

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (12): 6116-6129.doi: 10.11843/j.issn.0366-6964.2025.12.016
• ANIMAL GENETICS AND BREEDING • Previous Articles Next Articles
KONG Lingfeng1,2, ZHU Lijun1,2, LI Yanhao1,2, PENG Yuwei1,2, KOU Fumin1,2, LI Liang3*, LIU Shudong1,2*
Received:2025-05-06
Published:2025-12-24
CLC Number:
KONG Lingfeng, ZHU Lijun, LI Yanhao, PENG Yuwei, KOU Fumin, LI Liang, LIU Shudong. Analysis of the Genetic Structure of Local Sheep Breed Populations in South Xinjiang and Mining of Selection Signals[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(12): 6116-6129.
| [1] ZHANG J, ZHANG C L, TUERSUNTUOHE M, et al. Population structure and selective signature of sheep around Tarim Basin[J]. Front Ecol Evol, 2023, 11: 1146561. [2] 张成龙, 郑浪漫, 刘春洁, 等. 利用50K芯片解析和田羊和策勒黑羊的遗传规律[J]. 畜牧兽医学报, 2022, 53(4): 1051-1063. ZHANG C L, ZHENG L M, LIU C J, et al.Analysis of genetic law of Hetian and Qira Black sheep using Illumina Ovine SNP50 chip[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1051-1063. (in Chinese) [3] 石 兰, 马梅兰, 木合塔帕·买买提江, 等. 基于全基因组重测序解析皮山红羊群体遗传结构及产羔数候选基因研究[J]. 中国畜牧兽医, 2024, 51(2): 624-638. SHI L, MA M L,MUHETAPA M, et al.Study on the genetic structure and litter size candidate genes of Pishan Red sheep population based on whole genome resequencing[J].China Animal Husbandry & Veterinary Medicine, 2024, 51(2): 624-638.(in Chinese) [4] ZHANG C L, ZHANG J, TUERSUNTUOHETI M, et al. Landscape genomics reveals adaptive divergence of indigenous sheep in different ecological environments of Xinjiang, China[J]. Sci Total Environ, 2023, 904: 166698. [5] KURKI M I, LAUKKANEN M, SOMMAILA M, et al. FinnGen provides genetic insights from a well-phenotyped isolated population[J]. Nature, 2023, 613(7944): 508-518. [6] FATMA R, CHAUHAN W, AFZAL M. The coefficients of inbreeding revealed by ROH study among inbred individuals belonging to each type of the first cousin marriage: A preliminary report from North India[J]. Genes Genomics, 2023, 45(7): 813-825. [7] HAN Z P, ZHOU W, ZHANG L L, et al. Genetic diversity and runs of homozygosity analysis of Hetian sheep populations revealed by Illumina Ovine SNP50K BeadChip[J]. Front Ecol Evol, 2023, 11: 1182966. [8] WEIR B S, COCKERHAM C C. Estimating F-statistics for the analysis of population structure[J]. Evolution, 1984, 38(6): 1358-1370. [9] BHATIA G, PATTERSON N, SANKARAMAN S, et al. Estimating and interpreting FST: The impact of rare variants[J]. Genome Res, 23(9): 1514-1521. [10] LI Y, LI X, HAN Z, et al. Population structure and selective signature analysis of local sheep breeds in Xinjiang, China based on high-density SNP chip[J]. Sci Rep, 2024, 14: 28133. [11] WANG J, SUO J, YANG R, et al. Genetic diversity, population structure, and selective signature of sheep in the northeastern Tarim Basin[J]. Front Genet, 2023, 14: 1281601. [12] HAN Z P, YANG R Z, ZHOU W, et al. Population structure and selection signal analysis of indigenous sheep from the southern edge of the Taklamakan Desert[J]. BMC Genomics, 2024, 25: 681. [13] YANG R, HAN Z, ZHOU W, et al. Population structure and selective signature of Kirghiz sheep by Illumina Ovine SNP50 BeadChip[J]. PeerJ, 2024, 12: e17980. [14] 张 莉. 绵羊肉用性状全基因组关联分析[D]. 北京: 中国农业科学院, 2013. ZHANG L. Genome-wide association studies for growth and meat production traits in sheep[D].Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese) [15] CHANG C C, CHOW C C, TELLIER L C A M, et al. Second-generation PLINK: rising to the challenge of larger and richer datasets[J]. Gigascience, 2015, 4(1): 7. [16] XU L, HE W, TAI S, et al. VCF2Dis: an ultra-fast and efficient tool to calculate pairwise genetic distance and construct population phylogeny from VCF files[J]. Gigascience, 2025, 14: giaf032. [17] ALEXANDER D H, NOVEMBER J, LANGE K. Fast model-based estimation of ancestry in unrelated individuals[J]. Genome Research, 2009, 19(9): 1655-1664. [18] 申成凯, 刘 坤, 刘伟良, 等. 白细胞介素1B基因连锁不平衡与原发性冻结肩的易感性[J]. 中国组织工程研究, 2024, 28(27): 4367-4372. SHEN C K, LIU K, LIU W L, et al.Association between interleukin-1B gene linkage disequilibrium and susceptibility to primary frozen shoulder[J]. Chinese Journal of Tissue Engineering Research, 2024, 28(27): 4367-4372. (in Chinese) [19] ZHANG C, DONG S S, XU J Y, et al. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files[J]. Bioinformatics, 2018, 35(10): 1786-1789. [20] LENCZ T, LAMBERT C, DEROSSE P, et al. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia[J].Proc Natl Acad Sci U S A, 2007, 104(50): 19942-19947. [21] LEUTENEGGER A L, PRUM B, GENIN E, et al. Estimation of the inbreeding coefficient through use of genomic data[J]. Am J Hum Genet, 2003, 73(3): 516-523. [22] 王利华, 张英萍, 邹桂伟, 等. 基于微卫星标记的中华鳖淮河品系遗传多样性分析[J]. 中国农学通报, 2020, 36(23): 134-141. WANG L H, ZHANG Y P, ZOU G W, et al.Genetic diversity of huaihe strain of pelodiscus sinensis based on microsatellite arkers[J]. Chinese Agricultural Science Bulletin,2020, 36(23): 134-141.(in Chinese) [23] DANECEK P, AUTON A, ABECASIS G, et al. The variant call format and VCFtools[J]. Bioinformatics, 2011, 27(15): 2156-2158. [24] ZHANG C L, ZHANG J H, TUERSUNTUOHETI M, et al. Population structure and selective signature of Kirghiz sheep by Illumina Ovine SNP50 BeadChip[J]. Sci Rep, 2024, 14: 22801. [25] WANJALA G, BAGI Z, GAVOJDIAN D, et al. Genetic diversity and adaptability of native sheep breeds from different climatic zones[J]. Sci Rep, 2025, 15: 14143. [26] HAN Z P, ZHANG L L, LI X P, et al. Single nucleotide polymorphism-based analysis of linkage disequilibrium and runs of homozygosity patterns of indigenous sheep in the southern Taklamakan desert[J]. BMC Genomics, 2025, 26: 267. [27] YENGO L, WRAY N R, VISSCHER P M.Extreme inbreeding in a European ancestry sample from the contemporary UK population[J]. Nat Commun, 2019, 10: 3719. [28] HALL S J. Genetic Differentiation among Livestock Breeds—Values for Fst[J]. Animals, 2022, 12(9): 1115. [29] ZHANG J H, ZHANG C L, LI X P, et al.Genetic analysis of key agronomic traits of local sheep breeds in Xinjiang, China[J]. Int J Biol Macromol, 2024, 280(4): 135869. [30] ALBERTO F J, BOYER F, OROZCO-TERWENGEL P, et al. Convergent genomic signatures of domestication in sheep and goats[J]. Nat Commun, 2018, 9(1): 1-11. [31] BAUMGARD L H, RHOADS R P JR. Effects of heat stress on postabsorptive metabolism and energetics[J]. Annu Rev Anim Biosci, 2013, 1: 311-337. [32] KIM E S, ELBELTAGY A, ABOUL-NAGA A, et al. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment[J]. Heredity, 2016, 116(3): 255-264. [33] WEEMS P W, GOODMAN R L, LEHMAN M N. Neural mechanisms controlling seasonal reproduction: principles derived from the sheep model and its comparison with hamsters[J].Front Neuroendocrinol, 2015, 37: 43-51. [34] RIGUEUR D, BRUGGER S, ANBARCHIAN T, et al. The type I BMP receptor ACVR1/ALK2 is required for chondrogenesis during development[J]. J Bone Miner Res, 2015, 30(4): 733-741. [35] IBÁÑEZ C F. Regulation of metabolic homeostasis by the TGF-β superfamily receptor ALK7[J].Febs J, 2022, 289(19): 5776-5797. [36] MASUKO R, YAMADA T, SUKEGAWA S, et al. Identification of TGFβ signaling pathway showing heat stress-responsive activation associated with heat stress tolerance for growth rate in small intestine of finishing pig[J]. Anim Genet, 2023, 51(2): 49-55. [37] ZRENNER R, RIEGLER H, MARQUARD C R, et al. A functional analysis of the pyrimidine catabolic pathway in Arabidopsis[J]. New Phytol, 2009, 183(1): 117-132. [38] ROOSILD T P, CASTRONOVO S, VILLOSO A, et al. A novel structural mechanism for redox regulation of uridine phosphorylase 2 activity[J].J Struct Biol, 2011,176(2):229-237. [39] 王玉杰,谢 鸣.肝郁脾虚证大鼠模型肝脏的差异基因表达[J].中华中医药杂志,2011,26(11):2660-2663. WANG Y J, XIE M. Differential gene expression on syndrome model of stagnation of liver and deficiency of spleen in rats[J]. China Journal of Traditional Chinese Medicine and Pharmacy,2011,26(11):2660-2663.(in Chinese) [40] GRIFFIN E A JR, STAKNIS D, WEITZ C J. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock[J]. Science, 1999, 286(5440): 768-771. [41] NAGASHIMA K, MATSUE K, KONISHI M, et al. The involvement of Cry1 and Cry2 genes in the regulation of the circadian body temperature rhythm in mice[J]. Am J Physiol Regul Integr Comp Physiol, 2005, 288(1): 329-335. [42] MA D, LI X, GUO Y, et al. Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light[J]. Proc Natl Acad Sci U S A, 2016, 113(1): 224-229. [43] RAVENEY B J, OKI S, YAMAMURA T. Nuclear receptor NR4A2 orchestrates Th17 cell-mediated autoimmune inflammation via IL-21 signalling[J]. PLoS One, 2013, 8(2): e56595. [44] MOK J, PARK J H, YEOM S C, et al. PROKR1-CREB-NR4A2 axis for oxidative muscle fiber specification and improvement of metabolic function[J]. Proc Natl Acad Sci U S A, 2024, 121(4): e2308960121. [45] WOO M S, BAL L C, WINSCHEL I, et al. The NR4A2/VGF pathway fuels inflammation-induced neurodegeneration via promoting neuronal glycolysis[J]. J Clin Invest, 2024, 134(16): e177692. 2. [46] LI J, CHEN C, GAO L, et al. Analysis of histopathology and changes of major cytokines in the lesions caused by Mycoplasma ovipneumoniae infection[J]. BMC Vet Res, 2023, 19: 273. [47] 郭海英, 沈 文, 陈冬梅, 等. BPI蛋白对感染绵羊肺炎支原体的盘羊杂交羊细胞因子水平的影响[J]. 畜牧兽医学报, 2015, 46(10): 1882-1890. GUO H Y,SHEN W,CHEN D M,et al. The influence of BPI protein on cytokines level in argali hybrid sheep infected with mycoplasma ovipneumoniae[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46(10): 1882-1890.(in Chinese) [48] STRASSER A, JOST P J, NAGATA S. The many roles of FAS receptor signaling in the immune system[J]. Immunity, 2009, 30(2): 180-192. [49] HUANG D M, LIU Y Q, LI D T, et al. C/EBPβ mediates expressions of downstream inflammatory factors of the tumor necrosis factor-α signaling pathway in renal tubular epithelial cells with NPHP1 knockdown[J]. J South Med Univ, 2024, 44(1): 156-165. [50] FRANKEL S K, COSGROVE G P, CHA S I, et al. TNF-alpha sensitizes normal and fibrotic human lung fibroblasts to Fas-induced apoptosis[J]. Am J Respir Cell Mol Biol, 2006, 34(3): 293-304. [51] ABBASPOUR BABAEI M, KAMALIDEHGHAN B, SALEEM M, et al. Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells[J]. Drug Des Devel Ther, 2016, 10: 2443-2459. [52] MORO K, YAMADA T, TANABE M, et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells[J]. Nature, 2010, 463: 540-544. [53] HATZI K, NANCE J P, KROENKE M A, et al. BCL6 orchestrates Tfh cell differentiation via multiple distinct mechanisms[J]. J Exp Med, 2015, 212(4): 539-553. [54] ZHU B, ZHANG R, LI C, et al. BCL6 modulates tissue neutrophil survival and exacerbates pulmonary inflammation following influenza virus infection[J]. Proc Natl Acad Sci U S A, 2019, 116(24): 11888-11893. [55] MARTIN G. Frontiers in sheep reproduction - making use of natural responses to environmental challenges to manage productivity[J]. Anim Reprod, 2022, 19(4): e20220088. [56] ADMANABHAN V, VEIGA-LOPEZ A. Reproduction Symposium: developmental programming of reproductive and metabolic health[J]. J Anim Sci, 2014, 92(8): 3199-3210. [57] CAMILLE MELÓN L, MAGUIRE J. GABAergic regulation of the HPA and HPG axes and the impact of stress on reproductive function[J]. J Steroid Biochem Mol Biol, 2016, 160: 196-203. [58] CATALANO P N, DI GIORGIO N, BONAVENTURA M M, et al. Lack of functional GABAB receptors alters GnRH physiology and sexual dimorphic expression of GnRH and GAD-67 in the brain[J]. Am J Physiol Endocrinol Metab, 2010, 298(3): 683-696. [59] NAVARRO V M. Metabolic regulation of kisspeptin - the link between energy balance and reproduction[J]. Nat Rev Endocrinol, 2020, 16(8): 407-420. [60] VOIGT C, BENNETT N. Reproductive status-dependent dynorphin and neurokinin B gene expression in female Damaraland mole-rats[J]. J Chem Neuroanat, 2019, 102: 101705. [61] PARKIN C, ORTIZ J, CRUZ S, et al. Pubertal- and stress-dependent changes in cellular activation and expression of excitatory amino acid receptor subunits in the paraventricular nucleus of the hypothalamus in male and female rats[J]. Dev Neurosci, 2025,47(3):206-216. [62] IREMONGER K J, CONSTANTIN S, LIU X, et al. Glutamate regulation of GnRH neuron excitability[J].Brain Res, 2010, 1364: 35-43. [63] MOUSTAKAS A, PARDALI K, GAAL A, et al. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation[J]. Immunol Lett, 2002, 82(1-2): 85-91. [64] ZHANG Y. Non-Smad pathways in TGF-β signaling[J].Cell Res, 2009,19(1):128-139. [65] DEMOULIN J B, ESSAGHIR A. PDGF receptor signaling networks in normal and cancer cells[J]. Cytokine Growth Factor Rev, 2014, 25(3): 273-283. [66] SORIANO P. The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites[J]. Development, 1997, 124(14): 2691-2700. [67] ANDRAE J, GALLINI R, BETSHOLTZ C. Role of platelet-derived growth factors in physiology and medicine[J]. Genes Dev, 2008, 22(10): 1276-1312. [68] CHEN J, BUSH J O, OVITT C E, et al. The TGF-beta pseudoreceptor gene Bambi is dispensable for mouse embryonic development and postnatal survival[J]. Genesis, 2007, 45(8): 482-486. [69] 杨培福. 基于全基因组重测序筛选绵羊生长性状候选基因[D]. 北京: 中国农业科学院, 2024. YANG P F. Screening of sheep growth traits based on whole-genome resequencing candidate gene[D]. Beijing: Chinese Academy of Agricultural Sciences, 2024. (in Chinese) [70] OLSSON A K, DIMBERG A, KREUGER J, et al. VEGF receptor signalling - in control of vascular function[J]. Nat Rev Mol Cell Biol, 2006, 7(5): 359-371. [71] FERRARA N, GERBER H P, LECOUTER J. The biology of VEGF and its receptors[J]. Nat Med, 2003, 9(6): 669-676. [72] SHALABY F, ROSSANT J, YAMAGUCHI T, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice[J]. Nature, 1995, 376: 62-66. [73] 张晓静, 葛银林, 侯 琳, 等. KDR为靶的siRNA抑制乳腺癌细胞增殖的体内外研究[J]. 细胞与分子免疫学杂志, 2008, 24(1): 58-61. ZHANG X J, GE Y L, HOU L, et al.Small interference RNAs directed against KDR gene inhibit the proliferation of breast cancer cells in vitro and in vivo[J]. Chinese Journal of Cellular and Molecular Immunology, 2008, 24(1): 58-61. (in Chinese) |
| [1] | WANG Youdong, CAO Zhiping, LI Yumao, LUAN Peng, LI Hui, BAI Xue. The Principle of SNP Chip Technology and Its Application in Chicken Genetic Breeding [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4165-4175. |
| [2] | LIU Sha, YANG Caichun, ZHANG Xiaoyu, CHEN Qiong, LIU Xiong, CHEN Hongbo, ZHOU Huanhuan, SHI Liangyu. Population Genetic Structure and Genome-wide Runs of Homozygosity Analysis in Meihuaxing Pigs Based on 80K SNP Chip [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3749-3760. |
| [3] | ZHANG Jialiang, HUANG Chang, YANG Yonglin, YANG Hua, BAI Wenlin, MA Yuehui, ZHAO Qianjun. Genetic Structure and Wool Trait Selection Signatures Analysis of Chinese Sheep Populations Based on 50K Liquid SNP Chip [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3164-3176. |
| [4] | WU Jianliang, SU Yang, MAO Ruihan, ZHOU Lei, YAN Tiantian, LI Zhi, LIU Jianfeng. Design and Effect Evaluation of A Whole-Genome Low-Density SNP Chip in Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(6): 2733-2740. |
| [5] | WANG Qinqian, GAO Zhendong, LU Ying, MA Ruoshan, DENG Weidong, HE Xiaoming. Research Progress of Whole Genome Resequencing in Chinese Indigenous Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2026-2037. |
| [6] | WANG Haoyu, MA Keyan, LI Taotao, LI Dengpan, ZHAO Qing, MA Youji. Population Genetic Diversity and Population Structure Analysis of Small-boned Goat Based on Specific-Locus Amplified Fragment Sequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1170-1179. |
| [7] | HU Xin, YOU Wei, JIANG Fugui, CHENG Haijian, SUN Zhigang, SONG Enliang. Analysis of Genetic Diversity and Population Structure of Simmental Cattle Based on Whole Genome Resequencing [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1189-1202. |
| [8] | WANG Yuanqing, WANG Zezhao, ZHU Bo, CHEN Yan, XU Lingyang, ZHANG Lupei, GAO Huijiang, LI Chao, LI Junya, GAO Xue. Comparison of Prediction Accuracy of Genomic Selection for Economically Important Traits in Huaxi Cattle Based on Different Chip Densities [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 591-602. |
| [9] | SONG Jian, HE Jinfeng, ZHENG Weijie, LIU Lin, MA Zhu, QIAN Changsong, ZHOU Jinghang, HAN Bo, ZHANG Qi, SUN Dongxiao. Performance Validation and Application of Self-developed 13K and 40K Liquid-phase SNP Chips in Genomic Selection of Dairy Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5502-5511. |
| [10] | YANG Wenpan, LIU Xiangjie, LUO Dongxiang, CHEN Menghui, XIE Ying, FANG Yuexin, LIN Tingyan, LI Aimin, LI Wenjing, DENG Zheng, DING Nengshui. Research on Genomic Selection of Reproductive Traits in Landrace Pigs Based on Chip Data [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 213-221. |
| [11] | Jingjing TIAN, Xiaoqing WANG, Mianyan LI, Hailing WANG, Qitian WU, Lixian WANG, Longchao ZHANG, Fuping ZHAO. Analysis of the Whole Genome Run of Homozygosity (ROH) and Selection Signal in Beijing Black Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3833-3842. |
| [12] | Ting WANG, Yuanqing ZHANG, Yibo YAN, Mingjun SHANGGUAN, Hongyu GUO, Zhiwu WANG. The Genetic Structure Analysis and the Comparative Analysis of Selection Signals in 'Tezanghan' Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2913-2926. |
| [13] | TU Yun, ZENG Yanan, ZHANG Zhenghao, HONG Rui, WANG Zhen, WU Ping, ZHOU Zeyang, YE Yiru, DU Yanan, ZUO Fuyuan, ZHANG Gongwei. Genetic Structure and Runs of Homozygosity Analysis of Fuling Buffalo and Southwest Buffalo Breeds [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1989-1998. |
| [14] | SONG Kelin, YAN Zunqiang, WANG Pengfei, CHENG Wenhao, LI Jie, BAI Yaqin, SUN Guohu, GUN Shuangbao. Analysis on Genetic Diversity and Genetic Structure Based on SNP Chips of Huixian Qingni Black Pig [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 995-1006. |
| [15] | CHENG Xinyan, WANG Shiyuan, JI Yebiao, HUANG Sixiu, YANG Jie, MENG Fanming, ZHANG Mao, CAI Gengyuan, LIU Langqing. Evaluation of the Genetic Structure of Conservation Populations of Four Major Local Pig Breeds in Guangdong Province Based on a 50K SNP Chip [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5464-5477. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||