Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (8): 3321-3330.doi: 10.11843/j.issn.0366-6964.2024.08.006
• Review • Previous Articles Next Articles
Jiali ZHOU(), Baolong DING, Ziming MA, Xingang DAN*(
), Hongxi ZHAO*(
)
Received:
2023-09-18
Online:
2024-08-23
Published:
2024-08-28
Contact:
Xingang DAN, Hongxi ZHAO
E-mail:2321966034@qq.com;danxingang2013@163.com;zhaohongxi2006@163.com
CLC Number:
Jiali ZHOU, Baolong DING, Ziming MA, Xingang DAN, Hongxi ZHAO. Research Progress on the Correlation between Endometritis and Gastrointestinal Microorganisms and the Role of Probiotics in Dairy Cows[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3321-3330.
Fig. 1
Origin of uterine microorganisms in dairy cows The source of uterine microorganisms in dairy cows was previously considered to be mainly from exogenous sources, such as skin injury, feeding management and postpartum care, etc. Recent studies have shown that external environmental infections are not the only source of the uterine microbiota, which may also originate from endogenous pathways in the digestive and genitourinary tracts of animals"
1 |
姚鑫鑫, 吴春阳, 李志明, 等. 奶牛阴道菌群的多样性与产后子宫内膜炎的相关性研究[J]. 安徽农业科学, 2021, 49 (6): 106- 111.
doi: 10.3969/j.issn.0517-6611.2021.06.029 |
YAO X X , WU C Y , LI Z M , et al. Study on the correlation between the diversity of vaginal flora and the incidence of postpartum endometritis in dairy cows[J]. Journal of Anhui Agricultural Sciences, 2021, 49 (6): 106- 111.
doi: 10.3969/j.issn.0517-6611.2021.06.029 |
|
2 |
DE LIMA F S . Recent advances and future directions for uterine diseases diagnosis, pathogenesis, and management in dairy cows[J]. Anim Reprod, 2020, 17 (3): e20200063.
doi: 10.1590/1984-3143-ar2020-0063 |
3 |
ZHONG Y F , XUE M Y , LIU J X . Composition of rumen bacterial community in dairy cows with different levels of somatic cell counts[J]. Front Microbiol, 2018, 9, 3217.
doi: 10.3389/fmicb.2018.03217 |
4 |
ZHANG Q L , PAN Y Y , WANG M , et al. In vitro evaluation of probiotic properties of lactic acid bacteria isolated from the vagina of yak (Bos grunniens)[J]. PeerJ, 2022, 10, e13177.
doi: 10.7717/peerj.13177 |
5 |
YANG L , HUANG W Q , YANG C C , et al. Using PacBio sequencing to investigate the effects of treatment with lactic acid bacteria or antibiotics on cow endometritis[J]. Electron J Biotechnol, 2021, 51, 67- 78.
doi: 10.1016/j.ejbt.2021.02.004 |
6 |
GENÍS S , BACH À , FÀBREGAS F , et al. Potential of lactic acid bacteria at regulating Escherichia coli infection and inflammation of bovine endometrium[J]. Theriogenology, 2016, 85 (4): 625- 637.
doi: 10.1016/j.theriogenology.2015.09.054 |
7 | 王宁宁. 奶牛临床型子宫内膜炎主要致病菌的分离鉴定及多重PCR检测方法的建立[D]. 杨凌: 西北农林科技大学, 2019. |
WANG N N. Identification of the main pathogen in clinical endometritis of dairy cows and establishment of multiplex PCR detection method[D]. Yangling: Northwest A&F University, 2019. (in Chinese) | |
8 | 康晓冬, 刘溪源, 高海慧. 宁夏地区奶牛子宫内膜炎的病原体分离鉴定及药敏试验[J]. 中国畜牧兽医文摘, 2016, 32 (7): 50-51, 54. |
KANG X D , LIU X Y , GAO H H . Isolation, identification and drug sensitivity test of pathogens causing endometritis in dairy cows in Ningxia[J]. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2016, 32 (7): 50-51, 54. | |
9 |
WAGENER K , GRUNERT T , PRUNNER I , et al. Dynamics of uterine infections with Escherichia coli, Streptococcus uberis and Trueperella pyogenes in post-partum dairy cows and their association with clinical endometritis[J]. Vet J, 2014, 202 (3): 527- 532.
doi: 10.1016/j.tvjl.2014.08.023 |
10 |
SHELDON I M , ROBERTS M H . Toll-like receptor 4 mediates the response of epithelial and stromal cells to lipopolysaccharide in the endometrium[J]. PLoS One, 2010, 5 (9): e12906.
doi: 10.1371/journal.pone.0012906 |
11 |
SAUT J P E , HEALEY G D , BORGES A M , et al. Ovarian steroids do not affect bovine endometrial cytokine or chemokine responses to Escherichia coli or LPS in vitro[J]. Reproduction, 2014, 148 (6): 593- 606.
doi: 10.1530/REP-14-0230 |
12 |
HERATH S , LILLY S T , FISCHER D P , et al. Bacterial lipopolysaccharide induces an endocrine switch from prostaglandin F2α to prostaglandin E2 in bovine endometrium[J]. Endocrinology, 2009, 150 (4): 1912- 1920.
doi: 10.1210/en.2008-1379 |
13 |
GALVÃO K N , SANTOS N R , GALVÃO J S , et al. Association between endometritis and endometrial cytokine expression in postpartum Holstein cows[J]. Theriogenology, 2011, 76 (2): 290- 299.
doi: 10.1016/j.theriogenology.2011.02.006 |
14 |
GABLER C , FISCHER C , DRILLICH M , et al. Time-dependent mRNA expression of selected pro-inflammatory factors in the endometrium of primiparous cows postpartum[J]. Reprod Biol Endocrinol, 2010, 8, 152.
doi: 10.1186/1477-7827-8-152 |
15 |
SATO S , SUZUKI T , OKADA K . Suppression of lymphocyte blastogenesis in cows with puerperal metritis and mastitis[J]. Vet Med Sci, 1995, 57 (2): 373- 375.
doi: 10.1292/jvms.57.373 |
16 |
RUTIGLIANO H M , LIMA F S , CERRI R L A , et al. Effects of method of presynchronization and source of selenium on uterine health and reproduction in dairy cows[J]. J Dairy Sci, 2008, 91 (9): 3323- 3336.
doi: 10.3168/jds.2008-1005 |
17 | 欧红萍. 清宫药对奶牛子宫内膜炎的药效学研究[D]. 雅安: 四川农业大学, 2008. |
OU H P. The pharmacodynamics study of Qinggong Yao to endometritis of the Cow[D]. Ya'an: Sichuan Agricultural University, 2008. (in Chinese) | |
18 |
YASUI T , RYAN C M , GILBERT R O , et al. Effects of hydroxy trace minerals on oxidative metabolism, cytological endometritis, and performance of transition dairy cows[J]. J Dairy Sci, 2014, 97 (6): 3728- 3738.
doi: 10.3168/jds.2013-7331 |
19 |
SUKHIKH G T , KASABULATOV N M , VAN'KO L V , et al. Ratio between the number of Th1 and Th2 lymphocytes in the peripheral blood and concentration of proinflammatory cytokines in lochia of women with postpartum endometritis[J]. Bull Exp Biol Med, 2005, 140 (6): 672- 674.
doi: 10.1007/s10517-006-0050-2 |
20 |
赵静, 孙城涛, 王军, 等. 荧光定量PCR法比较研究健康和子宫内膜炎奶牛阴道菌群结构[J]. 中国预防兽医学报, 2014, 36 (10): 817- 819.
doi: 10.3969/j.issn.1008-0589.2014.10.19 |
ZHAO J , SUN C T , WANG J , et al. Real-time PCR analysis of vaginal bacterial community in healthy and endometritic cows[J]. Chinese Journal of Preventive Veterinary Medicine, 2014, 36 (10): 817- 819.
doi: 10.3969/j.issn.1008-0589.2014.10.19 |
|
21 | 王鸿盛. 基于VDS对张掖地区奶牛子宫内膜炎流行病学调查、阴道群菌分析及临床治疗研究[D]. 兰州: 甘肃农业大学, 2021. |
WANG H S. Epidemiological investigation, vaginal bacterial microbiota analysis and clinical treatment of endometritis in dairy cows in Zhangye based on VDS[D]. Lanzhou: Gansu Agricultural University, 2021. (in Chinese) | |
22 | 肖杰. 河南沿黄绿色奶业发展带奶牛子宫内膜炎细菌流行病学调查及土霉素治疗前后菌群差异的研究[D]. 长春: 吉林大学, 2018. |
XIAO J. Epidemiological investigation of endometritis bacteria in dairy cows along the development of yellow-green dairy industry in Henan Province and the difference of bacterial flora before and after oxytetracycline treatment[D]. Changchun: Jilin University, 2018. (in Chinese) | |
23 | 周旭东. 规模化奶牛养殖场奶牛难产的病因分析与处置[D]. 杨凌: 西北农林科技大学, 2014. |
ZHOU X D. Cows dystocia etiology analysis and disposal in large-scale dairy farms[D]. Yangling: Northwest A&F University, 2014. (in Chinese) | |
24 | 赵静. 奶牛子宫内膜炎相关微生态菌群及其与宿主互作机制研究[D]. 长春: 吉林农业大学, 2016. |
ZHAO J. Study on cow endometritis associated microbiota and its interaction mechanisms with the host[D]. Changchun: Jilin Agricultural University, 2016. (in Chinese) | |
25 |
韩春. 筛选奶牛阴道正常细菌对子宫内膜炎致病菌的抗菌效果分析[J]. 中国奶牛, 2012, (17): 33- 36.
doi: 10.3969/j.issn.1004-4264.2012.17.012 |
HAN C . Analysis of the antibacterial effect of normal bacteria in dairy cow vagina against pathogens causing endometritis[J]. China Dairy Cattle, 2012, (17): 33- 36.
doi: 10.3969/j.issn.1004-4264.2012.17.012 |
|
26 |
MOLINA N M , SOLA-LEYVA A , SAEZ-LARA M J , et al. New opportunities for endometrial health by modifying uterine microbial composition: present or future?[J]. Biomolecules, 2020, 10 (4): 593.
doi: 10.3390/biom10040593 |
27 |
SANTOS T M A , GILBERT R O , BICALHO R C . Metagenomic analysis of the uterine bacterial microbiota in healthy and metritic postpartum dairy cows[J]. J Dairy Sci, 2011, 94 (1): 291- 302.
doi: 10.3168/jds.2010-3668 |
28 | BALLAS P , POTHMANN H , POTHMANN I , et al. Dynamics and diversity of intrauterine anaerobic microbiota in dairy cows with clinical and subclinical endometritis[J]. Animals (Basel), 2023, 13 (1): 82. |
29 | BECKER A A M J , MUNDEN S , MCCABE E , et al. The endometrial microbiota-16S rRNA gene sequence signatures in healthy, pregnant and endometritis dairy cows[J]. Vet Sci, 2023, 10 (3): 215. |
30 | NAGPAL R , YADAV H . Bacterial translocation from the gut to the distant organs: an overview[J]. Ann Nutr Metab, 2017, 71 (Suppl.1): 11- 16. |
31 |
CAPALDO C T , POWELL D N , KALMAN D . Layered defense: how mucus and tight junctions seal the intestinal barrier[J]. J Mol Med (Berl), 2017, 95 (9): 927- 934.
doi: 10.1007/s00109-017-1557-x |
32 |
NAJAFI M , GUO Y Z , ANDERSSON G , et al. Gene networks and pathways involved in LPS-induced proliferative response of bovine endometrial epithelial cells[J]. Genes (Basel), 2022, 13 (12): 2342.
doi: 10.3390/genes13122342 |
33 |
JONES K , CUNHA F , JEON S J , et al. Tracing the source and route of uterine colonization by exploring the genetic relationship of Escherichia coli isolated from the reproductive and gastrointestinal tract of dairy cows[J]. Vet Microbiol, 2022, 266, 109355.
doi: 10.1016/j.vetmic.2022.109355 |
34 |
NAGARAJA T G , LECHTENBERG K F . Liver abscesses in feedlot cattle[J]. Vet Clin North Am Food Anim Pract, 2007, 23 (2): 351- 369.
doi: 10.1016/j.cvfa.2007.05.002 |
35 |
JEON S J , CUNHA F , VIEIRA-NETO A , et al. Blood as a route of transmission of uterine pathogens from the gut to the uterus in cows[J]. Microbiome, 2017, 5 (1): 109.
doi: 10.1186/s40168-017-0328-9 |
36 |
OHNO H . Intestinal M cells[J]. J Biochem, 2016, 159 (2): 151- 160.
doi: 10.1093/jb/mvv121 |
37 |
AGOSTINIS C , MANGOGNA A , BOSSI F , et al. Uterine immunity and microbiota: a shifting paradigm[J]. Front Immunol, 2019, 10, 2387.
doi: 10.3389/fimmu.2019.02387 |
38 |
CANAVAN M , WALSH A M , BHARGAVA V , et al. Enriched Cd141+ DCs in the joint are transcriptionally distinct, activated, and contribute to joint pathogenesis[J]. JCI Insight, 2018, 3 (23): e95228.
doi: 10.1172/jci.insight.95228 |
39 |
XIAO Q , XIA Y X . Insights into dendritic cell maturation during infection with application of advanced imaging techniques[J]. Front Cell Infect Microbiol, 2023, 13, 1140765.
doi: 10.3389/fcimb.2023.1140765 |
40 |
SAEZ A , HERRERO-FERNANDEZ B , GOMEZ-BRIS R , et al. Pathophysiology of inflammatory bowel disease: innate immune system[J]. Int J Mol Sci, 2023, 24 (2): 1526.
doi: 10.3390/ijms24021526 |
41 | 关文怡, 乔立东, 张凡建. 围产期奶牛血清代谢物和相关激素水平的变化规律研究[J]. 中国畜牧杂志, 2019, 55 (6): 128- 130. |
GUAN W Y , QIAO L D , ZHANG F J . Study on changes of serum metabolites and related hormones in dairy cows during transition period[J]. Chinese Journal of Animal Science, 2019, 55 (6): 128- 130. | |
42 | PAGE M J , KELL D B , PRETORIUS E . The role of lipopolysaccharide-induced cell signalling in chronic inflammation[J]. Chronic Stress (Thousand Oaks), 2022, 6, 24705470221076390. |
43 |
YAN Z Q . Regulation of TLR4 expression is a tale about tail[J]. Arterioscler Thromb Vasc Biol, 2006, 26 (12): 2582- 2584.
doi: 10.1161/01.ATV.0000250933.92917.dd |
44 |
陈佳佳. LPS诱导奶牛子宫内膜上皮细胞炎症损伤模型的建立[J]. 安徽农业科学, 2020, 48 (15): 105-108, 118.
doi: 10.3969/j.issn.0517-6611.2020.15.029 |
CHEN J J . Establishment of inflammatory injury model of endometrial epithelial cells induced by LPS in cows[J]. Journal of Anhui Agricultural Sciences, 2020, 48 (15): 105-108, 118.
doi: 10.3969/j.issn.0517-6611.2020.15.029 |
|
45 | 韦秋玲. 奶牛子宫内膜炎引起的内毒素升高对肝肾功能的影响[D]. 南宁: 广西大学, 2012. |
WEI Q L. The effect of liver and kidney function with increasing of endotoxin by endometritis of the cow[D]. Nanning: Guangxi University, 2012. (in Chinese) | |
46 |
OTERO M C , MORELLI L , NADER-MACIAS M E . Probiotic properties of vaginal lactic acid bacteria to prevent metritis in cattle[J]. Lett Appl Microbiol, 2006, 43 (1): 91- 97.
doi: 10.1111/j.1472-765X.2006.01914.x |
47 |
GENÍS S , CERRI R L A , BACH À , et al. Pre-calving intravaginal administration of lactic acid bacteria reduces metritis prevalence and regulates blood neutrophil gene expression after calving in dairy cattle[J]. Front Vet Sci, 2018, 5, 135.
doi: 10.3389/fvets.2018.00135 |
48 | 李政. 复合益生菌对哺乳期犊牛生长性能和肠道健康的影响[D]. 广州: 华南农业大学, 2020. |
LI Z. Effects of compound probiotics on growth performance and intestinal health of lactating calves[D]. Guangzhou: South China Agricultural University, 2020. (in Chinese) | |
49 | 薛洋洋. 微生态制剂治疗奶牛子宫内膜炎的试验研究[D]. 大庆: 黑龙江八一农垦大学, 2014. |
XUE Y Y. Probiotics experimental study for the treatment of cow endometritis[D]. Daqing: Heilongjiang Bayi Agricultural University, 2014. (in Chinese) | |
50 | 张吉贤, 范定坤, 付域泽, 等. 后生素调控动物肠道健康的作用机制及应用进展[J/OL]. 畜牧兽医学报, 2024: 1-11[2024-03-20]. http://kns.cnki.net/kcms/detail/11.1985.S.20240202.1057.002.html. |
ZHANG J X, FAN D K, FU Y Z, et al. Research progress on mechanism and application of postbiotics in regulating animal intestinal health[J/OL]. Acta Veterinaria et Zootechnica Sinica, 2024: 1-11. http://kns.cnki.net/kcms/detail/11.1985.S.20240202.1057.002.html. (in Chinese) | |
51 | COLLADO M C, GUEIMONDE M, SALMINEN S. Probiotics in adhesion of pathogens: mechanisms of action[M]//WATSON R R, PREEDY V R. Bioactive Foods in Promoting Health: Probiotics and Prebiotics. Boston: Academic Press, 2010: 353-370. |
52 |
VAN ZYL W F , DEANE S M , DICKS L M T . Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria[J]. Gut Microbes, 2020, 12 (1): 1831339.
doi: 10.1080/19490976.2020.1831339 |
53 |
JUNTUNEN M , KIRJAVAINEN P V , OUWEHAND A C , et al. Adherence of probiotic bacteria to human intestinal mucus in healthy infants and during rotavirus infection[J]. Clin Diagn Lab Immunol, 2001, 8 (2): 293- 296.
doi: 10.1128/CDLI.8.2.293-296.2001 |
54 |
SANDERS M E , MERENSTEIN D J , REID G , et al. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic[J]. Nat Rev Gastroenterol Hepatol, 2019, 16 (10): 605- 616.
doi: 10.1038/s41575-019-0173-3 |
55 |
PENDHARKAR S , SKAFTE-HOLM A , SIMSEK G , et al. Lactobacilli and their probiotic effects in the vagina of reproductive age women[J]. Microorganisms, 2023, 11 (3): 636.
doi: 10.3390/microorganisms11030636 |
56 |
ZHANG F F , ZHOU K , XIE F X , et al. Screening and identification of lactic acid bacteria with antimicrobial abilities for aquaculture pathogens in vitro[J]. Arch Microbiol, 2022, 204 (12): 689.
doi: 10.1007/s00203-022-03285-y |
57 |
XU J Y , BIAN G R , ZHENG M , et al. Fertility factors affect the vaginal microbiome in women of reproductive age[J]. Am J Reprod Immunol, 2020, 83 (4): e13220.
doi: 10.1111/aji.13220 |
58 |
O'HANLON D E , MOENCH T R , CONE R A . In vaginal fluid, bacteria associated with bacterial vaginosis can be suppressed with lactic acid but not hydrogen peroxide[J]. BMC Infect Dis, 2011, 11, 200.
doi: 10.1186/1471-2334-11-200 |
59 |
DELCARU C , ALEXANDRU I , PODGOREANU P , et al. Antagonistic activities of some Bifidobacterium sp.strains isolated from resident infant gastrointestinal microbiota on Gram-negative enteric pathogens[J]. Anaerobe, 2016, 39, 39- 44.
doi: 10.1016/j.anaerobe.2016.02.010 |
60 |
FUJIWARA S , HASHIBA H , HIROTA T , et al. Inhibition of the binding of enterotoxigenic Escherichia coli Pb176 to human intestinal epithelial cell line HCT-8 by an extracellular protein fraction containing BIF of Bifidobacterium longum SBT2928:suggestive evidence of blocking of the binding receptor gangliotetraosylceramide on the cell surface[J]. Int J Food Microbiol, 2001, 67 (1-2): 97- 106.
doi: 10.1016/S0168-1605(01)00432-9 |
61 |
SLANZON G S , RIDENHOUR B J , MOORE D A , et al. Fecal microbiome profiles of neonatal dairy calves with varying severities of gastrointestinal disease[J]. PLoS One, 2022, 17 (1): e0262317.
doi: 10.1371/journal.pone.0262317 |
62 |
LIU Q , YU Z M , TIAN F W , et al. Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier[J]. Microb Cell Fact, 2020, 19 (1): 23.
doi: 10.1186/s12934-020-1289-4 |
63 |
GASALY N , DE VOS P , HERMOSO M A . Impact of bacterial metabolites on gut barrier function and host immunity: a focus on bacterial metabolism and its relevance for intestinal inflammation[J]. Front Immunol, 2021, 12, 658354.
doi: 10.3389/fimmu.2021.658354 |
64 |
HIIPPALA K , JOUHTEN H , RONKAINEN A , et al. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation[J]. Nutrients, 2018, 10 (8): 988.
doi: 10.3390/nu10080988 |
65 |
KUMAR M , KISSOON-SINGH V , CORIA A L , et al. Probiotic mixture VSL#3 reduces colonic inflammation and improves intestinal barrier function in Muc2 mucin-deficient mice[J]. Am J Physiol Gastrointest Liver Physiol, 2017, 312 (1): G34- G45.
doi: 10.1152/ajpgi.00298.2016 |
66 |
GÓMEZ-LLORENTE C , MUÑOZ S , GIL A . Role of Toll-like receptors in the development of immunotolerance mediated by probiotics[J]. Proc Nutr Soc, 2010, 69 (3): 381- 389.
doi: 10.1017/S0029665110001527 |
67 |
LEBEER S , VANDERLEYDEN J , DEKEERSMAECKER S C J . Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens[J]. Nat Rev Microbiol, 2010, 8 (3): 171- 184.
doi: 10.1038/nrmicro2297 |
68 |
HU J J , DENG F , ZHAO B C , et al. Lactobacillus murinus alleviate intestinal ischemia/reperfusion injury through promoting the release of interleukin-10 from M2 macrophages via Toll-like receptor 2 signaling[J]. Microbiome, 2022, 10 (1): 38.
doi: 10.1186/s40168-022-01227-w |
69 | AZAD M A K , SARKER M , WAN D . Immunomodulatory effects of probiotics on cytokine profiles[J]. Biomed Res Int, 2018, 2018, 8063647. |
[1] | XIAN Tingting, LIU Yan, CAO Xin, FENG Tao. Analysis of the Changes of Vaginal Microflora and Serum Pro-inflammatory Cytokines and Their Correlation in Sows with Endometritis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3688-3698. |
[2] | Qianling CHEN, Yuzhu SHA, Xiu LIU, Pengyang SHAO, Fanxiong WANG, Xiaowei CHEN, Wenxin YANG, Zhuanhui XIE, Min GAO, Wei HUANG. Research Progress on the Interaction between Gut Microbiota and Mitochondria Regulating Animal Fat Deposition [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2293-2303. |
[3] | Haoran SONG, Xiaoyi FENG, Peipei ZHANG, Hang ZHANG, Yifan NIU, Zhou YU, Pengcheng WAN, Kai CUI, Xueming ZHAO. The Mechanism of Follicular Granulosa Cells in Follicular Development in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2313-2324. |
[4] | Xinrui ZHANG, Yu FU, Sijia MA, Zhuo YANG, Jinzhong TAO. Physiological Regulation and Feeding Management of Periparturient Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2325-2333. |
[5] | Xuanyi WANG, Yawei SUN, Yuwei LONG, Liying WANG, Yuxin ZHOU, Na LI, Xuelian MA, Hongqiong ZHAO, Gang YAO. Correlation Analysis of FOXP3, FSHR, FMR1 Gene Polymorphisms and Reproductive Hormones in Infertile Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2727-2740. |
[6] | Ji WANG, Xinyan ZHOU, Fangrui GUO, Qiurong XU, Dongyi WU, Yan MAO, Zhihang YUAN, Jin'e YI, Lixin WEN, Jing WU. Viola yedoensis Makino Improves the Growth Performance, Meat Quality, and Gut Microbiota of Broilers Exposed to Heat Stress [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2761-2774. |
[7] | LIU Jiahui, WU Kaikai, WANG Lei, ZHANG Kang, HAN Songwei, CHEN Fubin, XU Guowei, GUO Zhiting, GU Xueyan, ZHANG Jingyan, LI Jianxi. Protective Effects of Astragalus Polysaccharides, Saponins and Probiotic Compounds on Intestinal Tract of Broilers Infected with E.coli [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2241-2252. |
[8] | XIU Haoyu, LI Yingjun, YUAN Kaimin, WANG Chao, YANG Shuhan, Lü Lihua, WANG Dong. Research Progress of Temperature Variation in Different Parts of Body During Estrus in Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1381-1388. |
[9] | XIANG Hui, GUI Linsen, YANG Di, WEI Shihao, GONG Yanbin, SHI Yuangang, MA Yun, DAN Xingang. Research Progress on the Estrus Synchronization-fixed-timed Artificial Insemination Technology in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1412-1422. |
[10] | SHEN Wenjuan, YANG Zhuo, ZHANG Xinrui, FU Yu, TAO Jinzhong. Research Progress of Microorganisms and Reproductive and Related Diseases in Dairy Cows Reproductive Tract [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 924-932. |
[11] | XIA Shuwen, CHEN Kunlin, SHEN Yangyang, AN Zhenjiang, ZHAO Fang, DING Qiang, ZHONG Jifeng, LIN Zhiping, WANG Huili. The Estimation of Genetic Parameters for Longevity Traits of Holstein Cows in Jiangsu Region [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1030-1039. |
[12] | ZHANG Xinrui, FU Yu, YANG Zhuo, SHEN Wenjuan, TAO Jinzhong. Study of Early Pregnancy Diagnostic Proteins in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 451-460. |
[13] | ZHANG Zhifei, TANG Xueying, MIN Li, TONG Xiong, CHEN Weidong, JU Xianghong, LI Dagang. Construction of Gene Coexpression Network Related to Lactation Period and Fecundity in Liver Tissue of Holstein Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 528-539. |
[14] | XIAO Le, LIU Junyuan, ZENG Wenyu, WANG Qin, HAN Wenjue, LIU Yanling, FAN Yu, XU Yuting, YANG Beini, XIAO Xiong, WANG Zili. Microbiome and Transcriptome Analyses Revealed the Regulatory Mechanism of Xiangsha Liujunzi Decoction on Ileal Injury Induced by ETEC in Weaned Piglets with Diarrhea [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 797-808. |
[15] | WANG Ruiling, WANG Xueyan, WANG Feifei, KONG Weiyi, MAO Yongxia, LIU Xin, DING Hui, XU Lihua, GUO Yansheng. Study on the Changes of Blood Oxidized Lipid Group in Postpartum Dairy Cows with Acute Endometritis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 373-387. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||