Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (5): 2056-2069.doi: 10.11843/j.issn.0366-6964.2025.05.007
• Review • Previous Articles Next Articles
ZHAN Qingyu1,2(), DENG Juanli2,3, LIU Hujun2, YIN Peng2, WANG Hongliang1, LI Tiantian2,*(
)
Received:
2024-07-17
Online:
2025-05-23
Published:
2025-05-27
Contact:
LI Tiantian
E-mail:1354763938@qq.com;ltt@ags.ac.cn
CLC Number:
ZHAN Qingyu, DENG Juanli, LIU Hujun, YIN Peng, WANG Hongliang, LI Tiantian. Research Progress on the Toxicology and Detoxification Mechanisms of Zearalenone and Its Derivatives in Corn[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(5): 2056-2069.
Table 1
Detoxification methods of ZEN and its derivatives"
方法 Methods | 减毒效果 Detoxification effects | 参考文献 References | |
物理法 Physicalmethod | 吸附:Lactobacillus plantae(L1)、Lactobacillus plantarum(L2)、Lactobacillus paracasei(L8)、Lactobacillus acidophilus(L9) | L9吸附率为90.39%、其次是L2为88.68%、L1为86.49%、L8为86.14% | [ |
光辐射:γ射线 | 低浓度ZEN(33 mol·L-1)条件下,γ射线对ZEN有较好的降解效果 | [ | |
其他新兴技术:介质阻挡放电(DBD)冷等离子体、非热技术-大气冷等离子体(ACP) | DBD在50 kV电压下处理120 s时,降解率高达98.28%;ACP处理在溶液和干燥条件下降解率分别为100%和66.8% | [ | |
化学法 Chemicalmethod | 臭氧(O3) | ZEN最大降解率为62.3% | [ |
光催化 | 模拟太阳光照射下,ZEN分子中的双键可以从反式(trans)结构转变为顺式(cis)结构;La-ZnFe2O4@Fe3O4@carbon磁性复合光催化剂,ZEN降解率达到98.52% | [ | |
热处理 | 热处理结合特定化学添加剂,在Ca(OH)2存在下,随着MMA剂量的增加,ZEN浓度降低效果显著,5 min内分别降低了72%、85%和95% | [ | |
生物法 Biological method | 酶降解 | 3α-和3β-羟甾体脱氢酶:将ZEN转化为其羟基化代谢产物α-ZOL和β-ZOL;ZHD101内酯酶:水解为HZEN和DHZEN,它们比ZEN的雌激素活性低50至10 000倍;ZHDR52、ZHDP83内酯酶:降解ZEN的产物不表现出雌激素活性;ZENG内酯酶:在所有报道的ZEN内酯酶中热稳定性排名第一;细菌内酯酶ZenA:水解ZEN | [ |
生物保护 | 氧化应激和细胞凋亡的缓解途径:ERK/MAPK途径参与调节细胞增殖和存活;PI3K/Akt途径参与调节细胞生长、存活和代谢 | [ | |
抗氧化途径:Nrf2能够调节一系列抗氧化酶的表达,促进细胞对氧化应激的抵抗能力 | [ | ||
炎症的减缓途径:番茄素、姜黄素、Bacillus velezensis A2(A2)减缓炎症反应 | [ |
1 | GB 2761—2017. 食品中真菌毒素限量[S]. 中国标准出版社, 2017. |
GB 2761—2017. Mycotoxin limits in food[S]. China Standard Press, 2017. (in Chinese) | |
2 | EFSA Panel on Contaminants in the Food Chain (CONTAM) . Appropriateness to set a group health-based guidance value for zearalenone and its modified forms[J]. EFSA Journal, 2016, 14 (4): e04425. |
3 |
YANG S P , LI Y S , DE BOEVRE M , et al. Toxicokinetics of α-zearalenol and its masked form in rats and the comparative biotransformation in liver microsomes from different livestock and humans[J]. J Hazard Mater, 2020, 393, 121403.
doi: 10.1016/j.jhazmat.2019.121403 |
4 |
CHHAYA R S , O'BRIEN J , NAG R , et al. Prevalence and concentration of mycotoxins in bovine feed and feed components: A global systematic review and meta-analysis[J]. Sci Total Environ, 2024, 929, 172323.
doi: 10.1016/j.scitotenv.2024.172323 |
5 |
HUDU A R , ADDY F , MAHUNU G K , et al. Zearalenone contamination in maize, its associated producing fungi, control strategies, and legislation in Sub- Saharan Africa[J]. Food Sci Nutr, 2024, 12 (7): 4489- 4512.
doi: 10.1002/fsn3.4125 |
6 | BAHRAMI-SAMANI O , RAHIMI E , NILI-AHMADABADI A . Assessment of zearalenone contamination in processed cereal-based foods in Shahrekord, Iran[J]. Toxin Reviews, 2017, 36 (3): 1- 4. |
7 |
王苏楠, 胡寅瑞, 梁栗源. 2018—2019年洛阳市玉米制品中玉米赤霉烯酮监测结果分析[J]. 应用预防医学, 2021, 27 (1): 42- 43.
doi: 10.3969/j.issn.1673-758X.2021.01.013 |
WANG S N , HU Y R , LIANG L Y . Analysis of zearalenone monitoring results in corn products in Luoyang city, 2018-2019[J]. Applied Preventive Medicine, 2021, 27 (1): 42- 43.
doi: 10.3969/j.issn.1673-758X.2021.01.013 |
|
8 |
黄志伟, 赵盼盼, 张华, 等. 不同植物性饲料原料中玉米赤霉烯酮污染状况调查[J]. 养殖与饲料, 2024, 23 (6): 45- 48.
doi: 10.3969/j.issn.1671-427X.2024.06.010 |
HUANG Z W , ZHAO P P , ZHANG H , et al. Investigation on the contamination of zearalenone in different plant-based feedstuffs[J]. Animals Breeding and Feed, 2024, 23 (6): 45- 48.
doi: 10.3969/j.issn.1671-427X.2024.06.010 |
|
9 | 刘建高, 厉学武, 彭哲, 等. 2021年我国饲料原料中常见霉菌毒素污染情况调查[J]. 中国家禽, 2023, 45 (10): 70- 75. |
LIU J G , LI X W , PENG Z , et al. Investigation of common mycotoxins contamination in feed ingredients in China in 2021[J]. China Poultry, 2023, 45 (10): 70- 75. | |
10 | 苏青云, 齐莎日娜, 雷元培, 等. 2022年中国饲料和原料中霉菌毒素污染调查报告[J]. 饲料工业, 2024, 45 (9): 121- 125. |
SU Q Y , QI S R N , LEI Y P , et al. A survey report on the mycotoxin contamination of Chinese raw materials and feed in 2022[J]. Feed Industry, 2024, 45 (9): 121- 125. | |
11 | 张梦妍, 郭爱静, 马辉, 等. 河北省市售玉米面中玉米赤霉烯酮和伏马菌毒素B1、B2污染状况调查[J]. 医学动物防制, 2018, 34 (5): 490- 491. |
ZHANG M Y , GUO A J , MA H , et al. Investigation on the contamination of zearalenone and fumonisin B1 and B2 in maize flour from the market of Hebei Province[J]. Journal of Medical Pest Control, 2018, 34 (5): 490- 491. | |
12 |
程传民, 李云, 李茂, 等. 我国玉米赤霉烯酮在饲料产品中的污染分布规律[J]. 饲料博览, 2019 (11): 11- 15.
doi: 10.3969/j.issn.1001-0084.2019.11.003 |
CHENG C M , LI Y , LI M , et al. Distribution of zearalenone contamination of feedstuffs in China[J]. Feed Review, 2019 (11): 11- 15.
doi: 10.3969/j.issn.1001-0084.2019.11.003 |
|
13 |
武亭亭, 杨丹. 粮食加工品中玉米赤霉烯酮和呕吐毒素污染情况调查[J]. 食品安全质量检测学报, 2019, 10 (12): 3674- 3678.
doi: 10.3969/j.issn.2095-0381.2019.12.006 |
WU T T , YANG D . Investigation of zearalenone and deoxynivaleol contamination in grain-related food[J]. Journal of Food Safety & Quality, 2019, 10 (12): 3674- 3678.
doi: 10.3969/j.issn.2095-0381.2019.12.006 |
|
14 | 陈继美, 陈奋. 鸡饲料及原料中玉米赤霉烯酮污染的检测及分布研究[J]. 畜禽业, 2021, 32 (6): 36- 38. |
CHEN J M , CHEN F . Detection and distribution of zearalenone contamination in chicken feed and raw materials[J]. Livestock and Poultry Industry, 2021, 32 (6): 36. | |
15 | LLORENS CASTELLÓ P , SACCO M A , AQUILA I , et al. Evaluation of zearalenones and their metabolites in chicken, pig and lamb liver samples[J]. Toxins(Basel), 2022, 14 (11): 782. |
16 |
OTHMEN Z O B , GOLLI E E , ABID-ESSEFI S , et al. Cytotoxicity effects induced by zearalenone metabolites, α zearalenol and β zearalenol, on cultured Vero cells[J]. Toxicology, 2008, 252 (1-3): 72- 77.
doi: 10.1016/j.tox.2008.07.065 |
17 |
FRIZZELL C , UHLIG S , MILES C O , et al. Biotransformation of zearalenone and zearalenols to their major glucuronide metabolites reduces estrogenic activity[J]. Toxicology In Vitro, 2015, 29 (3): 575- 581.
doi: 10.1016/j.tiv.2015.01.006 |
18 |
BELHASSEN H , JIMÉNEZ-DÍAZ I , ARREBOLA J P , et al. Zearalenone and its metabolites in urine and breast cancer risk: A case-control study in Tunisia[J]. Chemosphere, 2015, 128, 1- 6.
doi: 10.1016/j.chemosphere.2014.12.055 |
19 |
LU Q , SUI M , LUO Y W , et al. Further insight into the potential toxicity of zearalenone-14-glucoside based on toxicokinetics, tissue distribution, transformation, and excretion in rats[J]. Ecotoxicol Environ Saf, 2022, 246, 114184.
doi: 10.1016/j.ecoenv.2022.114184 |
20 | RUAN H N , WANG Y Y , HOU Y , et al. Zearalenone-14-glucoside is hydrolyzed to zearalenone by β-glucosidase in extracellular matrix to exert intracellular toxicity in KGN cells[J]. Toxins(Basel), 2022, 14 (7): 458. |
21 |
TATAY E , ESPÍN S , GARCÍA-FERNÁNDEZ A J , et al. Estrogenic activity of zearalenone, α-zearalenol and β-zearalenol assessed using the E-screen assay in MCF-7 cells[J]. Toxicol Mech Methods, 2018, 28 (4): 239- 242.
doi: 10.1080/15376516.2017.1395501 |
22 |
WARTH B , PREINDL K , MANSER P , et al. Transfer and metabolism of the xenoestrogen zearalenone in Human perfused Placenta[J]. Environ Health Perspect, 2019, 127 (10): 107004.
doi: 10.1289/EHP4860 |
23 |
YAN W K , LIU Y N , SONG S S , et al. Zearalenone affects the growth of endometriosis via estrogen signaling and inflammatory pathways[J]. Ecotoxicol Environ Saf, 2022, 241, 113826.
doi: 10.1016/j.ecoenv.2022.113826 |
24 | ZHOU M , YANG L J , SHAO M H , et al. Effects of zearalenone exposure on the TGF-β1/Smad3 signaling pathway and the expression of proliferation or apoptosis related genes of post-weaning gilts[J]. Toxins(Basel), 2018, 10 (2): 49. |
25 | ZHANG P F , JING C W , LIANG M , et al. Zearalenone exposure triggered cecal physical barrier injury through the TGF-β1/Smads signaling pathway in weaned piglets[J]. Toxins(Basel), 2021, 13 (12): 902. |
26 |
ZHAO J , HAI S , CHEN J , et al. Zearalenone induces apoptosis in porcine endometrial stromal cells through JNK signaling pathway based on endoplasmic reticulum stress[J]. Toxins (Basel)., 2022, 14 (11): 758.
doi: 10.3390/toxins14110758 |
27 |
HAI S R , ZHAO J , CHEN C J , et al. Zearalenone promotes porcine ESCs apoptosis by enhancing Drp1-mediated mitochondrial fragmentation and activating the JNK pathway[J]. Food Chem Toxicol, 2023, 182, 114110.
doi: 10.1016/j.fct.2023.114110 |
28 |
HE Y , H SU N R , YANG H Y , et al. ZEA mediates autophagy through the ROS-AMPK-m-TOR pathway to enhance the susceptibility of mastitis induced by Staphylococcus aureus in mice[J]. Ecotoxicol Environ Saf, 2023, 266, 115548.
doi: 10.1016/j.ecoenv.2023.115548 |
29 | YANG L J , LIAO W S , DONG J Y , et al. Zearalenone promotes uterine hypertrophy through AMPK/mTOR mediated autophagy[J]. Toxins(Basel), 2024, 16 (2): 73. |
30 | RUAN H N , WU J S , ZHANG F Q , et al. Zearalenone exposure disrupts STAT-ISG15 in rat colon: A potential linkage between zearalenone and inflammatory bowel disease[J]. Toxins(Basel), 2023, 15 (6): 392. |
31 | LEE P Y , LIU C C , WANG S C , et al. Mycotoxin zearalenone attenuates innate immune responses and suppresses NLRP3 inflammasome activation in LPS-activated macrophages[J]. Toxins(Basel), 2021, 13 (9): 593. |
32 | MARIN D E , TARANU I , BURLACU R , et al. Effects of zearalenone and its derivatives on porcine immune response[J]. Toxicol In Vitro, 2011, 25 (8): 1981- 1988. |
33 | 黄沁怡. 玉米赤霉烯酮诱发睾丸间质肿瘤机制的体外研究[D]. 扬州: 扬州大学, 2016. |
HUANG Q Y. Study on the mechanism of zearalenone-induce testicular stromal tumor in vitro[D]. Yangzhou: Yangzhou University, 2016. (in Chinese) | |
34 | LAHJOUJI T , BERTACCINI A , NEVES M , et al. Acute exposure to zearalenone disturbs intestinal homeostasis by modulating the Wnt/β-Catenin signaling pathway[J]. Toxins(Basel), 2020, 12 (2): 113. |
35 | CAI J , YUAN X S , SUN Y H , et al. Bacillus velezensis A2 can protect against damage to IPEC-J2 cells induced by zearalenone via the Wnt/FRZB/β-Catenin signaling pathway[J]. Toxins(Basel), 2024, 16 (1): 44. |
36 | YANG D C , JIANG X W , SUN J X , et al. Toxic effects of zearalenone on gametogenesis and embryonic development: A molecular point of review[J]. Food Chem Toxicol, 2018, 119, 24- 30. |
37 | DOMIJAN A M , HERCOG K , ŠTAMPAR M , et al. Impact of deoxynivalenol and zearalenone as single and combined treatment on DNA, cell cycle and cell proliferation in HepG2 cells[J]. Int J Mol Sci, 2023, 24 (4): 4082. |
38 | FLECK S C , HILDEBRAND A A , PFEIFFER E , et al. Catechol metabolites of zeranol and 17β-estradiol: A comparative in vitro study on the induction of oxidative DNA damage and methylation by catechol-O-methyltransferase[J]. Toxicol Lett, 2012, 210 (1): 9- 14. |
39 | TATAY E , FONT G , RUIZ M J . Cytotoxic effects of zearalenone and its metabolites and antioxidant cell defense in CHO-K1 cells[J]. Food Chem Toxicol, 2016, 96, 43- 49. |
40 | MURTAZA B , JIN B W , WANG L L , et al. Mitigation of zearalenone in vitro using probiotic strains[J]. LWT, 2023, 186, 115265. |
41 | CALADO T , ABRUNHOSA L , CABO VERDE S , et al. Effect of gamma-radiation on zearalenone—degradation, cytotoxicity and estrogenicity[J]. Foods, 2020, 9 (11): 1687. |
42 | 郑哲. 低温等离子体用于玉米赤霉烯酮的降解及对玉米品质的影响研究[D]. 南昌: 南昌大学, 2022. |
ZHENG Z. Degradation of zearalenone by cold plasma and its effect on corn quality[D]. Nanchang: Nanchang University, 2022. (in Chinese) | |
43 | FEIZOLLAHI E , ROOPESH M S . Degradation of zearalenone by atmospheric cold plasma: Effect of selected process and product factors[J]. Food Bioproc Tech, 2021, 14, 2107- 2119. |
44 | YANG K , LI K , PAN L H , et al. Effect of ozone and electron beam irradiation on degradation of zearalenone and ochratoxin A[J]. Toxins(Basel), 2020, 12 (2): 138. |
45 | YU M H , PANG Y H , YANG C , et al. Electrochemical oxidation diminished toxicity of zearalenone significantly, while reduction increased[J]. Food Chem, 2023, 429, 136768. |
46 | EMÍDIO E S , CALISTO V , DE MARCHI M R R , et al. Photochemical transformation of zearalenone in aqueous solutions under simulated solar irradiation: Kinetics and influence of water constituents[J]. Chemosphere, 2017, 169, 146- 154. |
47 | YANG X B , PAN J J , HU J P , et al. MOF-derived La-ZnFe2O4@Fe3O4@carbon magnetic hybrid composite as a highly efficient and recyclable photocatalyst for mycotoxins degradation[J]. Chem Eng J, 2023, 467, 143381. |
48 | REMPE I , KERSTEN S , VALENTA H , et al. Hydrothermal treatment of naturally contaminated maize in the presence of sodium metabisulfite, methylamine and calcium hydroxide; effects on the concentration of zearalenone and deoxynivalenol[J]. Mycotoxin Res, 2013, 29 (3): 169- 175. |
49 | MALEKINEJAD H , COLENBRANDER B , FINK-GREMMELS J . Hydroxysteroid Dehydrogenases in Bovine and Porcine Granulosa Cells Convert Zearalenone into its Hydroxylated Metabolites α-Zearalenol and β-Zearalenol[J]. Vet Res Commun, 2006, 30 (4): 445- 453. |
50 | FRUHAUF S , PVHRINGER D , THAMHESL M , et al. Bacterial lactonases ZenA with noncanonical structural features hydrolyze the mycotoxin zearalenone[J]. ACS Catal, 2024, 14 (5): 3392- 3410. |
51 | SUN Z P , FANG Y T , ZHU Y H , et al. Biotransformation of zearalenone to non-estrogenic compounds with two novel recombinant lactonases from Gliocladium[J]. BMC Microbiol, 2024, 24 (1): 75. |
52 | FANG Y Y , HUANG Z L , XU W , et al. Efficient elimination of zearalenone at high processing temperatures by a robust mutant of Gliocladium roseum zearalenone lactonase[J]. Food Control, 2022, 142, 109222. |
53 | LIN X , ZHU L J , GAO X Y , et al. Ameliorative effect of betulinic acid against zearalenone exposure triggers testicular dysfunction and oxidative stress in mice via p38/ERK MAPK inhibition and Nrf2-mediated antioxidant defense activation[J]. Ecotoxicol Environ Saf, 2022, 238, 113561. |
54 | YANG C L , CHEN Y Q , YANG M R , et al. Betulinic acid alleviates zearalenone-induced uterine injury in mice[J]. Environ Pollut, 2023, 316 (Pt 1): 120435. |
55 | XU W , ZHENG H , FU Y , et al. Role of PI3K/Akt-mediated Nrf2/HO-1 signaling pathway in resveratrol alleviation of zearalenone-induced oxidative stress and apoptosis in TM4 cells[J]. Toxins (Basel), 2022, 14 (11): 733. |
56 | RAJENDRAN P , AMMAR R B , AL-SAEEDI F J , et al. Kaempferol inhibits zearalenone-induced oxidative stress and apoptosis via the PI3K/Akt-mediated Nrf2 signaling pathway: In vitro and in vivo Studies[J]. Int J Mol Sci, 2020, 22 (1): 217. |
57 | 姚丹, 李怡娜, 成晓丽, 等. 白藜芦醇对玉米赤霉烯酮所致雌性大鼠子宫和卵巢损伤的影响[J]. 动物营养学报, 2024, 36 (5): 3317- 3328. |
YAO D , LI Y N , CHENG X L , et al. Effects of resveratrol on zearalenone-induced uterine and ovarian damage in female rats[J]. Chinese Journal of Animal Nutrition, 2024, 36 (5): 3317- 3328. | |
58 | WU J , LI J Y , LIU Y W , et al. Tannic acid repair of zearalenone-induced damage by regulating the death receptor and mitochondrial apoptosis signaling pathway in mice[J]. Environ Pollut, 2021, 287, 117557. |
59 | CHENG Q , JIANG S Z , HUANG L B , et al. Zearalenone exposure affects the Keap1-Nrf2 signaling pathway and glucose nutrient absorption related genes of porcine jejunal epithelial cells[J]. Toxins (Basel), 2022, 14 (11): 793. |
60 | WU F Y , WANG F X , TANG Z H , et al. Quercetagetin alleviates zearalenone-induced liver injury in rabbits through Keap1/Nrf2/ARE signaling pathway[J]. Front Pharmacol, 2023, 14, 1271384. |
61 | KANG J G , LI Y , MA Z F , et al. Protective effects of lycopene against zearalenone-induced reproductive toxicity in early pregnancy through anti-inflammatory, antioxidant and anti-apoptotic effects[J]. Food Chem Toxicol, 2023, 179, 113936. |
62 | YANG X P , ZHENG H , NIU J L , et al. Curcumin alleviates zearalenone-induced liver injury in mice by scavenging reactive oxygen species and inhibiting mitochondrial apoptosis pathway[J]. Ecotoxicol Environ Saf, 2024, 277, 116343. |
63 | FENG N N , WANG B J , CAI P R , et al. ZEA-induced autophagy in TM4 cells was mediated by the release of Ca2+ activates CaMKKβ-AMPK signaling pathway in the endoplasmic reticulum[J]. Toxicol Lett, 2020, 323, 1- 9. |
64 | ZHU Y F , WANG H , WANG J P , et al. Zearalenone induces apoptosis and cytoprotective autophagy in chicken granulosa cells by PI3K-AKT-mTOR and MAPK signaling pathways[J]. Toxins (Basel), 2021, 13 (3): 199. |
65 | BAI J , LI J , LIU N , et al. Zearalenone induces apoptosis and autophagy by regulating endoplasmic reticulum stress signalling in porcine trophectoderm cells[J]. Anim Nutr, 2022, 12, 186- 199. |
[1] | CHEN Yuancai, HUANG Jianying, QIN Huikai, ZHANG Longxian. Advances in Genomics of Cryptosporidium [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3): 1059-1064. |
[2] | CHEN Gengxu, XU Jinfeng, ZHANG Hongling, WANG Ben, YIN Baishuang, ZHU Yanzhu. Research Progress on Aluminum-induced Immunotoxicity [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 534-547. |
[3] | LÜ Yongle, ZHENG Wen, WANG Qianhui, ZHU Jiaqi, HUANG Xiaoqi, CAO Zhongzan, LUAN Xinhong. Research Progress of Natural Active Substances against Metabolic Associated Fatty Liver Disease [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 45-62. |
[4] | 古丽米热·阿布都热依木, Xinru ZHANG, Yangsheng WU, Ying CHEN, Liqin WANG, Xinming XU, Juncheng HUANG, Jiapeng LIN. Effects of FKBP5 on Function of Sheep Follicular Granulosa Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 3947-3956. |
[5] | Mengdi WANG, Heng WANG, Xiuxiang LU, Yumin WANG, Wenjie FAN, Chen YAO, Pengxiang LIU, Yanjie MA, Guoyu YANG. Preparation of Nano-manganese and Its Biological Effects [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3374-3382. |
[6] | Wei WANG, Jingsong WANG, Ya'nan GUO, Le GAO, Lingling WANG, Can CHEN, Jianlin WANG, Jiandong WANG, Ke MA, Jidong LI. Toxicity Factor Detection and Analysis of Escherichia coli Isolated Strains from Calf Diarrhea Samples in Some Areas of Ningxia [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3261-3266. |
[7] | Jing LI, Yuanxu ZHANG, Zezhao WANG, Yan CHEN, Lingyang XU, Lupei ZHANG, Xue GAO, Huijiang GAO, Junya LI, Bo ZHU, Peng GUO. Research Progress in Machine Learning Genomic Selection [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2281-2292. |
[8] | ZHANG Yuanxu, LI Jing, WANG Zezhao, CHEN Yan, XU Lingyang, ZHANG Lupei, GAO Xue, GAO Huijiang, LI Junya, ZHU Bo, GUO Peng. Advances in Animal Genetic Evaluation Software [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1827-1841. |
[9] | PENG Peiya, CHEN Yuhan, YANG Long, WANG Ming, ZHAO Ruiting, HE Jun, YIN Yulong, LIU Mei. Research Progress of Copy Number Variation in Livestock [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1356-1369. |
[10] | LUO Tongwang, WU Ya, WANG Shujie, SONG Houhui, SHAO Chunyan. Research Progress on the Mechanism of Cadmium Induced Liver Damage and Selenium Antagonizing Cadmium Hepatotoxicity [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1456-1466. |
[11] | ZHOU Mengting, SONG Yinjuan, XU Jian, LI Bin, RAN Duoliang, CHU Yuefeng. Advances in Carbohydrate-based Adjuvant Mechanisms of Action [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 491-501. |
[12] | Ziwen CAI, Zhigang SUN, Xiaohui SI, Ruoyi LÜ, Xiaoye LIU. Research Progress of Veterinary Drugs for Animal Pathogenic Infectious Respiratory Diseases and Analysis of New Drug Research and Development [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 4872-4889. |
[13] | YAN Qiongxian, CHEN Wenxun, HUI Haoyang, PENG Can, TANG Shaoxun, ZHOU Xiaoling, TAN Zhiliang. Effects of Zearalenone on Growth Performance, Gastrointestinal Fermentation and Microbiota Community Structure of Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1109-1123. |
[14] | BI Ruichen, LIU Xiangze, HU Zeqiong, YANG Meixue, QIAO Jianing, HUANG Jia, GUO Fangshen, KONG Linghua, WANG Zhong. Research Progress on the Application of Plant Polyphenols in Poultry Field [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4488-4501. |
[15] | XIA Chunqiu, WAN Fachun, LIU Lei, SHEN Weijun, XIAO Dingfu. Valine: Biological Function and Application in Livestock and Poultry Diets [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4502-4513. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||