Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (5): 2243-2258.doi: 10.11843/j.issn.0366-6964.2025.05.023
• Animal Nutrition and Feeds • Previous Articles Next Articles
HE Rongxiao(), WU Yangbo(
), ZHANG Shuxia, ZHAO Zengjue, HUANG Juan, PAN Weixiong, REN Zhixin, HUANG Haobin, WU Jiahui, WU Haiyang, SHEN Shiyan, SUN Chongjun, ZHANG Linghua*(
)
Received:
2024-05-28
Online:
2025-05-23
Published:
2025-05-27
Contact:
ZHANG Linghua
E-mail:1287912247@qq.com;wybhhxx@stu.scau.edu.cn;lhzhang@scau.edu.cn
CLC Number:
HE Rongxiao, WU Yangbo, ZHANG Shuxia, ZHAO Zengjue, HUANG Juan, PAN Weixiong, REN Zhixin, HUANG Haobin, WU Jiahui, WU Haiyang, SHEN Shiyan, SUN Chongjun, ZHANG Linghua. Intestinal Beneficial pEGF-p40 Secreted by a Food-grade Recombinant Lactococcus lactis Strong Constitutive Expression System[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2243-2258.
Table 1
Plasmids used in this study"
质粒名称 Plasmids | 用途 Applications | 来源 Sources |
pDM19-T | T载体 T vector | 购自宝日医生物技术(北京)有限公司 Purchased from Takara Biomedical Technology (Beijing) Co., Ltd. |
pNZ8148 | 乳酸乳球菌表达载体 Expression vector for L. lactis | 本实验室保存 Stored by the writer’s lab |
pMG36e | 乳酸乳球菌表达载体 Expression vector for L. lactis | 本实验室保存 Stored by the writer’s lab |
pDM19-T-SP-nuc | nuc基因的T载体 T vector containing nuc gene | 本研究构建 Constucted by the current study |
pNZ8148-SP-nuc | 启动子PnisA控制下的nuc基因报告载体 Vecter with nuc reporter under control of PnisA | |
pNZ8148Δ(PnisA)-P1-SP-nuc | 启动子P1控制下的nuc基因报告载体 Vecter with nuc reporter under control of P1 | |
pNZ8148Δ(PnisA)-P2-SP-nuc | 启动子P2控制下的nuc基因报告载体 Vecter with nuc reporter under control of P2 | |
pNZ8148Δ(PnisA)-P3-SP-nuc | 启动子P3控制下的nuc基因报告载体 Vecter with nuc reporter under control of P3 | |
pNZ8148Δ(PnisA)-P4-SP-nuc | 启动子P4控制下的nuc基因报告载体 Vecter with nuc reporter under control of P4 | |
pNZ8148Δ(PnisA)-P5-SP-nuc | 启动子P5控制下的nuc基因报告载体 Vecter with nuc reporter under control of P5 | |
pNZ8148Δ(PnisA)-P8-SP-nuc | 启动子P8控制下的nuc基因报告载体 Vecter with nuc reporter under control of P8 | |
pNZ8148Δ(PnisA)-SP-nuc | 启动子P32控制下的nuc基因报告载体 Vecter with nuc reporter under control of P32 | |
pNZ8148Δ(PnisA)-P1 | 启动子P1控制下的表达载体 Expression vector under control of P1 | |
pNZ8148Δ(PnisA)-P1-nsr | 插入nsr基因的表达载体 Expression vector with nsr insertion | |
pP1NR | 删除CmR基因的表达载体 Expression vector with CmR deletion | |
pP1NR-pEGF | pEGF的表达载体 Expression vector for pEGF | |
pP1NR-pEGF-p40 | pEGF-p40的表达载体 Expression vector for pEGF-p40 |
Table 2
Primers for qRT-PCR examination"
基因 Gene | 引物序列(5′→3′) Primer sequences | 参考序列 References |
β-actin | F: CACGCCATCCTGCGTCTGGA | XM_021086047.1 |
R: AGCACCGTGTTGGCGTAGAG | ||
EGFR | F: GCCTTAGCCGTCTTATCCAA | NM_214007.1 |
R: TGGGCACAGATGACTTTGGT | ||
SGLT-1 | F: CCACTTTCCCTATAAAACCTCAC | NM_001164021.1 |
R: CTCCATCAAACTTCCATCCTCAG | ||
GLUT2 | F: TTGCCTTGGATGAGTTATGTGA | NM_001097417.1 |
R: GCGTGGTCCTTGACTGAAAA | ||
SUC | F: TGGCCATCCAGTCATGCC | XM_047755123.1 |
R: CCACCACTCTGCTGTGGA | ||
GLP2R | F: CCCTGCTGTTTCTGGTTTCC | NM_001246266.1 |
R: GGCAGGGAACAGAAACGTTT |
Fig. 1
Construction of a reporter system with Staphylococcus aureus nuclease A. Amplification of SPUSP45-nuc: 1. Positive control; 2-4. PCR products of SPUSP45-nuc; M. DNA marker. B. Colony PCR of NZ9000/pNZ8148-SP-nuc: M. DNA marker; 1-4. Colony PCR products of NZ9000/pNZ8148-SP-nuc. C. Identification of NZ9000/pNZ8148-SP-nuc with toluidine blue DNAse agar"
Fig. 2
Screening of L. lactis NZ9000 constitutive promoters A. Amplification of P1-P4: M. DNA marker; 1-2. P1; 3-4. P2; 5-6. P3; 7-8. P4. B. Amplification of P5, P8 and P32: 9. P5; M. DNA marker; 10. P8; 11. P32. C. Detection of Staphylococcus aureus nuclease activity under the control of different promoters. D. Diameter of pink circles on toluidine blue DNAse agar. E. Map of pNZ8148Δ(PnisA)-P1"
Fig. 5
Strong constructive expression of pEGF and pEGF-p40 in L. lactis A. Colony PCR of NZ9000/pP1NR-pEGF: M. DNA marker; 1-2. Positive colonies. B. Western Blotting of pEGF: 1-2. Supernatant of NZ9000/pP1NR-pEGF; 3. Supernatant of NZ9000/pP1NR. C. Colony PCR of NZ9000/pP1NR-pEGF-p40: M. DNA marker; 1-2. Positive colonies. D. Western Blotting of pEGF-p40: 1-2. Supernatant of NZ9000/pP1NR-pEGF-p40; 3. Supernatant of NZ9000/pP1NR"
Fig. 7
Detection of relative expression of genes related to gut development *. P < 0.05 vs. other groups. pP1NR, pEGF and pEGF-p40 respectively represents the supernatants of strains named NZ9000/pP1NR, NZ9000/pP1NR-pEGF and NZ9000/pP1NR-pEGF-p40;A. Relative mRNA expression of SGLT-1 and GLUT2; B. Relative mRNA expression of SUC; C. Relative mRNA expression of EGFR; D. Relative mRNA expression of GLP2R"
1 |
XU S , WANG D , ZHANG P , et al. Oral administration of Lactococcus lactis-expressed recombinant porcine epidermal growth factor stimulates the development and promotes the health of small intestines in early-weaned piglets[J]. J Appl Microbiol, 2015, 119 (1): 225- 235.
doi: 10.1111/jam.12833 |
2 |
ZENG F H , HARRIS R C . Epidermal growth factor, from gene organization to bedside[J]. Semin Cell Dev Biol, 2014, 28, 2- 11.
doi: 10.1016/j.semcdb.2014.01.011 |
3 |
ZHANG P , HOLOWATYJ A N , ROY T , et al. An SH3PX1-dependent endocytosis-autophagy network restrains intestinal stem cell proliferation by counteracting EGFR-ERK signaling[J]. Dev Cell, 2019, 49 (4): 574- 589.
doi: 10.1016/j.devcel.2019.03.029 |
4 |
SHAHRAJABIAN M H , SUN W L . Mechanism of action of collagen and epidermal growth factor: A review on theory and research methods[J]. Mini Rev Med Chem, 2024, 24 (4): 453- 477.
doi: 10.2174/1389557523666230816090054 |
5 |
BEDFORD A , LI Z , LI M , et al. Epidermal growth factor-expressing Lactococcus lactis enhances growth performance of early-weaned pigs fed diets devoid of blood plasma[J]. J Anim Sci, 2012, 90 (suppl_4): 4- 6.
doi: 10.2527/jas.53973 |
6 |
BEDFORD A , HUYNH E , FU M L , et al. Growth performance of early-weaned pigs is enhanced by feeding epidermal growth factor-expressing Lactococcus lactis fermentation product[J]. J Biotechnol, 2014, 173, 47- 52.
doi: 10.1016/j.jbiotec.2014.01.012 |
7 |
WANG D Y , XU S Y , LIN Y , et al. Recombinant porcine epidermal growth factor-secreting Lactococcus lactis promotes the growth performance of early-weaned piglets[J]. BMC Vet Res, 2014, 10, 171.
doi: 10.1186/s12917-014-0171-1 |
8 |
WANG S J , GUO C H , ZHOU L , et al. Effects of dietary supplementation with epidermal growth factor-expressing Saccharomyces cerevisiae on duodenal development in weaned piglets[J]. Br J Nutr, 2016, 115 (9): 1509- 1520.
doi: 10.1017/S0007114516000738 |
9 |
HUYNH E , LI J L . Generation of Lactococcus lactis capable of coexpressing epidermal growth factor and trefoil factor to enhance in vitro wound healing[J]. Appl Microbiol Biotechnol, 2015, 99, 4667- 4677.
doi: 10.1007/s00253-015-6542-0 |
10 |
YANG Y Q , LIN Z Y , LIN Q Y , et al. Pathological and therapeutic roles of bioactive peptide trefoil factor 3 in diverse diseases: recent progress and perspective[J]. Cell Death Dis, 2022, 13 (1): 62.
doi: 10.1038/s41419-022-04504-6 |
11 |
KAUR H , ALI S A , SHORT S P , et al. Identification of a functional peptide of a probiotic bacterium-derived protein for the sustained effect on preventing colitis[J]. Gut Microbes, 2023, 15 (2): 2264456.
doi: 10.1080/19490976.2023.2264456 |
12 |
GUO M J , ZHANG C Y , ZHANG C C , et al. Lacticaseibacillus rhamnosus reduces the pathogenicity of Escherichia coli in chickens[J]. Front Microbiol, 2021, 12, 664604.
doi: 10.3389/fmicb.2021.664604 |
13 |
BÄUERL C , ABITAYEVA G , SOSA-CARRILLO S , et al. P40 and P75 are singular functional muramidases present in the Lactobacillus casei /paracasei/rhamnosus taxon[J]. Front Microbiol, 2019, 10, 1420.
doi: 10.3389/fmicb.2019.01420 |
14 | 张攀, 许蒙蒙, 林燕, 等. 重组乳酸乳球菌表达外源产物在养猪生产中的潜在应用[J]. 动物营养学报, 2015, 27 (12): 3677- 3682. |
ZHANG P , XU M M , LIN Y , et al. Potential application of expression of exogenous products by recombinant Lactococcus lactis in pig production[J]. Chinese Journal of Animal Nutrition, 2015, 27 (12): 3677- 3682. | |
15 | 高莹, 李淼, 孙元, 等. 乳酸乳球菌表达系统的发展现状与前景展望[J]. 微生物学报, 2022, 62 (3): 895- 905. |
GAO Y , LI M , SUN Y , et al. Development and prospects of Lactococcus lactis expression system[J]. Acta Microbiologica Sinica, 2022, 62 (3): 895- 905. | |
16 | 王慧, 劳晓, 黄琳琳, 等. 乳酸乳球菌表达系统及其启动子的研究进展[J]. 食品科学, 2022, 43 (11): 330- 336. |
WANG H , LAO X , HUANG L L , et al. Progress in research on Lactococcus lactis expression systems and their promoter regulatory elements[J]. Food Science, 2022, 43 (11): 330- 336. | |
17 |
DUONG T , MILLER M J , BARRANGOU R , et al. Construction of vectors for inducible and constitutive gene expression in Lactobacillus[J]. Microb Biotechnol, 2011, 4 (3): 357- 367.
doi: 10.1111/j.1751-7915.2010.00200.x |
18 |
ZHU D L , LIU F L , XU H J , et al. Isolation of strong constitutive promoters from Lactococcus lactis subsp. lactis N8[J]. FEMS Microbiol Lett, 2015, 362 (16): fnv107.
doi: 10.1093/femsle/fnv107 |
19 |
SILVA W M , SOUSA C S , OLIVEIRA L C , et al. Comparative proteomic analysis of four biotechnological strains Lactococcus lactis through label-free quantitative proteomics[J]. Microb Biotechnol, 2019, 12 (2): 265- 274.
doi: 10.1111/1751-7915.13305 |
20 | KLEIN E Y , VAN BOECKEL T P , MARTINEZ E M , et al. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015[J]. Proc Natl Acad Sci U S A, 2018, 115 (15): E3463- E3470. |
21 | KUMAR S B , ARNIPALLI S R , ZIOUZENKOVA O . Antibiotics in food chain: The consequences for antibiotic resistance[J]. Antibiotics(Basel), 2020, 9 (10): 688. |
22 | 郭婷婷, 孔文涛. 乳酸乳球菌nisin抗性基因的克隆及作为筛选标记的研究[J]. 山东大学学报(理学版), 2008, 43 (7): 78- 82. |
GUO T T , KONG W T . Cloning of a nisin resistance gene from Lactococcus lactis and its application in food-grade selection marker[J]. Journal of Shandong University(Natural Science), 2008, 43 (7): 78- 82. | |
23 | 梁琰, 崔欣, 王哲, 等. 乳酸菌食品级表达载体的研究与应用[J]. 微生物学通报, 2021, 48 (3): 906- 915. |
LIANG Y , CUI X , WANG Z , et al. Research and application of food-grade expression vectors of lactic acid bacteria[J]. Microbiology China, 2021, 48 (3): 906- 915. | |
24 |
IBRAHEIM H K , FAYEZ R A , JASIM A S , et al. Role of nuc gene in Staphylococcus aureus to phagocytic activity in different cattle infections[J]. Open Vet J, 2023, 13 (8): 1021- 1026.
doi: 10.5455/OVJ.2023.v13.i8.8 |
25 |
FEITO J , ARAÚJO C , ARBULU S , et al. Design of Lactococcus lactis strains producing garvicin A and/or garvicin Q, either alone or together with nisin A or nisin Z and high antimicrobial activity against Lactococcus garvieae[J]. Foods, 2023, 12 (5): 1063.
doi: 10.3390/foods12051063 |
26 |
ALIAS N A R , SONG A A L , ALITHEEN N B , et al. Optimization of signal peptide via site-directed mutagenesis for enhanced secretion of heterologous proteins in Lactococcus lactis[J]. Int J Mol Sci, 2022, 23 (17): 10044.
doi: 10.3390/ijms231710044 |
27 | GROTE A , HILLER K , SCHEER M , et al. JCat: a novel tool to adapt codon usage of a target gene to its potential expression host[J]. Nucleic Acids Res, 2005, 33 (suppl_2): W526- W531. |
28 | HOOVER D . Using DNAWorks in designing oligonucleotides for PCR-based gene synthesis[J]. Methods Mol Biol, 2012, 852, 215- 223. |
29 |
CLAES I J J , SCHOOFS G , REGULSKI K , et al. Genetic and biochemical characterization of the cell wall hydrolase activity of the major secreted protein of Lactobacillus rhamnosus GG[J]. PLoS One, 2012, 7 (2): e31588.
doi: 10.1371/journal.pone.0031588 |
30 |
CHEN X Y , ZARO J L , SHEN W C . Fusion protein linkers: property, design and functionality[J]. Adv Drug Deliv Rev, 2013, 65 (10): 1357- 1369.
doi: 10.1016/j.addr.2012.09.039 |
31 |
VILLATORO-HERNANDEZ J , LOERA-ARIAS M J , GAMEZ-ESCOBEDO A , et al. Secretion of biologically active interferon-gamma inducible protein-10 (IP-10) by Lactococcus lactis[J]. Microb Cell Fact, 2008, 7, 22.
doi: 10.1186/1475-2859-7-22 |
32 |
JIANG S Y , LIU S Q , ZHAO C J , et al. Developing protocols of tricine-SDS-PAGE for separation of polypeptides in the mass range 1-30 kDa with minigel electrophoresis system[J]. Int J Electrochem Sci, 2016, 11 (1): 640- 649.
doi: 10.1016/S1452-3981(23)15870-6 |
33 |
PAN W X , ZHAO Z J , WU J H , et al. LACpG10-HL functions effectively in antibiotic-free and healthy husbandry by improving the innate immunity[J]. Int J Mol Sci, 2022, 23 (19): 11466.
doi: 10.3390/ijms231911466 |
34 |
MA M P , ZHAO Z T , LIANG Q Y , et al. Overexpression of pEGF improved the gut protective function of Clostridium butyricum partly through STAT3 signal pathway[J]. Appl Microbiol Biotechnol, 2021, 105 (14-15): 5973- 5991.
doi: 10.1007/s00253-021-11472-y |
35 | 余楠楠, 陈琛. Nisin抗菌肽在食品抗菌防腐中的应用[J]. 食品研究与开发, 2020, 41 (17): 198- 204. |
YU N N , CHEN C . Application of nisin antibacterial peptide in food preservation[J]. Food Research and Development, 2020, 41 (7): 198- 204. | |
36 |
SONG A A , IN L L A , LIM S H E , et al. A review on Lactococcus lactis: from food to factory[J]. Microb Cell Fact, 2017, 16, 55.
doi: 10.1186/s12934-017-0669-x |
37 |
DUARTE S O D , MONTEIRO G A . Plasmid replicons for the production of pharmaceutical-grade pDNA, proteins and antigens by Lactococcus lactis cell factories[J]. Int J Mol Sci, 2021, 22 (3): 1379.
doi: 10.3390/ijms22031379 |
38 | VAN TILBURG A Y , CAO H J , VAN DER MEULEN S B , et al. Metabolic engineering and synthetic biology employing Lactococcus lactis and Bacillus subtilis cell factories[J]. Curr Opin Biotechnol, 2019, 59, 1- 7. |
39 | 冯瑜菲, 胡清泉, 张力国, 等. 表达猪圆环病毒3型Cap蛋白重组乳酸乳球菌的构建及免疫原性分析[J]. 中国预防兽医学报, 2022, 44 (11): 1201- 1207. |
FENG Y F , HU Q Q , ZHANG L G , et al. Construction and immunogenicity evaluation of recombinant Lactococcus lactis expressing the Cap protein of porcine circovirus virus type 3[J]. Chinese Journal of Preventive Veterinary Medicine, 2022, 44 (11): 1201- 1207. | |
40 |
BEDFORD A , CHEN T , HUYNH E , et al. Epidermal growth factor containing culture supernatant enhances intestine development of early-weaned pigs in vivo: Potential mechanisms involved[J]. J Biotechnol, 2015, 196-197, 9- 19.
doi: 10.1016/j.jbiotec.2015.01.007 |
41 |
DOMÍNGUEZ-DÍAZ C , AVILA-ARREZOLA K E , RODRÍGUEZ J A , et al. Recombinant p40 protein promotes expression of occludin in HaCaT keratinocytes: A Brief Communication[J]. Microorganisms, 2023, 11 (12): 2913.
doi: 10.3390/microorganisms11122913 |
[1] | WANG Xinyi, YAO Junhu, ZHANG Xia, ZHANG Jun. Advances in Effect and Mechanism of Bile Acids Regulating Animal Intestinal Health [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1006-1018. |
[2] | BAI Guosong, TENG Chunran, WANG Junhong, ZHONG Ruqing, MA Teng, CHEN Liang, ZHANG Hongfu. Effects of Enzymatic Corn Gluten Meal on Growth Performance and Intestinal Microorganisms of Weaned Piglets [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 953-968. |
[3] | WU Jiahui, SHEN Shiyan, DENG Jinbo, WU Haiyang, REN Zhixin, WU Yangbo, HUANG Juan, HUANG Haobin, PAN Weixiong, ZHAO Zengjue, HE Rongxiao, SUN Chongjun, ZHANG Linghua. Construction of Recombinant Lactococcus lactis Inducible Expressing HA Protein of H5N1 Subtype Avian Influenza Virus and Analysis of Its Immunogenicity in Ducks [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 774-787. |
[4] | Xiuju YU, Yanjiao HU, Jiayue LIU, Haidong WANG, Zhiwei ZHU, Kuohai FAN, Rongrong WANG, Chenghao DUAN, Jiawei SHI, Lihua YANG. Isolation and Identification of a Chicken Source Lactobacillus salivary Strain and Its Effect on Intestinal Health of Laying Hens in Early Brood Period [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4161-4171. |
[5] | Yu CHEN, Ziqing XIU, Musa MGENI, Yi SHI, Junqiu ZHANG, Xiaoyu JIANG, Jingzhi LÜ, Yawang SUN. Effects of Dandelion and Akebia Extract on Growth Performance, Intestinal Health and Relative Expression of Drug Transporter Genes in Weaned Rabbits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3725-3739. |
[6] | Yalin LI, Shibo ZHEN, Lin CAO, Fengxue SUN, Lihua WANG. Effects of Lactobacillus plantarum and Lactobacillus plantarum Postbiotics on Growth Performance, Immune Status and Intestinal Health of Growing Female Minks [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2530-2539. |
[7] | NIU Xiaoyu, XING Yuanyuan, LI Dabiao. Advances in Regulation and Mechanism of Plant Bioactive Compounds on Intestinal Barrier Function in Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1467-1477. |
[8] | LI Tie, QI Mengdi, ZHANG Keying, WANG Jianping, BAI Shiping, ZENG Qiufeng, PENG Huanwei, XUAN Yue, LÜ Li, DING Xuemei. Effects of Dietary Probiotics Supplementation during Brood-rearing Period on Growth Performance, Serum Biochemistry, Intestinal Health and Subsequent Performance of Laying Hens [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1062-1076. |
[9] | MU Xiangyu, XU Yunruo, HU Jingyi, ZHOU Xinyan, ZHU Yongwen. Advances in Research on the Nutritional Requirements of Branched-Chain Amino Acids in Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 31-38. |
[10] | LUO Ju, MAO Jiani, XIA Yinzhao, YANG Zhenguo. Regulation of circRNAs on Mammalian Intestinal Barrier Function [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4439-4448. |
[11] | CHANG Hao, QIU Yingwu, PENG Jie, GAO Qi, SONG Zebu, CHEN Yang, LI Wei, LIN Limiao, CAO Xuezhen, ZHOU Qingfeng, ZHANG Guihong, LI Qunhui, ZHENG Zezhong. Establishment of a Dual Real-time Fluorescence Quantitative PCR Assay for Genotype I ASFV [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(10): 4428-4432. |
[12] | YUAN Tong, HUANG Liang, YANG Lin, WANG Wence, ZHU Yongwen. Regulation of Mitochondrial Function by Gut Microbiota and Their Metabolites in Animal [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(1): 48-57. |
[13] | HUANG Xiao-mei,ZHANG Lei,ZUO Qi-sheng,SHI Qing-qing,LI Dong,TANG Bei-bei,ZHANG Ya-ni,SONG Jiu-zhou,LI Bi-chun. Research on Establishing Chicken Embryonic Stem Cell Line by pEGFP-hTERT Transfection [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2014, 45(8): 1253-1259. |
[14] | LIU Qiang,HE Zhi-rui,WANG Yin-long,WU RE lihazi,SAI Wujiafu. Construction Eukaryotic Expression Vector and Its Expression of PLCζ Gene from Chinese Merino Sheep [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2014, 45(4): 541-546. |
[15] | LI Linfeng;PU Yabin;GONG Xuelian;BAI Chunyu;BAI Xiujuan;GUAN Weijun . Production of Interspecies Duck/Chicken Transgenic Chimeras [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2010, 41(1): 10-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||