Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (3): 882-893.doi: 10.11843/j.issn.0366-6964.2024.03.003
• REVIEW • Previous Articles Next Articles
WU Shangjie1, LUAN Yuanyuan1, WANG Mingkun1, ZHANG Hechun2, YU Bo2, MA Yuehui1, JIANG Lin1, HE Xiaohong1*
Received:
2023-09-05
Online:
2024-03-23
Published:
2024-03-27
CLC Number:
WU Shangjie, LUAN Yuanyuan, WANG Mingkun, ZHANG Hechun, YU Bo, MA Yuehui, JIANG Lin, HE Xiaohong. Advances of Disease-Resistant Breeding on Ovine Brucellosis[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 882-893.
[1] PAPPAS G, PAPADIMITRIOU P, AKRITIDIS N, et al.The new global map of human brucellosis[J].Lancet Infect Dis, 2006, 6(2):91-99. [2] MORENO E.The one hundred year journey of the genus Brucella (Meyer and Shaw 1920)[J].FEMS Microbiol Rev, 2021, 45(1):fuaa045. [3] 高彦辉, 赵丽军, 孙殿军, 等.布鲁氏菌病防治基础研究现状与展望[J].中国科学:生命科学, 2014, 44(6):628-635. GAO Y H, ZHAO L J, SUN D J, et al.Status and perspective of basic research related to the prevention and control of brucellosis[J].Scientia Sinica Vitae, 2014, 44(6):628-635.(in Chinese) [4] MA J Y, WANG H, ZHANG X F, et al.MLVA and MLST typing of Brucella from Qinghai, China[J].Infect Dis Poverty, 2016, 5:26. [5] CAO X A, LI S E, LI Z C, et al.Enzootic situation and molecular epidemiology of Brucella in livestock from 2011 to 2015 in Qingyang, China[J].Emerg Microbes Infect, 2018, 7(1):1-8. [6] YANG X W, PIAO D, MAO L L, et al.Whole-genome sequencing of rough Brucella melitensis in China provides insights into its genetic features[J].Emerg Microbes Infect, 2020, 9(1):2147-2156. [7] 汪洁英, 宁 博, 景 伟, 等.布鲁氏菌病及其在我国的防控现状与建议[J].中国兽医科学, 2022, 52(12):1578-1585. WANG J Y, NING B, JING W, et al.Research progress and suggestions regarding on the prevention and control of brucellosis in China:a review[J].Chinese Veterinary Science, 2022, 52(12):1578-1585.(in Chinese) [8] JIANG H, O'CALLAGHAN D, DING J B.Brucellosis in China:history, progress and challenge[J].Infect Dis Poverty, 2020, 9(1):55. [9] OLSEN S C, STOFFREGEN W S.Essential role of vaccines in brucellosis control and eradication programs for livestock[J].Expert Rev Vaccines, 2005, 4(6):915-928. [10] JIAO H W, ZHOU Z X, LI B W, et al.The mechanism of facultative intracellular parasitism of Brucella[J].Int J Mol Sci, 2021, 22(7):3673. [11] CONDE-ÁLVAREZ R, ARCE-GORVEL V, IRIARTE M, et al.The lipopolysaccharide core of Brucella abortus acts as a shield against innate immunity recognition[J].PLoS Pathog, 2012, 8(5):e1002675. [12] MANCILLA M.Smooth to Rough dissociation in Brucella:the missing link to virulence[J].Front Cell Infect Microbiol, 2016, 5:98. [13] ROOP II R M, BARTON I S, HOPERSBERGER D, et al.Uncovering the hidden credentials of Brucella virulence[J].Microbiol Mol Biol Rev, 2021, 85(1):e00021-19. [14] COPIN R, VITRY M A, HANOT MAMBRES D, et al.In situ microscopy analysis reveals local innate immune response developed around Brucella infected cells in resistant and susceptible mice[J].PLoS Pathog, 2012, 8(3):e1002575. [15] LINGWOOD D, SIMONS K.Lipid rafts as a membrane-organizing principle[J].Science, 2010, 327(5961):46-50. [16] WATARAI M, MAKINO S I, FUJII Y, et al.Modulation of Brucella-induced macropinocytosis by lipid rafts mediates intracellular replication[J].Cell Microbiol, 2002, 4(6):341-355. [17] ARELLANO-REYNOSO B, LAPAQUE N, SALCEDO S, et al.Cyclic β-1, 2-glucan is a brucella virulence factor required for intracellular survival[J].Nat Immunol, 2005, 6(6):618-625. [18] GUIDOLIN L S, ARCE-GORVEL V, CIOCCHINI A E, et al.Cyclic β-glucans at the bacteria-host cells interphase:one sugar ring to rule them all[J].Cell Microbiol, 2018, 20(6):e12850. [19] LEE J J, KIM D G, KIM D H, et al.Interplay between clathrin and Rab5 controls the early phagocytic trafficking and intracellular survival of Brucella abortus within HeLa cells[J].J Biol Chem, 2013, 288(39):28049-28057. [20] METTLEN M, CHEN P H, SRINIVASAN S, et al.Regulation of clathrin-mediated endocytosis[J].Annu Rev Biochem, 2018, 87:871-896. [21] EHRLICH M, BOLL W, VAN OIJEN A, et al.Endocytosis by random initiation and stabilization of clathrin-coated pits[J].Cell, 2004, 118(5):591-605. [22] CELLI J, DE CHASTELLIER C, FRANCHINI D M, et al.Brucella evades macrophage killing via VirB-dependent sustained interactions with the endoplasmic reticulum[J].J Exp Med, 2003, 198(4):545-556. [23] VON BARGEN K, GORVEL J P, SALCEDO S P.Internal affairs:investigating the Brucella intracellular lifestyle[J].FEMS Microbiol Rev, 2012, 36(3):533-562. [24] BOSCHIROLI M L, OUAHRANI-BETTACHE S, FOULONGNE V, et al.The Brucella suis virB operon is induced intracellularly in macrophages[J].Proc Natl Acad Sci U S A, 2002, 99(3):1544-1549. [25] MILLER C N, SMITH E P, CUNDIFF J A, et al.A Brucella type IV effector targets the COG tethering complex to remodel host secretory traffic and promote intracellular replication[J].Cell Host Microbe, 2017, 22(3):317-329.e7. [26] FUGIER E, SALCEDO S P, DE CHASTELLIER C, et al.The glyceraldehyde-3-phosphate dehydrogenase and the small GTPase Rab 2 are crucial for Brucella replication[J].PLoS Pathog, 2009, 5(6):e1000487. [27] SEDZICKI J, TSCHON T, LOW S H, et al.3D correlative electron microscopy reveals continuity of Brucella-containing vacuoles with the endoplasmic reticulum[J].J Cell Sci, 2018, 131(4):jcs210799. [28] RAMBOW-LARSEN A A, PETERSEN E M, GOURLEY C R, et al.Brucella regulators:self-control in a hostile environment[J].Trends Microbiol, 2009, 17(8):371-377. [29] STARR T, CHILD R, WEHRLY T D, et al.Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle[J].Cell Host Microbe, 2012, 11(1):33-45. [30] HIYOSHI H, ENGLISH B C, DIAZ-OCHOA V E, et al.Virulence factors perforate the pathogen-containing vacuole to signal efferocytosis[J].Cell Host Microbe, 2022, 30(2):163-170.e6. [31] 张世栋, 金维江.动物抗病育种研究进展[J].中国畜牧杂志, 1999, 35(4):55-57. ZHANG S D, JIN W J.Research progress in animal disease resistance breeding[J].Chinese Journal of Animal Science, 1999, 35(4):55-57.(in Chinese) [32] 朱猛进, 吴珍芳, 赵书红.猪抗病育种研究进展及对几个认识问题的讨论[J].中国畜牧兽医, 2007, 34(4):63-67. ZHU M J, WU Z F, ZHAO S H.Research progress on pig disease resistance breeding and discussion of several cognitive issues[J].China Animal Husbandry & Veterinary Medicine, 2007, 34(4):63-67.(in Chinese) [33] 施启顺.畜禽抗病育种研究进展[J].中国畜牧杂志, 1995, 31(6):48-51. SHI Q S.Research progress in disease resistance breeding of livestock and poultry[J].Chinese Journal of Animal Science, 1995, 31(6):48-51.(in Chinese) [34] CAMERON H S, HUGHES E H, GREGORY P W.Genetic resistance to brucellosis in swine[J].J Anim Sci, 1942, 1(2):106-110. [35] 朱 波.鸡H/L选育系选择效果分析及功能基因筛选[D].北京:中国农业科学院, 2019. ZHU B.Chicken H/L selection effect analysis and functional gene screening[D].Beijing:Chinese Academy of Agricultural Sciences, 2019.(in Chinese) [36] 王笑言.抗DHAV-3北京鸭专门化品系的选育及G2代群体的抗病力差异机制[D].北京:中国农业科学院, 2017. WANG X Y.Study on the resistant breeding of Pekin duck and the differences in the second generation resistance to DHAV-3[D].Beijing:Chinese Academy of Agricultural Sciences, 2017.(in Chinese) [37] 谢晓刚, 薛 嘉, 康 健, 等.基因编辑技术发展及其在家畜上的应用[J].农业生物技术学报, 2019, 27(1):139-149. XIE X G, XUE J, KANG J, et al.Development of gene editing techniques and its application in livestock[J].Journal of Agricultural Biotechnology, 2019, 27(1):139-149.(in Chinese) [38] DENG S L, WU Q, YU K, et al.Changes in the relative inflammatory responses in sheep cells overexpressing of toll-like receptor 4 when stimulated with LPS[J].PLoS One, 2012, 7(10):e47118. [39] LI Y, LIAN D, DENG S L, et al.Efficient production of pronuclear embryos in breeding and nonbreeding season for generating transgenic sheep overexpressing TLR4[J].J Anim Sci Biotechnol, 2016, 7:38. [40] 杨爱玲, 李广栋, 吴 昊, 等.褪黑素合成酶AANAT/ASMT基因过表达绵羊生物安全评价研究[J].畜牧兽医学报, 2020, 51(7):1563-1572. YANG A L, LI G D, WU H, et al.Study of biosafety evaluation on melatonin synthase AANAT/ASMT overexpressed sheep[J].Acta Veterinaria et Zootechnica Sinica, 2020, 51(7):1563-1572.(in Chinese) [41] MA T, TAO J L, YANG M H, et al.An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enriched milk in sheep[J].J Pineal Res, 2017, 63(1):e12406. [42] LI G D, LV D Y, YAO Y J, et al.Overexpression of ASMT likely enhances the resistance of transgenic sheep to brucellosis by influencing immune-related signaling pathways and gut microbiota[J].FASEB J, 2021, 35(9):e21783. [43] 李林召, 张龙超.国内外抗病育种技术研究进展[J].中国畜牧兽医, 2009, 36(9):104-106. LI L Z, ZHANG L C.Research progress of disease resistance breeding technology at home and abroad[J].China Animal Husbandry & Veterinary Medicine, 2009, 36(9):104-106.(in Chinese) [44] LEMAITRE B, NICOLAS E, MICHAUT L, et al.The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in drosophila adults[J].Cell, 1996, 86(6):973-983. [45] KAWAI T, AKIRA S.Toll-like receptors and their crosstalk with other innate receptors in infection and immunity[J].Immunity, 2011, 34(5):637-650. [46] GIAMBARTOLOMEI G H, ZWERDLING A, CASSATARO J, et al.Lipoproteins, not lipopolysaccharide, are the key mediators of the proinflammatory response elicited by heat-killed Brucella abortus[J].J Immunol, 2004, 173(7):4635-4642. [47] CAMPOS P C, GOMES M T R, GUIMARÃES E S, et al.TLR7 and TLR3 sense Brucella abortus RNA to induce proinflammatory cytokine production but they are dispensable for host control of infection[J].Front Immunol, 2017, 8:28. [48] CAMPOS M A, ROSINHA G M S, ALMEIDA I C, et al.Role of toll-like receptor 4 in induction of cell-mediated immunity and resistance to Brucella abortus infection in mice[J].Infect Immun, 2004, 72(1):176-186. [49] GOMES M T, CAMPOS P C, PEREIRA G D S, et al.TLR9 is required for MAPK/NF-κB activation but does not cooperate with TLR2 or TLR6 to induce host resistance to Brucella abortus[J].J Leukoc Biol, 2016, 99(5):771-780. [50] MACEDO G C, MAGNANI D M, CARVALHO N B, et al.Central role of MyD88-dependent dendritic cell maturation and proinflammatory cytokine production to control Brucella abortus infection[J].J Immunol, 2008, 180(2):1080-1087. [51] CIRL C, WIESER A, YADAV M, et al.Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins[J].Nat Med, 2008, 14(4):399-406. [52] SMITH J A, KHAN M, MAGNANI D D, et al.Brucella induces an unfolded protein response via TcpB that supports intracellular replication in macrophages[J].PLoS Pathog, 2013, 9(12):e1003785. [53] GOMES M T R, CAMPOS P C, DE ALMEIDA L A, et al.The role of innate immune signals in immunity to Brucella abortus[J].Front Cell Infect Microbiol, 2012, 2:130. [54] KEESTRA-GOUNDER A M, BYNDLOSS M X, SEYFFERT N, et al.NOD1 and NOD2 signalling links ER stress with inflammation[J].Nature, 2016, 532(7599):394-397. [55] QIN Q M, PEI J W, ANCONA V, et al.RNAi screen of endoplasmic reticulum-associated host factors reveals a role for IRE1α in supporting Brucella replication[J].PLoS Pathog, 2008, 4(7):e1000110. [56] GOMES M T R, CAMPOS P C, OLIVEIRA F S, et al.Critical role of ASC inflammasomes and bacterial type IV secretion system in caspase-1 activation and host innate resistance to Brucella abortus infection[J].J Immunol, 2013, 190(7):3629-3638. [57] BRONNER D N, ABUAITA B H, CHEN X Y, et al.Endoplasmic reticulum stress activates the inflammasome via NLRP3-and caspase-2-driven mitochondrial damage[J].Immunity, 2015, 43(3):451-462. [58] MARIM F M, FRANCO M M C, GOMES M T R, et al.The role of NLRP3 and AIM2 in inflammasome activation during Brucella abortus infection[J].Semin Immunopathol, 2017, 39(2):215-223. [59] ISHIKAWA H, BARBER G N.STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling[J].Nature, 2008, 455(7213):674-678. [60] BARBER G N.STING:infection, inflammation and cancer[J].Nat Rev Immunol, 2015, 15(12):760-770. [61] KHAN M, HARMS J S, LIU Y P, et al.Brucella suppress STING expression via miR-24 to enhance infection[J].PLoS Pathog, 2020, 16(10):e1009020. [62] GOMES M T R, GUIMARÃES E S, MARINHO F V, et al.STING regulates metabolic reprogramming in macrophages via HIF-1α during Brucella infection[J].PLoS Pathog, 2021, 17(5):e1009597. [63] GUIMARÃES E S, GOMES M T R, SANCHES R C O, et al.The endoplasmic reticulum stress sensor IRE1α modulates macrophage metabolic function during Brucella abortus infection[J].Front Immunol, 2022, 13:1063221. [64] BARRIONUEVO P, GIAMBARTOLOMEI G H.Inhibition of antigen presentation by Brucella:many more than many ways[J].Microbes Infect, 2019, 21(3-4):136-142. [65] RAFIEI A, ARDESTANI S K, KARIMINIA A, et al.Dominant Th1 cytokine production in early onset of human brucellosis followed by switching towards Th2 along prolongation of disease[J].J Infect, 2006, 53(5):315-324. [66] ZHENG R J, XIE S S, ZHANG Q, et al.Circulating Th1, Th2, Th17, Treg, and PD-1 levels in patients with brucellosis[J].J Immunol Res, 2019, 2019:3783209. [67] HWANG E S, WHITE I A, HO I C.An IL-4-independent and CD25-mediated function of c-maf in promoting the production of Th2 cytokines[J].Proc Natl Acad Sci U S A, 2002, 99(20):13026-13030. [68] RANZANI V, ROSSETTI G, PANZERI I, et al.The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4[J].Nat Immunol, 2015, 16(3):318-325. [69] GHEITASI R, KERAMAT F, SOLGI G, et al.Investigation of Linc-MAF-4 expression as an effective marker in brucellosis[J].Mol Immunol, 2020, 123:60-63. [70] THAI T H, CALADO D P, CASOLA S, et al.Regulation of the germinal center response by microRNA-155[J]. Science, 2007, 316(5824):604-608. [71] ZHANG X, CHEN J J, CHENG H M, et al.MicroRNA-155 expression with Brucella infection in vitro and in vivo and decreased serum levels of MicroRNA-155 in patients with brucellosis[J].Sci Rep, 2022, 12(1):4181. [72] HOP H T, REYES A W B, HUY T X N, et al.Activation of NF-κB-mediated TNF-induced antimicrobial immunity is required for the efficient Brucella abortus clearance in RAW 264.7 cells[J].Front Cell Infect Microbiol, 2017, 7:437. [73] LOU L X, BAO W G, LIU X J, et al.An autoimmune disease-associated risk variant in the TNFAIP3 gene plays a protective role in brucellosis that is mediated by the NF-κB signaling pathway[J].J Clin Microbiol, 2018, 56(4):e01363-17. [74] DENG X M, GUO J, SUN Z H, et al.Brucella-induced downregulation of lncRNA Gm28309 triggers macrophages inflammatory response through the miR-3068-5p/NF-κB pathway[J].Front Immunol, 2020, 11:581517. [75] CORSETTI P P, DE ALMEIDA L A, GONÇALVES A N A, et al.miR-181a-5p regulates TNF-α and miR-21a-5p influences gualynate-binding protein 5 and IL-10 expression in macrophages affecting host control of brucella abortus infection[J].Front Immunol, 2018, 9:1331. [76] JIMÉNEZ DE BAGVÉS M P, GROSS A, TERRAZA A, et al.Regulation of the mitogen-activated protein kinases by Brucella spp. expressing a smooth and rough phenotype:relationship to pathogen invasiveness[J]. Infect Immun, 2005, 73(5):3178-3183. [77] ZHANG C Y, BAI N, ZHANG Z H, et al.TLR2 signaling subpathways regulate TLR9 signaling for the effective induction of IL-12 upon stimulation by heat-killed Brucella abortus[J].Cell Mol Immunol, 2012, 9(4):324-333. [78] DIMITRAKOPOULOS O, LIOPETA K, DIMITRACOPOULOS G, et al.Replication of Brucella melitensis inside primary human monocytes depends on mitogen activated protein kinase signaling[J].Microbes Infect, 2013, 15(6-7):450-460. [79] HOP H T, ARAYAN L T, HUY T X N, et al.The key role of c-fos for immune regulation and bacterial dissemination in Brucella infected macrophage[J].Front Cell Infect Microbiol, 2018, 8:287. [80] SCOTT I, WANG L D, WU K Y, et al.GCN5L1/BLOS1 links acetylation, organelle remodeling, and metabolism[J]. Trends Cell Biol, 2018, 28(5):346-355. [81] WELLS K M, HE K, PANDEY A, et al.Brucella activates the host RIDD pathway to subvert BLOS1-directed immune defense[J].Elife, 2022, 11:e73625. [82] WONG M T, CHEN S S L.Emerging roles of interferon-stimulated genes in the innate immune response to hepatitis C virus infection[J].Cell Mol Immunol, 2016, 13(1):11-35. [83] RANJBAR S, HARIDAS V, JASENOSKY L D, et al.A role for IFITM proteins in restriction of Mycobacterium tuberculosis infection[J].Cell Rep, 2015, 13(5):874-883. [84] YI J H, WANG Y L, ZHANG H, et al.Interferon-inducible transmembrane protein 3-containing exosome as a new carrier for the cell-to-cell transmission of anti-Brucella activity[J].Front Vet Sci, 2021, 8:642968. [85] SATHIYASEELAN J, JIANG X, BALDWIN C L.Growth of Brucella abortus in macrophages from resistant and susceptible mouse strains[J].Clin Exp Immunol, 2000, 121(2):289-294. [86] BORRIELLO G, CAPPARELLI R, BIANCO M, et al.Genetic resistance to Brucella abortus in the water buffalo (Bubalus bubalis)[J].Infect Immun, 2006, 74(4):2115-2120. [87] ANTELO G T, VILA A J, GIEDROC D P, et al.Molecular evolution of transition metal bioavailability at the host-pathogen interface[J].Trends Microbiol, 2021, 29(5):441-457. [88] TALTY A, DEEGAN S, LJUJIC M, et al.Inhibition of IRE1α RNase activity reduces NLRP3 inflammasome assembly and processing of pro-IL1β[J].Cell Death Dis, 2019, 10(9):622. [89] COSTA FRANCO M M S, MARIM F M, ALVES-SILVA J, et al.AIM2 senses Brucella abortus DNA in dendritic cells to induce IL-1β secretion, pyroptosis and resistance to bacterial infection in mice[J].Microbes Infect, 2019, 21(2):85-93. [90] ENOMA D O, BISHUNG J, ABIODUN T, et al.Machine learning approaches to genome-wide association studies[J].J King Saud Univ Sci, 2022, 34(4):101847. |
[1] | LI Jiannan, YUAN Liming, HUA Jinlian. Progress on the Application of CD46 in Breeding of Livestock for Disease Resistance [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1866-1874. |
[2] | XU Zhenyu, DENG Xiaoyu, WANG Yueli, SUN Can, WU Aodi, CAO Jian, YI Jihai, WANG Yong, WANG Zhen, CHEN Chuangfu. Biological Characteristics of Brucella abortus A19ΔBtpA Deletion Strain and Its Immunogenicity Study [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2135-2145. |
[3] | LONG Qinqin, WEI Min, WANG Yuting, WEN Ming, PANG Feng. The Battle between Orf Virus and Host: Immune Response and Viral Immune Evasion Mechanisms [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 1845-1853. |
[4] | ZHAI Yunyi, YUAN Ye, LI Junmei, TIAN Lulu, DIAO Ziyang, LI Bin, CHEN Jialu, ZHOU Dong, JIN Yaping, WANG Aihua. Preparation and Preliminary Application of Monoclonal Antibody to Brucella Outer Membrane Protein 16 [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2083-2091. |
[5] | XIANG Caixia, WANG Xiangguo, LI Junmei, ZHI Feijie, FANG Jiaoyang, ZHENG Weifang, CHEN Jialu, JIN Yaping, WANG Aihua. The Influence of Brucella Type IV Secretes System Effector Protein VceC on Endoplasmic Reticulum Stress and Gonadal Hormone Secretory in Goat Trophoblast Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1210-1220. |
[6] | WANG Yang, CUI Shuai, XIN Ting, WANG Xixi, YU Hainan, CHEN Shiyu, JIANG Yajun, GAO Xintao, PANG Zhongbao, JIANG Yitong, GUO Xiaoyu, JIA Hong, ZHU Hongfei. ASFV MGF360-14L Interacts with MAVS and Inhibit the Expression of Type Ⅰ Interferon [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 3272-3278. |
[7] | FENG Xin, WANG Mingshu, CHENG Anchun. The Role of Alpha Herpesvirus Envelope Glycoprotein C on Virus Infection and Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2867-2876. |
[8] | LI Yang, ZHOU Dong, YIN Yanlong, ZHANG Guangdong, XIANG Caixia, ZHI Feijie, BAI Furong, LIN Pengfei, JIN Yaping, WANG Aihua. Effects of Brucella Outer Membrane Protein 16 on Apoptosis and Immune Activity of RAW264.7 Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2642-2651. |
[9] | YANG Qin, DENG Xiaoyu, XIE Shanshan, YI Jihai, WANG Yong, ZHANG Qian, WANG Zhen, CHEN Chuangfu. Effects of Brucella bovis Type IV Secretion System on Endoplasmic Reticulum Stress and Apoptosis of Macrophages [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(4): 1192-1200. |
[10] | XI Jing, WANG Yueli, DENG Xiaoyu, YANG Qin, LI Peidong, ZHANG Jiangwei, SUN Tianhao, ZHU Liangquan, YI Jihai, CHEN Chuangfu. Effect of STAT6 Mediated Macrophage Polarization on Intracellular Survival of Brucella [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1): 263-271. |
[11] | MEI Li, WANG Yingchao, CHENG Rujia, YU Guoji, FAN Xuezheng, GAO Xiaolong, GAO Min, QIN Yuming, LI Xiaoying, LI Qiaoling, ZHU Liangquan, FENG Xiaoyu. A Droplet Digital PCR Method for Detection of Brucella [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(6): 1753-1759. |
[12] | FANG Chen, GUO Fei, HU Ruiju, YANG Minghua, ZHANG Bin, LIU Shaona, HUANG Ying, ZHAO Yanguang, ZHAO Sumei. Analysis of Correlation between Diarrhea and Genetic Variation of FUT1 Gene in Weaned Piglets of Hybrid Combination [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 610-619. |
[13] | JIANG Hui, FENG Yu, LI Xiaoying, FAN Xuezheng, PENG Xiaowei, DING Jiabo. Comparative Research of Four High Throughput Antibody Detection Methods for Brucella [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(11): 3208-3214. |
[14] | WANG Shuli, ZHANG Huiru, BI Yanqi, WANG Dejuan, CHEN Lin, ZHANG Xiaoting, LI Zhiqiang. Analysis of Immune Responses Induced by Brucella Transcriptional Regulatory Factor HFQ [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(8): 1977-1984. |
[15] | DAI Xueyu, ZHANG Qianyi, XU Lu, ZHAO Qizu, WANG Qin, XIA Yingju. Research Progress and Application of CRISPR/Cas9 Gene Editing Technology in Prevention and Control of Important Swine Virus Diseases [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(5): 943-951. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||