parvovirus and its non-structural proteins NS1 and NS2[D]. Yangling:Northwest A&F University, 2020. (in Chinese) |
[91] | YANG B, XUE Q H, GUO J N, et al. Autophagy induction by the pathogen receptor NECTIN4 and sustained autophagy contribute to peste des petits ruminants virus infectivity[J]. Autophagy, 2020, 16(5):842-861. |
[92] | FERREIRA A C, SOARES V C, DE AZEVEDO-QUINTANILHA I G, et al. SARS-CoV-2 engages inflammasome and pyroptosis in human primary monocytes[J]. Cell Death Discov, 2021, 7(1):43. |
[93] | ZHOU Z W, HE H B, WANG K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells[J]. Science, 2020, 368(6494):eaaz7548. |
[1] | DONG Shucan, MAO Shuaixiang, WU Cuiying, LI Yaokun, SUN Baoli, GUO Yongqing, DENG Ming, LIU Dewu, LIU Guangbin. The Effect of the Androgen Receptor Inhibitor Enzalutamide on Proliferation and Apoptosis of Goat Ovarian Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2022-2031. |
[2] | WANG Jiying, YIN Ruiru, XIE Xing, WANG Haiyan, LIU Hudong, HU Hui, XIONG Qiyan, FENG Zhixin, SHAO Guoqing, YU Yanfei. Effects of LDH in Mesomycoplasma (Mycoplasma) hyopneumoniae on Apoptosis of Porcine Bronchial Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2195-2205. |
[3] | LI Qiuyun, TIAN Xinyuan, LIAO Wensheng, ZHANG Huanrong, REN Yupeng, YANG Falong, ZHU Jiangjiang, XIANG Hua. Effects of SOCS2 on Proliferation, Cycle and Apoptosis of Turbinate Bone Cells in Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2226-2240. |
[4] | LI Pengfei, GAO Guiqin, ZHOU Guangqing, WU Jinyan, YAN Xinmin, CAO Xiaoan, HE Jijun, YUAN Ligang, SHANG Youjun. Establishment and Application of TaqMan Fluorescence Quantitative RT-PCR Detection Method for Enzootic Nasal Tumor Virus of Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2259-2266. |
[5] | LAN Xinrui, ZHAO Baobao, ZHANG Bihan, LIN Xiaoyu, MA Huiming, WANG Yongsheng. Effects of β-sitosterol on Porcine Oocyte Maturation and Embryonic Development in Vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1629-1637. |
[6] | SU Yiman, YE Jiali, QIU Wenyue, ZHANG Xinting, PANG Xiaoyue, WANG Rongmei, TANG Zhaoxin, SU Rongsheng. Asiatic Acid Alleviates LPS-induced Pyroptosis in Renal Cell by Inhibiting HMGB1/TLR4/NF-κB Pathway in Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1777-1786. |
[7] | HU Qiaoyan, ZHAI Xiangqin, LI Yidan, HAN Jiale, LEI Chuzhao, DANG Ruihua. Effects of bta-miR-101 on Proliferation, Apoptosis and Secretion of Bovine Testicular Sertoli Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1040-1051. |
[8] | WANG Kang, LIU Geyan, WANG Yu, YANG Zhen, TANG Xinwei, CAO Sanjie, HUANG Xiaobo, YAN Qigui, WU Rui, ZHAO Qin, DU Senyan, WEN Xintian, WEN Yiping. Preparation of Glaesserella parasuis Ghosts Vaccine Delivering Porcine Circovirus Type 2 DNA Vaccine and Evaluation of Its Immunoprotective Effect in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1179-1191. |
[9] | HUO Yuannan, QIU Meijia, ZHANG Jiaojiao, YANG Weirong, WANG Xianzhong. Arginine and Its Metabolites Attenuate Heat Stress-induced Apoptosis of Immature Boar Sertoli Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 587-597. |
[10] | QIU Wenyue, SU Yiman, YE Jiali, ZHANG Xinting, PANG Xiaoyue, WANG Rongmei, XIE Zimao, ZHANG Hui, TANG Zhaoxin, SU Rongsheng. Study on Asiatic Acid Alleviates LPS-induced Acute Kidney Injury by Regulating Apoptosis and Autophagy of Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 809-821. |
[11] | DUAN Xiangru, KANG Jia, YANG Ruochen, SHAN Xinyu, LI Taichun, ZHAO Wen, ZHANG Yingjie, LIU Yueqin. Effect of L-cysteine on Proliferation, Apoptosis and the Secretion of Steroid Hormone in Ovine Ovarian Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 179-191. |
[12] | MA Yajun, JIAO Zhihui, LIU Xiaoning, LU Xiangyu, LIU Tao, WANG Yue, PIAO Chenxi, WANG Hongbin. Effects of Adipose-derived Mesenchymal Stem Cells on Pyroptosis of Miniature Pigs with Hepatic Ischemia-Reperfusion Combined with Hepatectomy [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 355-364. |
[13] | JIANG Lingling, NIU Xiaoxia, LIU Qiang, ZHANG Gang, WANG Pu, LI Yong. Analysis of Infection Status of Beef Cattle Diarrhea-related Virus in Ningxia [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3863-3871. |
[14] | SONG Meijun, HAO Kexing, HAI Siyu, CHEN Yan, WANG Jing, HU Guangdong. Effects of SRIF-14 on Proliferation and Apoptosis of Endometrial Epithelial Cells in Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3325-3334. |
[15] | XU Xi, YANG Baigao, ZHANG Hang, FENG Xiaoyi, HAO Haisheng, DU Weihua, ZHU Huabin, ZHANG Peipei, ZHAO Xueming. Effects of NMN on Lipid Droplet Content and Cryopreservation Effect of Bovine Oocytes [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3348-3357. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||