Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (2): 591-602.doi: 10.11843/j.issn.0366-6964.2025.02.011
• Animal Genetics and Breeding • Previous Articles Next Articles
WANG Yuanqing(), WANG Zezhao, ZHU Bo, CHEN Yan, XU Lingyang, ZHANG Lupei, GAO Huijiang, LI Chao, LI Junya*(
), GAO Xue*(
)
Received:
2024-08-09
Online:
2025-02-23
Published:
2025-02-26
Contact:
LI Junya, GAO Xue
E-mail:wangyuanqing811@126.com;lijunya@caas.cn;gaoxue@caas.cn
CLC Number:
WANG Yuanqing, WANG Zezhao, ZHU Bo, CHEN Yan, XU Lingyang, ZHANG Lupei, GAO Huijiang, LI Chao, LI Junya, GAO Xue. Comparison of Prediction Accuracy of Genomic Selection for Economically Important Traits in Huaxi Cattle Based on Different Chip Densities[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 591-602.
Table 1
Quality control for different chip densities"
芯片密度 Chip density | 质控前 Before quality control | 质控后 After quality control | |||
个体数 Count | 位点数量 Number of loci | 个体数 Count | 位点数量 Number of loci | ||
90K | 3 948 | 90 749 | 3 919 | 63 902 | |
110K | 3 948 | 112 180 | 3 919 | 80 939 | |
770K | 3 948 | 774 660 | 3 919 | 624 923 | |
790K | 3 948 | 796 091 | 3 919 | 641 959 |
Table 2
Fixed effects and covariates for various economic traits in Huaxi cattle"
性状 Trait | 年份 Year | 性别 Sex | 场 Farm | 季节 Season | 产犊年龄 Calving age | 后代性别 Calf sex |
断奶重 Weaning weight | √ | √ | √ | × | × | × |
育肥期平均日增重 Daily weight gain during fattening period | √ | √ | √ | √ | × | × |
产犊难易度 Calving ease | √ | × | × | × | √ | √ |
胴体重 Carcass weight | √ | √ | √ | √ | × | × |
屠宰率 Dressing percentage | √ | √ | √ | √ | × | × |
Table 3
Phenotype statistics of economically important traits of Huaxi cattle"
性状 Trait | 个体数 Count | 最小值 Minimum | 最大值 Maximum | 平均值 Mean | 标准差 Standard deviation |
断奶重/kg Weaning weight | 1 294 | 40.00 | 395.00 | 203.75 | 53.13 |
育肥期平均日增重/kg Daily weight gain during fattening period | 1 324 | 0.37 | 2.41 | 0.96 | 0.21 |
产犊难易度 Calving ease | 944 | 1.00 | 4.00 | 1.11 | 0.39 |
胴体重/kg Carcass weight | 1 694 | 162.60 | 482.00 | 297.56 | 64.03 |
屠宰率/% Dressing percentage | 1 687 | 41.00 | 69.51 | 53.86 | 4.21 |
Table 4
Variance components and heritability of economically important traits of Huaxi cattle"
性状 Trait | 芯片密度 Chip density | 表型方差 Phenotype variance | 残差方差 Residual variance | 加性方差 Additive variance | 遗传力 Heritability |
断奶重 Weaning weight | 90K | 2 090.034 0 | 1 039.189 0 | 1 050.845 0 | 0.502 8 |
110K | 2 091.601 0 | 1 062.287 0 | 1 029.314 0 | 0.492 1 | |
770K | 2 092.303 0 | 1 040.916 0 | 1 051.387 0 | 0.502 5 | |
790K | 2 091.518 0 | 1 043.308 0 | 1 048.210 0 | 0.501 2 | |
育肥期平均日增重 Daily weight gain during fattening period | 90K | 0.029 6 | 0.015 6 | 0.014 0 | 0.473 3 |
110K | 0.029 5 | 0.015 2 | 0.014 3 | 0.485 7 | |
770K | 0.029 5 | 0.015 3 | 0.014 2 | 0.480 6 | |
790K | 0.029 5 | 0.015 0 | 0.014 5 | 0.490 5 | |
产犊难易度 Calving ease | 90K | 0.146 4 | 0.124 4 | 0.022 0 | 0.150 0 |
110K | 0.146 2 | 0.125 5 | 0.020 8 | 0.141 8 | |
770K | 0.146 5 | 0.122 9 | 0.023 6 | 0.160 8 | |
790K | 0.146 5 | 0.123 1 | 0.023 4 | 0.159 6 | |
胴体重 Carcass weight | 90K | 1 018.409 2 | 636.122 2 | 382.287 0 | 0.375 4 |
110K | 1 012.938 2 | 622.160 6 | 390.777 6 | 0.385 8 | |
770K | 1 016.092 7 | 644.958 8 | 371.133 9 | 0.365 3 | |
790K | 1 014.752 5 | 632.317 4 | 382.435 1 | 0.376 9 | |
屠宰率 Dressing percentage | 90K | 0.000 6 | 0.000 5 | 0.000 1 | 0.195 3 |
110K | 0.000 6 | 0.000 5 | 0.000 1 | 0.206 9 | |
770K | 0.000 6 | 0.000 5 | 0.000 1 | 0.205 3 | |
790K | 0.000 6 | 0.000 5 | 0.000 1 | 0.208 5 |
Table 5
Summary of unbiasedness results of genomic selection for important economic trait of Huaxi cattle"
芯片密度 Chip density | 无偏性 Unbiasedness | ||||
断奶重 Weaning weight | 平均日增重 Daily weight gain during fattening period | 产犊难易度 Calving ease | 屠宰率 Dressing percentage | 胴体重 Carcass weight | |
90K | 0.946 1 ±0.063 3 | 0.988 7 ±0.090 5 | 0.870 1 ±0.141 2 | 1.010 5 ±0.084 4 | 0.907 9 ±0.064 7 |
110K | 0.851 0 ±0.041 3 | 0.994 2 ±0.029 2 | 0.974 5 ±0.091 3 | 0.951 0 ±0.089 8 | 0.934 6 ±0.075 2 |
770K | 0.877 3 ±0.122 6 | 0.986 7 ±0.132 7 | 1.008 8 ±0.132 6 | 0.981 0 ±0.099 1 | 0.995 7 ±0.036 2 |
790K | 0.899 5 ±0.087 4 | 1.038 6 ±0.118 6 | 0.871 8 ±0.126 9 | 1.012 4 ±0.085 3 | 0.915 7 ±0.055 6 |
1 |
MEUWISSEN T H E , HAYES B J , GODDARD M E . Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157 (4): 1819- 1829.
doi: 10.1093/genetics/157.4.1819 |
2 | 汪聪勇, 朱波, 李俊雅. 中国肉牛种业发展现状、存在问题及建议[J]. 中国牛业科学, 2020, 46 (2): 52- 54. |
WANG C Y , ZHU B , LI J Y . Development status, problems and suggestions of cattle seed industry in China[J]. China Cattle Science, 2020, 46 (2): 52- 54. | |
3 | 李姣, 秦雅婷. 我国肉牛种业概况[J]. 中国畜牧业, 2020, (7): 34- 35. |
LI J , QIN Y T . General situation of beef cattle seed industry in China[J]. China Animal Industry, 2020, (7): 34- 35. | |
4 |
GUINAN F L , WIGGANS G R , NORMAN H D , et al. Changes in genetic trends in US dairy cattle since the implementation of genomic selection[J]. J Dairy Sci, 2023, 106 (2): 1110- 1129.
doi: 10.3168/jds.2022-22205 |
5 |
SMITH T P L , BICKHART D M , BOICHARD D , et al. The Bovine Pangenome Consortium: democratizing production and accessibility of genome assemblies for global cattle breeds and other bovine species[J]. Genome Biol, 2023, 24 (1): 139.
doi: 10.1186/s13059-023-02975-0 |
6 |
WANG H F , LI C L , LI J Y , et al. Genomic selection for weaning weight in alpine merino sheep based on GWAS prior marker information[J]. Animals, 2024, 14 (13): 1904.
doi: 10.3390/ani14131904 |
7 |
HENDERSON C R . Best linear unbiased estimation and prediction under a selection model[J]. Biometrics, 1975, 31 (2): 423- 447.
doi: 10.2307/2529430 |
8 |
SOLBERG T R , SONESSON A K , WOOLLIAMS J A , et al. Genomic selection using different marker types and densities[J]. J Anim Sci, 2008, 86 (10): 2447- 2454.
doi: 10.2527/jas.2007-0010 |
9 |
HEFFNER E L , JANNINK J L , IWATA H , et al. Genomic selection accuracy for grain quality traits in biparental wheat populations[J]. Crop Sci, 2011, 51 (6): 2597- 2606.
doi: 10.2135/cropsci2011.05.0253 |
10 |
MATUKUMALLI L K , LAWLEY C T , SCHNABEL R D , et al. Development and characterization of a high density SNP genotyping assay for cattle[J]. PLoS One, 2009, 4 (4): e5350.
doi: 10.1371/journal.pone.0005350 |
11 |
ZHAO F P , ZHANG P F , WANG X Q , et al. Genetic gain and inbreeding from simulation of different genomic mating schemes for pig improvement[J]. J Anim Sci Biotechnol, 2023, 14 (1): 87.
doi: 10.1186/s40104-023-00872-x |
12 |
CHEN Y , GUO Y W , GE F , et al. Developing a liquid capture chip to accelerate the genetic progress of cattle[J]. Anim Res One Health, 2024, 2 (2): 204- 216.
doi: 10.1002/aro2.58 |
13 | HAYES B J, MACLEOD L M, DAETWYLER H D, et al. Genomic prediction from whole genome sequence in livestock: the 1000 bull genomes project[C]//Proceedings of the 10th World Congress on Genetics Applied to Livestock Production. Vancouver: American Society of Animal Science, 2014. |
14 |
BROWNING B L , ZHOU Y , BROWNING S R . A one-penny imputed genome from next-generation reference panels[J]. Am J Hum Genet, 2018, 103 (3): 338- 348.
doi: 10.1016/j.ajhg.2018.07.015 |
15 |
BROWNING B L , TIAN X W , ZHOU Y , et al. Fast two-stage phasing of large-scale sequence data[J]. Am J Hum Genet, 2021, 108 (10): 1880- 1890.
doi: 10.1016/j.ajhg.2021.08.005 |
16 |
PURCELL S , NEALE B , TODD-BROWN K , et al. PLINK: a tool set for whole-genome association and population-based linkage analyses[J]. Am J Hum Genet, 2007, 81 (3): 559- 575.
doi: 10.1086/519795 |
17 | GILMOUR A R, GOGEL B J, CULLIS B R, et al. ASReml user guide release 4.1 structural specification[R]. Hemel Hempstead: VSN International Ltd., 2014: 5. |
18 |
PRYCE J E , ARIAS J , BOWMAN P J , et al. Accuracy of genomic predictions of residual feed intake and 250-day body weight in growing heifers using 625, 000 single nucleotide polymorphism markers[J]. J Dairy Sci, 2012, 95 (4): 2108- 2119.
doi: 10.3168/jds.2011-4628 |
19 |
ZHANG M H , LUO H P , XU L , et al. Genomic selection for milk production traits in Xinjiang Brown cattle[J]. Animals, 2022, 12 (2): 136.
doi: 10.3390/ani12020136 |
20 |
YIN C , ZHOU P , WANG Y W , et al. Using genomic selection to improve the accuracy of genomic prediction for multi-populations in pigs[J]. Animal, 2024, 18 (2): 101062.
doi: 10.1016/j.animal.2023.101062 |
21 |
YAN X C , ZHANG T , LIU L C , et al. Accuracy of genomic selection for important economic traits of cashmere and meat goats assessed by simulation study[J]. Front Vet Sci, 2022, 9, 770539.
doi: 10.3389/fvets.2022.770539 |
22 |
牛红, 宝金山, 吴洋, 等. 中国西门塔尔牛肉用群体重要经济性状遗传参数估计[J]. 畜牧兽医学报, 2016, 47 (9): 1817- 1823.
doi: 10.11843/j.issn.0366-6964.2016.09.009 |
NIU H , BAO J S , WU Y , et al. Estimation of genetic parameters for economic important traits in chinese simmental beef cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47 (9): 1817- 1823.
doi: 10.11843/j.issn.0366-6964.2016.09.009 |
|
23 |
PRITCHARD T C , WALL E , COFFEY M P . Genetic parameters for carcase measurements and age at slaughter in commercial cattle[J]. Animal, 2021, 15 (2): 100090.
doi: 10.1016/j.animal.2020.100090 |
24 |
SRIVASTAVA S , LOPEZ B I , DE LAS HERAS-SALDANA S , et al. Estimation of genetic parameters by single-trait and multi-trait models for carcass traits in Hanwoo cattle[J]. Animals, 2019, 9 (12): 1061.
doi: 10.3390/ani9121061 |
25 |
WINDER J A , BRINKS J S , BOURDON R M , et al. Genetic analysis of absolute growth measurements, relative growth rate and restricted selection indices in red Angus cattle[J]. J Anim Sci, 1990, 68 (2): 330- 336.
doi: 10.2527/1990.682330x |
26 |
BAKER R L , MORRIS C A , JOHNSON D L , et al. Results of selection for yearling or 18-month weight in angus and Hereford cattle[J]. Livest Prod Sci, 1991, 29 (4): 277- 296.
doi: 10.1016/0301-6226(91)90104-X |
27 |
MUKAI F , OYAMA K , KOHNO S . Genetic relationships between performance test traits and field carcass traits in Japanese Black cattle[J]. Livest Prod Sci, 1995, 44 (3): 199- 205.
doi: 10.1016/0301-6226(95)00069-0 |
28 |
NESENGANI L T , NEPHAWE K A , SEBEI J , et al. Genetic relationship between weaning weight and milk yield in Nguni cattle[J]. Animal, 2018, 12 (2): 199- 204.
doi: 10.1017/S1751731117001483 |
29 | 周佩诺. 中国肉用西门塔尔牛经济性状相关SNP优化筛选研究[D]. 北京: 中国农业科学院, 2021. |
ZHOU P N. Optimization selecting related SNPs for economic traits of Chinese simmental beef cattle[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. (in Chinese) | |
30 |
SAATCHI M , SCHNABEL R D , ROLF M M , et al. Accuracy of direct genomic breeding values for nationally evaluated traits in US Limousin and Simmental beef cattle[J]. Genet Sel Evol, 2012, 44 (1): 38.
doi: 10.1186/1297-9686-44-38 |
31 |
BOLORMAA S , HAILE-MARIAM M , MARETT L C , et al. Use of dry-matter intake recorded at multiple time periods during lactation increases the accuracy of genomic prediction for dry-matter intake and residual feed intake in dairy cattle[J]. Anim Prod Sci, 2023, 63 (11): 1113- 1125.
doi: 10.1071/AN23022 |
32 |
MORRIS C A , CULLEN N G , MCCALL D G . Genetic and phenotypic relationships among carcass measurements in beef cattle[J]. N Z J Agric Res, 1999, 42 (4): 415- 421.
doi: 10.1080/00288233.1999.9513390 |
33 |
李柯安宁, 杜丽丽, 安炳星, 等. 华西牛胴体及原始分割肉块重量性状遗传参数估计与全基因组关联分析[J]. 畜牧兽医学报, 2023, 54 (9): 3664- 3676.
doi: 10.11843/j.issn.0366-6964.2023.09.008 |
LI K A N , DU L L , AN B X , et al. Genetic parameter estimation and genome-wide association study for carcass traits and primal cuts weight traits in Huaxi cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (9): 3664- 3676.
doi: 10.11843/j.issn.0366-6964.2023.09.008 |
|
34 |
朱波, 李姣, 汪聪勇, 等. 我国肉用西门塔尔牛群体生长发育性状遗传参数估计及其遗传进展[J]. 畜牧兽医学报, 2020, 51 (8): 1833- 1844.
doi: 10.11843/j.issn.0366-6964.2020.08.007 |
ZHU B , LI J , WANG C Y , et al. Genetic parameter and genetic gain estimation for growth and development traits in Chinese Simmental beef cattle[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51 (8): 1833- 1844.
doi: 10.11843/j.issn.0366-6964.2020.08.007 |
|
35 |
GUO P , ZHU B , NIU H , et al. Fast genomic prediction of breeding values using parallel Markov chain Monte Carlo with convergence diagnosis[J]. BMC Bioinformatics, 2018, 19 (1): 3.
doi: 10.1186/s12859-017-2003-3 |
36 |
HAQUE A , IQBAL A , BAE H , et al. Assessment of genomic breeding values and their accuracies for carcass traits in Jeju Black cattle using whole-genome SNP chip panels[J]. J Anim Breed Genet, 2023, 140 (5): 519- 531.
doi: 10.1111/jbg.12776 |
37 |
LI W J , LI W Q , SONG Z C , et al. Marker density and models to improve the accuracy of genomic selection for growth and slaughter traits in meat rabbits[J]. Genes, 2024, 15 (4): 454.
doi: 10.3390/genes15040454 |
38 |
KIM E H , KANG H C , SUN D W , et al. Estimation of breeding value and accuracy using pedigree and genotype of Hanwoo cows (Korean cattle)[J]. J Anim Breed Genet, 2022, 139 (3): 281- 291.
doi: 10.1111/jbg.12661 |
39 |
SCHAEFFER L R . Strategy for applying genome-wide selection in dairy cattle[J]. J Anim Breed Genet, 2006, 123 (4): 218- 223.
doi: 10.1111/j.1439-0388.2006.00595.x |
40 |
WANG X , SHI S L , WANG G J , et al. Using machine learning to improve the accuracy of genomic prediction of reproduction traits in pigs[J]. J Anim Sci Biotechnol, 2022, 13 (1): 60.
doi: 10.1186/s40104-022-00708-0 |
41 |
SAATCHI M , MCCLURE M C , MCKAY S D , et al. Accuracies of genomic breeding values in American Angus beef cattle using K-means clustering for cross-validation[J]. Genet Sel Evol, 2011, 43, 40.
doi: 10.1186/1297-9686-43-40 |
42 |
BOLORMAA S , PRYCE J E , KEMPER K , et al. Accuracy of prediction of genomic breeding values for residual feed intake and carcass and meat quality traits in Bos taurus, Bos indicus, and composite beef cattle[J]. J Anim Sci, 2013, 91 (7): 3088- 3104.
doi: 10.2527/jas.2012-5827 |
43 |
ONOGI A , OGINO A , KOMATSU T , et al. Genomic prediction in Japanese Black cattle: application of a single-step approach to beef cattle[J]. J Anim Sci, 2014, 92 (5): 1931- 1938.
doi: 10.2527/jas.2014-7168 |
44 |
SPINDEL J , BEGUM H , AKDEMIR D , et al. Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines[J]. PLoS Genet, 2015, 11 (2): e1004982.
doi: 10.1371/journal.pgen.1004982 |
45 |
ZHU S H , GUO T T , YUAN C , et al. Evaluation of Bayesian alphabet and GBLUP based on different marker density for genomic prediction in Alpine Merino sheep[J]. G3 (Bethesda), 2021, 11 (11): jkab206.
doi: 10.1093/g3journal/jkab206 |
46 |
ERBE M , HAYES B J , MATUKUMALLI L K , et al. Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels[J]. J Dairy Sci, 2012, 95 (7): 4114- 4129.
doi: 10.3168/jds.2011-5019 |
47 |
HEIDARITABAR M , CALUS M P L , MEGENS H J , et al. Accuracy of genomic prediction using imputed whole-genome sequence data in white layers[J]. J Anim Breed Genet, 2016, 133 (3): 167- 179.
doi: 10.1111/jbg.12199 |
48 |
WERNER C R , VOSS-FELS K P , MILLER C N , et al. Effective genomic selection in a narrow-genepool crop with low-density markers: Asian rapeseed as an example[J]. Plant Genome, 2018, 11 (2): 170084.
doi: 10.3835/plantgenome2017.09.0084 |
49 | GUTIERREZ A P , MATIKA O , BEAN T P , et al. Genomic selection for growth traits in Pacific oyster (Crassostrea gigas): potential of low-density marker panels for breeding value prediction[J]. Front Genet, 2018, 9, 391. |
50 | 王珏, 刘成琨, 刘德武, 等. 基于不同密度SNP芯片在杜洛克公猪中的全基因组选择效果分析[J]. 中国畜牧杂志, 2019, 55 (12): 75- 79. |
WANG J , LIU C K , LIU D W , et al. Analysis of genomic selection based on SNP data of various density chips in duroc male pig population[J]. Chinese Journal of Animal Science, 2019, 55 (12): 75- 79. | |
51 | VANRADEN P M , TOOKER M E , O'CONNELL J R , et al. Selecting sequence variants to improve genomic predictions for dairy cattle[J]. Genet Sel Evol, 2017, 49 (1): 32. |
52 |
彭潇, 尹立林, 梅全顺, 等. 猪主要经济性状的基因组选择研究[J]. 畜牧兽医学报, 2019, 50 (2): 439- 445.
doi: 10.11843/j.issn.0366-6964.2019.02.023 |
PENG X , YIN L L , MEI Q S , et al. A study of genome selection based on the porcine major economic traits[J]. Acta Veterinaria et Zootechnica Sinica, 2019, 50 (2): 439- 445.
doi: 10.11843/j.issn.0366-6964.2019.02.023 |
|
53 | GE F , JIA C J , BAO P J , et al. Accuracies of genomic prediction for growth traits at weaning and yearling ages in yak[J]. Animals (Basel), 2020, 10 (10): 1793. |
54 | JIA Y , JANNINK J L . Multiple-trait genomic selection methods increase genetic value prediction accuracy[J]. Genetics, 2012, 192 (4): 1513- 1522. |
55 |
李浩东, 闵祥玉, 周雅, 等. 基于GBLUP等模型对梅花鹿(Cervus Nippon)生长相关性状基因组选择的预测准确性比较[J]. 畜牧兽医学报, 2023, 54 (2): 608- 616.
doi: 10.11843/j.issn.0366-6964.2023.02.018 |
LI H D , MIN X Y , ZHOU Y , et al. Comparison of prediction accuracy of genomic selection for growth-related traits in Sika Deer (Cervus Nippon) based on GBLUP and other models[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (2): 608- 616.
doi: 10.11843/j.issn.0366-6964.2023.02.018 |
[1] | YANG Wenpan, LIU Xiangjie, LUO Dongxiang, CHEN Menghui, XIE Ying, FANG Yuexin, LIN Tingyan, LI Aimin, LI Wenjing, DENG Zheng, DING Nengshui. Research on Genomic Selection of Reproductive Traits in Landrace Pigs Based on Chip Data [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 213-221. |
[2] | NIU Yifan, LI Chongyang, ZHANG Peipei, ZHANG Hang, FENG Xiaoyi, YU Zhou, CAO Jianhua, DU Weihua, WAN Pengcheng, MA Youji, ZHAO Xueming. Microamplification System Evaluation of Bovine Biopsied Embryo Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 246-258. |
[3] | Jinbu WANG, Jia LI, Deming REN, Lixian WANG, Ligang WANG. Progress in the Application of Machine Learning in Livestock and Poultry Genomic Selection [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2775-2785. |
[4] | Zijiao GUO, Weijie ZHENG, Wei SUN, Baojiang WU, Xiangnan BAO, Qi ZHANG, Jinfeng HE, Siqin BAO, Gaoping ZHAO, Zixin WANG, Bo HAN, Xihe LI, Dongxiao SUN. Study on Genomic Selection of Embryos in Holstein Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2940-2950. |
[5] | Jing LI, Yuanxu ZHANG, Zezhao WANG, Yan CHEN, Lingyang XU, Lupei ZHANG, Xue GAO, Huijiang GAO, Junya LI, Bo ZHU, Peng GUO. Research Progress in Machine Learning Genomic Selection [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2281-2292. |
[6] | Huaxuan WU, Zhiqiang DU. Methods of Genotype Feature Extraction Affecting the Prediction Accuracy of Genomic Selection [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2431-2440. |
[7] | ZHONG Xin, ZHANG Hui, ZHANG Chong, LIU Xiaohong. Research Progress on Genetic Breeding of Reproductive Performance in Sows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 438-450. |
[8] | LI Keanning, DU Lili, AN Bingxing, DENG Tianyu, LIANG Mang, CAO Sheng, DU Yueying, XU Lingyang, GAO Xue, ZHANG Lupei, LI Junya, GAO Huijiang. Genetic Parameter Estimation and Genome-Wide Association Study for Carcass Traits and Primal Cuts Weight Traits in Huaxi Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3664-3676. |
[9] | WANG Wannian, CHEN Sijia, GAO Jinrong, WEN Zhonghao, YUAN Mengjiao, ZHANG Hongzhi, PANG Zhixu, QIAO Liying, LIU Wenzhong. Simulation Study on Genomic Selection of Sex-limited Traits Using Multilayer Perceptron in Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2824-2835. |
[10] | YANG Kai, LU Zhuoda, HE Jian, ZHANG Ruiqi, WANG Suqing, LI Kebiao, ZHAO Yunxiang, ZHU Xiaoping, GUO Jinbiao. The Population Effect of Commercial Pigs on the Accuracy of Genomic Selection for Carcass Traits in Duroc Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(12): 4943-4951. |
[11] | SUN Dongxiao, ZHANG Shengli, ZHANG Qin, LI Jiao, ZHANG Guixiang, LIU Chousheng, ZHENG Weijie. Application Progress on Genomic Selection Technology for Dairy Cattle in China [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4028-4039. |
[12] | MA Haoran, ZHANG Lupei, JIN Shengyun, BAO Jinshan, LI Hongyan, GAO Huijiang, XU Lingyang, WANG Zezhao, LI Junya. Assessment of the Genomic Relationships for Chinese Indigenous Beef Cattle Using High-density SNP Chip [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4174-4185. |
[13] | SHI Rui, SU Guosheng, CHEN Ziwei, LI Xiang, LUO Hanpeng, LIU Lin, GUO Gang, ZHANG Yi, WANG Yachun, ZHANG Shengli, ZHANG Qin. Comparisons of Genomic Predictions for Fertility Traits in Chinese Holstein Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2944-2954. |
[14] | PANG Zhixu, ZHANG Hongzhi, QIAO Liying, WANG Wannian, PAN Yangyang, LIU Wenzhong. Simulation Study on Joint Genomic Breeding Using Metafounders [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2172-2181. |
[15] | DING Jiqiang, LI Qinghe, ZHANG Gaomeng, LI Sen, ZHENG Maiqing, WEN Jie, ZHAO Guiping. Comparing the Accuracy of Estimated Breeding Value by Several Algorithms on Laying Traits in Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1364-1372. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||