

Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (12): 5952-5962.doi: 10.11843/j.issn.0366-6964.2025.12.002
• REVIEW • Previous Articles Next Articles
CAO Jinping, CAI Zexi, LI Lingfeng, LIU Guangbin*
Received:2025-05-13
Published:2025-12-24
CLC Number:
CAO Jinping, CAI Zexi, LI Lingfeng, LIU Guangbin. Gene Modification Technology and Its Application in Breeding for Disease Resistance in Cattle and Small Ruminants[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(12): 5952-5962.
| [1] SHAKWEER W M E, KRIVORUCHKO A Y, DESSOUKI S M, et al. A review of transgenic animal techniques and their applications[J]. J Genet Eng Biotechnol, 2023, 21(1): 55. [2] WHEELER M B, CAMPION D R. Animal production——a longstanding biotechnological success[J]. Am J Clin Nutr, 1993, 58(2 Suppl): 276S-281S. [3] JAENISCH R,MINTZ B. Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA[J]. Proc Natl Acad Sci U S A, 1974,71(4):1250-1254. [4] 朱元芳,韩永胜,张建胜,等. 基因编辑技术在牛羊育种中的应用[J]. 现代畜牧科技, 2024(8): 61-64. ZHU Y F, HAN Y S, ZHANG J S, et al. Application of gene editing technology in cattle and sheep breeding [J]. Modern Animal Science and Technology, 2024(8): 61-64.(in Chinese) [5] GOLDMAN I L, KADULIN S G, RAZIN S V. Transgenic animals in medicine: integration and expression of foreign genes, theoretical and applied aspects[J]. Med Sci Monit, 2004, 10(11): RA274-RA285. [6] VOSS A K, SANDMOLLER A, SUSKE G, et al. A comparison of mouse and rabbit embryos for the production of transgenic animals by pronuclear microinjection[J]. Theriogenology, 1990, 34(5): 813-824. [7] GAVIN W, BLASH S, BUZZELL N, et al. Generation of transgenic goats by pronuclear microinjection: a retrospective analysis of a commercial operation (1995-2012)[J]. Transgenic Res, 2018, 27(1): 115-122. [8] PU X, YOUNG A P, KUBISCH H M. Production of Transgenic Mice by Pronuclear Microinjection[J]. Methods Mol Biol, 2019, 1874: 17-41. [9] 王佳美,黄永震,高 晨,等. 多能性干细胞概述及其在家畜上的研究进展[J]. 畜牧兽医学报, 2025, 56 (4): 1473-1483. WANG J M, HUANG Y Z, GAO C, et al. Overview of pluripotent stem cells and research progress in livestock [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56 (4): 1473-1483. (in Chinese) [10] MITALIPOVA M, BEYHAN Z, FIRST N L. Pluripotency of bovine embryonic cell line derived from precompacting embryos[J]. Cloning, 2001, 3(2): 59-67. [11] BAO L, HE L, CHEN J, et al. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors[J]. Cell Res, 2011, 21(4): 600-608. [12] CHOI E, YOON S, KOH Y E, et al. Maintenance of genome integrity and active homologous recombination in embryonic stem cells[J]. Exp Mol Med, 2020, 52(8): 1220-1229. [13] CORTES D, ROBLEDO-ARRATIA Y, HERNANDEZ-MARTINEZ R, et al. Transgenic GDNF positively influences proliferation, differentiation, maturation and survival of motor neurons produced from mouse embryonic stem cells[J]. Front Cell Neurosci, 2016, 10: 217. [14] SECHER J O, LIU Y, PETKOV S, et al. Evaluation of porcine stem cell competence for somatic cell nuclear transfer and production of cloned animals[J]. Anim Reprod Sci, 2017, 178: 40-49. [15] TRAN M Y, KAMEN A A. Production of lentiviral vectors using a HEK-293 producer cell line and advanced perfusion processing[J]. Front Bioeng Biotechnol, 2022, 10: 887716. [16] HOFFMANN M D, SORENSEN R J, EXTROSS A, et al. Protein carrier adeno-associated virus[J]. ACS Nano, 2025, 19(12): 12308-12322. [17] WANG M, SUN Z, YU T, et al. Large-scale production of recombinant human lactoferrin from high-expression, marker-free transgenic cloned cows[J]. Sci Rep, 2017, 7(1): 10733. [18] 罗依妮,王 露. 转座子的研究现状[J]. 中国细胞生物学学报, 2024, 46(7): 1323-1334. LUO Y N, WANG L. Current research on transposons [J]. Chinese Journal of Cell Biology, 2024, 46(7): 1323-1334.(in Chinese) [19] RINGERTZ N R. The discovery of “jumping genes” in corn gave the entire Nobel prize to a 81-year woman (Barbara McClintock)[J]. Lakartidningen, 1983, 80(42): 3908-3910. [20] WATERSTON R H, LINDBLAD-TOH K, BIRNEY E, et al. Initial sequencing and comparative analysis of the mouse genome[J]. Nature, 2002, 420(6915): 520-562. [21] SPADAFORA C. Sperm-mediated gene transfer: mechanisms and implications[J]. Soc Reprod Fertil Suppl, 2007, 65: 459-467. [22] SAMENI M, MORADBEIGI P, HOSSEINI S, et al. ZIF-8 nanoparticle: A valuable tool for improving gene delivery in sperm-mediated gene transfer[J]. Biol Proced Online, 2024, 26(1): 4. [23] DEHGHAN Z, DARYA G, MEHDINEJADIANI S, et al. Comparison of two methods of sperm- and testis-mediated gene transfer in production of transgenic animals: A systematic review[J]. Anim Genet, 2024, 55(3): 328-343. [24] GARCIA-VAZQUEZ F A, RUIZ S, GRULLON L A, et al. Factors affecting porcine sperm mediated gene transfer[J]. Res Vet Sci, 2011, 91(3): 446-453. [25] YUM S, LEE S, PARK S, et al. Long-term health and germline transmission in transgenic cattle following transposon-mediated gene transfer[J]. BMC Genomics, 2018, 19(1): 387. [26] DHUP S, MAJUMDAR S S. Transgenesis via permanent integration of genes in repopulating spermatogonial cells in vivo[J]. Nat Methods, 2008, 5(7): 601-603. [27] PRAMOD R K, MITRA A. Intratesticular injection followed by electroporation allows gene transfer in caprine spermatogenic cells[J]. Sci Rep, 2018,8(1):3169. [28] DEHGHAN Z, DARYA G, MEHDINEJADIANI S, et al. Comparison of two methods of sperm- and testis-mediated gene transfer in production of transgenic animals: A systematic review[J]. Anim Genet, 2024, 55(3): 328-343. [29] OGURA A, MATOBA S, INOUE K. 25th Anniversary Of Cloning By Somatic-Cell Nuclear tRANSFER: Epigenetic abnormalities associated with somatic cell nuclear transfer[J]. Reproduction, 2021, 162(1): F45-F58. [30] SWEGEN A, APPELTANT R, WILLIAMS S A. Cloning in action: can embryo splitting, induced pluripotency and somatic cell nuclear transfer contribute to endangered species conservation?[J]. Biol Rev Camb Philos Soc, 2023, 98(4): 1225-1249. [31] MCCUTCHEON S R, ROHM D, IGLESIAS N, et al. Epigenome editing technologies for discovery and medicine[J]. Nat Biotechnol, 2024, 42(8): 1199-1217. [32] TRAN N T, HAN R. Rapidly evolving genome and epigenome editing technologies[J]. Mol Ther, 2024, 32(9): 2803-2806. [33] CETIN B, ERENDOR F, EKSI Y E, et al. Gene and cell therapy of human genetic diseases: Recent advances and future directions[J]. J Cell Mol Med, 2024, 28(17): e70056. [34] ADANE M, ALAMNIE G. CRISPR/Cas9 mediated genome editing for crop improvement against abiotic stresses: current trends and prospects[J]. Funct Integr Genomics, 2024, 24(6): 199. [35] PASCHON D E, LUSSIER S, WANGZOR T, et al. Diversifying the structure of zinc finger nucleases for high-precision genome editing[J]. Nat Commun, 2019, 10(1): 1133. [36] WANI A K, AKHTAR N, SINGH R, et al. Genome centric engineering using ZFNs, TALENs and CRISPR-Cas9 systems for trait improvement and disease control in Animals[J]. Vet Res Commun, 2023, 47(1): 1-16. [37] PASCHON D E, LUSSIER S, WANGZOR T, et al. Diversifying the structure of zinc finger nucleases for high-precision genome editing[J]. Nat Commun, 2019, 10(1): 1133. [38] LIU L, ZHANG Y, LIU M, et al. Structural insights into the specific recognition of 5-methylcytosine and 5-hydroxymethylcytosine by TAL effectors[J]. J Mol Biol, 2020, 432(4): 1035-1047. [39] ABDALLAH N A, PRAKASH C S, MCHUGHEN A G. Genome editing for crop improvement: Challenges and opportunities[J]. GM Crops Food, 2015, 6(4): 183-205. [40] ZHANG Y, LIU L, GUO S, et al. Deciphering TAL effectors for 5-methylcytosine and 5-hydroxymethylcytosine recognition[J]. Nat Commun, 2017, 8(1): 901. [41] ZHU Y. Advances in CRISPR/Cas9[J]. Biomed Res Int, 2022, 2022: 9978571. [42] DING S, LIU J, HAN X, et al. CRISPR/Cas9-mediated genome editing in cancer therapy[J]. Int J Mol Sci, 2023, 24(22):16325. [43] LIU Z, SHI M, REN Y, et al. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy[J]. Mol Cancer, 2023, 22(1): 35. [44] HUAI C, LI G, YAO R, et al. Structural insights into DNA cleavage activation of CRISPR-Cas9 system[J]. Nat Commun, 2017, 8(1): 1375. [45] DOMAN J L, RAGURAM A, NEWBY G A, et al. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors[J]. Nat Biotechnol, 2020, 38(5): 620-628. [46] LIU Z, CHEN S, XIE W, et al. Versatile and efficient in vivo genome editing with compact Streptococcus pasteurianus Cas9[J]. Mol Ther, 2022, 30(1): 256-267. [47] HUSSAIN M S, BISHT A S, ALI H, et al. Glutathione-responsive nanoparticles for optimized Cas9/sgRNA gene editing delivery[J]. Curr Drug Targets, 2025. doi: 10.2174/0113894501370119250409074208. [48] ZHAO D, JIANG G, LI J, et al. Imperfect guide-RNA (igRNA) enables CRISPR single-base editing with ABE and CBE[J]. Nucleic Acids Res, 2022, 50(7): 4161-4170. [49] BADIA-BRINGUE G, CANIVE M, VAZQUEZ P, et al. Genome-wide association study reveals quantitative trait loci and candidate genes associated with high interferon-gamma production in Holstein cattle naturally infected with mycobacterium bovis[J]. Int J Mol Sci, 2024, 25(11): 6165. [50] GONZALEZ-RUIZ S, STRILLACCI M G, DURAN-AGUILAR M, et al. Genome-wide association study in mexican holstein cattle reveals novel quantitative trait loci regions and confirms mapped loci for resistance to bovine tuberculosis[J]. Animals (Basel), 2019, 9(9):636. [51] YU Y, JIN C, FU R, et al. Splenic comparative transcriptome analysis reveals the immunological mode of undomesticated Gayal (Bos frontalis) for adapting to harsh environments[J]. BMC Genomics, 2025, 26(1): 514. [52] MALLIKARJUNAPPA S, SHANDILYA U K, SHARMA A, et al. Functional analysis of bovine interleukin-10 receptor alpha in response to Mycobacterium avium subsp. paratuberculosis lysate using CRISPR/Cas9[J]. BMC Genet, 2020, 21(1): 121. [53] HUANG K, YUAN L, LIU J, et al. Application of multi-omics technology in pathogen identification and resistance gene screening of sheep pneumonia[J]. BMC Genomics, 2025, 26(1): 507. [54] 刘华阳,李祥明. 我国疯牛病传染因子研究进展[J]. 饲料工业, 2020, 41(15): 60-64. LIU H Y, LI X M. Research progress on the transmissible agent of bovine spongiform encephalopathy in China [J]. Feed Industry, 2020, 41(15): 60-64.(in Chinese) [55] 刘美丽,赵德明. 疯牛病与转基因动物研究[J]. 中国动物检疫, 2004(9): 46-49. LIU M L, ZHAO D M. BSE and transgenic animal research [J]. China Animal Quarantine, 2004(9): 46-49.(in Chinese) [56] RICHT J A, KASINATHAN P, HAMIR A N, et al. Production of cattle lacking prion protein[J]. Nat Biotechnol, 2007, 25(1): 132-138. [57] BEVACQUA R J, FERNANDEZ-MARTIN R, SAVY V, et al. Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system[J]. Theriogenology, 2016, 86(8): 1886-1896. [58] BEVACQUA R J, FERNANDEZ-MARTIN R, SAVY V, et al. Efficient edition of the bovine PRNP prion gene in somatic cells and IVF embryos using the CRISPR/Cas9 system[J]. Theriogenology, 2016, 86(8): 1886-1896. [59] ZIGO F, VASIL' M, ONDRASOVICOVA S, et al. Maintaining optimal mammary gland health and prevention of mastitis[J]. Front Vet Sci, 2021, 8: 607311. [60] KERR D E, PLAUT K, BRAMLEY A J, et al. Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice[J]. Nat Biotechnol, 2001, 19(1): 66-70. [61] FAN W, PLAUT K, BRAMLEY A J, et al. Adenoviral-mediated transfer of a lysostaphin gene into the goat mammary gland[J]. J Dairy Sci, 2002, 85(7): 1709-1716. [62] LIU X, WANG Y, GUO W, et al. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows[J]. Nat Commun, 2013,4:2565 [63] SHANDILYA U K, SHARMA A, MALLIKARJUNAPPA S, et al. CRISPR-Cas9-mediated knockout of TLR4 modulates Mycobacterium avium ssp. paratuberculosis cell lysate-induced inflammation in bovine mammary epithelial cells[J]. J Dairy Sci, 2021, 104(10): 11135-11146. [64] FENG R, ZHAO J, ZHANG Q, et al. Generation of anti-mastitis gene-edited dairy goats with enhancing lysozyme expression by inflammatory regulatory sequence using ISDra2-TnpB system[J]. Adv Sci (Weinh), 2024, 11(38): e2404408. [65] REIS A C, RAMOS B, PEREIRA A C, et al. Global trends of epidemiological research in livestock tuberculosis for the last four decades[J]. Transbound Emerg Dis, 2021, 68(2): 333-346. [66] WU H, WANG Y, ZHANG Y, et al. TALE nickase-mediated SP110 knockin endows cattle with increased resistance to tuberculosis[J]. Proc Natl Acad Sci U S A, 2015, 112(13): E1530-E1539. [67] SU F, CHEN X, LIU X, et al. Expression of recombinant HBD3 protein that reduces Mycobacterial infection capacity[J].AMB Express, 2018,8(1):42. [68] GAO Y, WU H, WANG Y, et al. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects[J]. Genome Biol, 2017, 18(1): 13. [69] DIAZ-SAN SEGUNDO F, MEDINA G N, STENFELDT C, et al. Foot-and-mouth disease vaccines[J]. Vet Microbiol, 2017, 206: 102-112. [70] TANG J, ABDULLAH S W, LI P, et al. Heat shock protein 60 is involved in viral replication complex formation and facilitates foot and mouth virus replication by stabilizing viral nonstructural proteins 3A and 2C[J]. mBio, 2022, 13(5): e0143422. [71] LI W, WANG K, KANG S, et al. Tongue epithelium cells from shRNA mediated transgenic goat show high resistance to foot and mouth disease virus[J]. Sci Rep, 2015, 5: 17897. [72] DENG S, LI G, YU K, et al. RNAi combining Sleeping Beauty transposon system inhibits ex vivo expression of foot-and-mouth disease virus VP1 in transgenic sheep cells[J]. Sci Rep, 2017, 7(1): 10065. [73] HOU S, WANG X, REN S, et al. Knockout of HDAC9 gene enhances foot-and-mouth disease virus replication[J]. Front Microbiol, 2022, 13: 805606. [74] WU X, YANG Y, RU Y, et al. Knockout of the WD40 domain of ATG16L1 enhances foot and mouth disease virus replication[J]. BMC Genomics, 2024, 25(1): 796. |
| [1] | SUN Pinzhi, QU Yingying, ZHANG Qin, YANG Liwen, LI Yange, ZHANG Yiqingqing, ZHANG Yu, LU Hao. Correlation Analysis of the p5cr Gene in Swainsonine Biosynthesis in Metarhizium anisopliae [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(9): 4718-4729. |
| [2] | ZHANG Fan, ZENG Wei, ZHOU Ao. Advances in Gene Editing for Disease Resistance Breeding in Livestock and Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(7): 3047-3056. |
| [3] | LI Xiaohan, LI Guiping, HUO Caiyun, ZHANG Qilong, SUN Yingjian, SUN Huiling. Class II CRISPR/Cas Systems and Their Applications in Bacterial Synthetic Biology [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(4): 1608-1620. |
| [4] | YUE Yibing, LI Junliang, BAO Binwu, GAO Chen, CHEN Yan, ZHU Bo, ZHANG Lupei, WANG Zezhao, GAO Huijiang, GAO Xue, HUANG Yongzhen, LI Junya. Research Progress on OMEGA Gene Editing System: Structure, Function, and Optimization Strategies [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5335-5351. |
| [5] | ZHANG Liuzhe, ZHAO Jianan, ZHANG Liqiong, ZHANG Yurong, TANG Lu, LI Junliang, GUO Huihui. Construction of XIST Gene Knockout Fibroblast Cell Line from Huaxi Cattle Using CRISPR-Cas12i Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(11): 5464-5474. |
| [6] | BAO Binwu, ZOU Huiying, LI Junliang, GAO Chen, GAO Huijiang, DU Zhenwei, ZHANG Boyu, LI Junya, GAO Xue. Research Progress in Gene Editing Technology [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 1-14. |
| [7] | Ruiying LIANG, Jingxia SUO, Lin LIANG, Xianyong LIU, Jiabo DING, Xun SUO, Xinming TANG. Genetic Manipulation of Eimeria: Platform Development, Application, and Perspective [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3362-3373. |
| [8] | Wenwen LIU, Faming DONG, Yanzhen BI. The Development of Multi-Gene Editing Technology and Its Application in Agricultural Biological Germplasm Innovation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3267-3275. |
| [9] | LI Jiannan, YUAN Liming, HUA Jinlian. Progress on the Application of CD46 in Breeding of Livestock for Disease Resistance [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1866-1874. |
| [10] | WU Shangjie, LUAN Yuanyuan, WANG Mingkun, ZHANG Hechun, YU Bo, MA Yuehui, JIANG Lin, HE Xiaohong. Advances of Disease-Resistant Breeding on Ovine Brucellosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 882-893. |
| [11] | ZHANG Duo, TENG Man, ZHANG Zhuo, LIU Jinling, ZHENG Luping, GE Siyu, HAN Fang, LUO Qin, CHAI Shujun, ZHAO Dong, YU Zuhua, LUO Jun. Development and Pathogenicity Analysis of a meq-gene-edited Candidate Marek's Disease Vaccine Strain Generated from a Hypervirulent MDV Variant [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5672-5683. |
| [12] | Xuefu ZHANG, Yuntong CHEN, Wenrui FAN, Zibo ZHANG, Mengmeng YU, Suyan WANG, Xiaole QI, Liuan LI, Yulong GAO. Construction of Chicken chNHE1 Gene Editing Cell Line and Analysis of Its Resistance to ALV-J Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5238-5246. |
| [13] | Xiuhu DING, Zhiping LIN, Fang ZHAO, Kunlin CHEN, Jifeng ZHONG, Yan ZHANG, Yundong GAO, Huixia LI, Huili WANG, Jianli ZHANG, Qiang DING. Highly Efficient BLG Knockout in Bovine Mammary Epithelial Cells by Using CRISPR/Cas9 [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4475-4488. |
| [14] | ZHANG Chenjian, LI Yinxia, DING Qiang, LIU Weijia, WANG Huili, HE Nan, WU Jiashun, CAO Shaoxian. Efficient Preparation of CRISPR/Cas9-mediated Goat SOCS2 Gene Edited Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 129-141. |
| [15] | LIU Ling, WANG Dandan, CUI Kai, MA Yuehui, JIANG Lin. Advances of Disease-Resistant Breeding on Porcine Reproductive and Respiratory Syndrome [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(2): 434-442. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||