Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (2): 491-501.doi: 10.11843/j.issn.0366-6964.2024.02.008
• REVIEW • Previous Articles Next Articles
ZHOU Mengting1, SONG Yinjuan1*, XU Jian1, LI Bin2, RAN Duoliang2, CHU Yuefeng1,2*
Received:
2023-05-30
Online:
2024-02-23
Published:
2024-02-27
CLC Number:
ZHOU Mengting, SONG Yinjuan, XU Jian, LI Bin, RAN Duoliang, CHU Yuefeng. Advances in Carbohydrate-based Adjuvant Mechanisms of Action[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 491-501.
[1] REED S G, ORR M T, FOX C B. Key roles of adjuvants in modern vaccines[J]. Nat Med, 2013, 19(12):1597-1608. [2] TREGONING J S, RUSSELL R F, KINNEAR E. Adjuvanted influenza vaccines[J]. Hum Vaccin Immunother, 2018, 14(3):550-564. [3] KLUCKER M F, DALENÇON F, PROBECK P, et al. AF03, an alternative squalene emulsion-based vaccine adjuvant prepared by a phase inversion temperature method[J]. J Pharm Sci, 2012, 101(12):4490-4500. [4] REYES C, PATARROYO M A. Adjuvants approved for human use:what do we know and what do we need to know for designing good adjuvants?[J]. Eur J Pharmacol, 2023, 945:175632. [5] PETROVSKY N, COOPER P D. Carbohydrate-based immune adjuvants[J]. Exp Rev Vac, 2011, 10(4):523-537. [6] GARCIA-VELLO P, SPECIALE I, CHIODO F, et al. Carbohydrate-based adjuvants[J]. Drug Discovery Today Technol, 2020, 35-36:57-68. [7] JOHNSON-WEAVER B T, MCRITCHIE S, MERCIER K A, et al. Effect of endotoxin and alum adjuvant vaccine on peanut allergy[J]. J Allergy Clin Immunol, 2018, 141(2):791-794. e8. [8] TZIANABOS A O. Polysaccharide immunomodulators as therapeutic agents:structural aspects and biologic function[J]. Clin Microbiol Rev, 2000, 13(4):523-533. [9] MORENO-MENDIETA S, GUILLÉN D, HERNÁNDEZ-PANDO R, et al. Potential of glucans as vaccine adjuvants:a review of the α-glucans case[J]. Carbohydr Polym, 2017, 165:103-114. [10] LARA-LEMUS R, ALVARADO-VÁSQUEZ N, ZENTENO E, et al. Effect of Histoplasma capsulatum glucans on host innate immunity[J]. Rev Iberoam Micol, 2014, 31(1):76-80. [11] GAGLIARDI M C, LEMASSU A, TELONI R, et al. Cell wall-associated alpha-glucan is instrumental for Mycobacterium tuberculosis to block CD1 molecule expression and disable the function of dendritic cell derived from infected monocyte[J]. Cell Microbiol, 2007, 9(8):2081-2092. [12] BITTENCOURT V C B, FIGUEIREDO R T, DA SILVA R B, et al. An α-glucan of Pseudallescheria boydii is involved in fungal phagocytosis and toll-like receptor activation[J]. J Biol Chem, 2006, 281(32):22614-22623. [13] GEURTSEN J, CHEDAMMI S, MESTERS J, et al. Identification of mycobacterial α-glucan as a novel ligand for DC-SIGN:involvement of mycobacterial capsular polysaccharides in host immune modulation[J]. J Immunol, 2009, 183(8):5221-5231. [14] GELLER A, SHRESTHA R, YAN J. Yeast-derived β-glucan in cancer:novel uses of a traditional therapeutic[J]. Int J Mol Sci, 2019, 20(15):3618. [15] JIN Y M, LI P L, WANG F S. β-glucans as potential immunoadjuvants:a review on the adjuvanticity, structure-activity relationship and receptor recognition properties[J]. Vaccine, 2018, 36(35):5235-5244. [16] RODRIGUES M V, ZANUZZO F S, KOCH J F A, et al. Development of fish immunity and the role of β-glucan in immune responses[J]. Molecules, 2020, 25(22):5378. [17] BAJIC G, YATIME L, SIM R B, et al. Structural insight on the recognition of surface-bound opsonins by the integrin I domain of complement receptor 3[J]. Proc Natl Acad Sci U S A, 2013, 110(41):16426-16431. [18] GOODRIDGE H S, WOLF A J, UNDERHILL D M. β-glucan recognition by the innate immune system[J]. Immunol Rev, 2009, 230(1):38-50. [19] XIA Y, VETVICKA, YAN J, et al. The beta-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its function in generating a primed state of the receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells[J]. J Immunol, 1999, 162(4):2281-2290. [20] BAERT K, SONCK E, GODDEERIS B M, et al. Cell type-specific differences in β-glucan recognition and signalling in porcine innate immune cells[J]. Dev Comp Immunol, 2015, 48(1):192-103. [21] VERA J, FENUTRÍA R, CAÑADAS O, et al. The CD5 ectodomain interacts with conserved fungal cell wall components and protects from zymosan-induced septic shock-like syndrome[J]. Proc Natl Acad Sci U S A, 2009, 106(5):1506-1511. [22] YANG C, GAO J, DONG H, et al. Expressions of scavenger receptor, CD14 and protective mechanisms of carboxymethyl-β-1, 3-glucan in posttraumatic endotoxemia in mice[J]. J Trauma, 2008, 65(6):1471-1477. [23] TSIKITIS V L, MARTIN A, ALBINA J, et al. Ligation of the lactosylceramide receptor (CDw17) promotes neutrophil migration[J]. J Am Coll Surg, 2004, 199(S3):44. [24] GOMAA K, KRAUS J, ROSSKOPF F, et al. Antitumour and immunological activity of a β1→3/1→6 glucan from Glomerella cingulata[J]. J Cancer Res Clin Oncol, 1992, 118(2):136-140. [25] PENCE B D, HESTER S N, DONOVAN S M, et al. Dietary whole glucan particles do not affect antibody or cell-mediated immune responses to influenza virus vaccination in mice[J]. Immunol Invest, 2012, 41(3):275-289. [26] YOUNES I, RINAUDO M. Chitin and chitosan preparation from marine sources. Structure, properties and applications[J]. Mar Drugs, 2015, 13(3):1133-1174. [27] RINAUDO M. Chitin and chitosan:properties and applications[J]. Prog Polym Sci, 2006, 31(7):603-632. [28] SUZUKI K, OKAWA Y, HASHIMOTO K. Protecting effect of chitin and chitosan on experimentally induced murine candidiasis[J]. Microbiol Immunol, 1984, 28(8):903-912. [29] BUETER C L, LEE C K, WANG J P, et al. Spectrum and mechanisms of inflammasome activation by chitosan[J]. J Immunol, 2014, 192(12):5943-5951. [30] CARROLL E C, JIN L, MORI A, et al. The vaccine adjuvant chitosan promotes cellular immunity via DNA sensor cGAS-STING-dependent induction of type I interferons[J]. Immunity, 2016, 44(3):597-608. [31] LI X M, XING R E, XU C J, et al. Immunostimulatory effect of chitosan and quaternary chitosan:a review of potential vaccine adjuvants[J]. Carbohydr Polym, 2021, 264:118050. [32] GONG X C, GAO Y, SHU J H, et al. Chitosan-based nanomaterial as immune adjuvant and delivery carrier for vaccines[J]. Vaccines (Basel), 2022;10(11):1906. [33] DMOUR I, ISLAM N. Recent advances on chitosan as an adjuvant for vaccine delivery[J]. Int J Biol Macromol, 2022, 200:498-519. [34] YVKSEL S, PEKCAN M, PURALI N, et al. Development and in vitro evaluation of a new adjuvant system containing Salmonella typhi porins and chitosan[J]. Int J Pharm, 2020, 578:119129. [35] COHEN J. The immunopathogenesis of sepsis[J]. Nature, 2002, 420(6917):885-891. [36] GARCIA-VELLO P, DI LORENZO F, ZUCCHETTA D, et al. Lipopolysaccharide lipid A:a promising molecule for new immunity-based therapies and antibiotics[J]. Pharmacol Ther, 2022, 230:107970. [37] GAO J, GUO Z W. Progress in the synthesis and biological evaluation of lipid A and its derivatives[J]. Med Res Rev, 2018, 38(2):556-601. [38] DOOLING K L, GUO A, PATEL M, et al. Recommendations of the advisory committee on immunization practices for use of herpes zoster vaccines[J]. MMWR Morb Mortal Wkly Rep, 2018, 67(3):103-108. [39] BLANCO-PÉREZ F, GORETZKI A, WOLFHEIMER S, et al. The vaccine adjuvant MPLA activates glycolytic metabolism in mouse mDC by a JNK-dependent activation of mTOR-signaling[J]. Mol Immunol, 2019, 106:159-169. [40] FERNÁNDEZ-TEJADA A, TAN D S, GIN D Y. Development of improved vaccine adjuvants based on the saponin natural product QS-21 through chemical synthesis[J]. Acc Chem Res, 2016, 49(9):1741-1756. [41] MARCIANI D J. Elucidating the mechanisms of action of saponin-derived adjuvants[J]. Trends Pharmacol Sci, 2018, 39(6):573-585. [42] LACAILLE-DUBOIS M A. Updated insights into the mechanism of action and clinical profile of the immunoadjuvant QS-21:a review[J]. Phytomedicine, 2019, 60:152905. [43] MARTY-ROIX R, VLADIMER G I, POULIOT K, et al. Identification of QS-21 as an Inflammasome-activating molecular component of saponin adjuvants[J]. J Biol Chem, 2016, 291(3):1123-1136. [44] FERNÁNDEZ-TEJADA A, CHEA E K, GEORGE C, et al. Development of a minimal saponin vaccine adjuvant based on QS-21[J]. Nat Chem, 2014, 6(7):635-643. [45] MISHRA A K, DRIESSEN N N, APPELMELK B J, et al. Lipoarabinomannan and related glycoconjugates:structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction[J]. FEMS Microbiol Rev, 2011, 35(6):1126-1157. [46] ISHIKAWA E, MORI D, YAMASAKI S. Recognition of mycobacterial lipids by immune receptors[J]. Trends Immunol, 2017, 38(1):66-76. [47] MAZUREK J, IGNATOWICZ L, KALLENIUS G, et al. Divergent effects of mycobacterial cell wall glycolipids on maturation and function of human monocyte-derived dendritic cells[J]. PLoS One, 2012, 7(8):e42515. [48] YONEKAWA A, SAIJO S, HOSHINO Y, et al. Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria[J]. Immunity, 2014, 41(3):402-413. [49] MIYAKE Y, OH-HORA M, YAMASAKI S. C-Type lectin receptor MCL facilitates mincle expression and signaling through complex formation[J]. J Immunol, 2015, 194(11):5366-5374. [50] WERNINGHAUS K, BABIAK A, GROSS O, et al. Adjuvanticity of a synthetic cord factor analogue for subunit Mycobacterium tuberculosis vaccination requires FcRγ-Syk-Card9-dependent innate immune activation[J]. J Exp Med, 2009, 206(1):89-97. [51] THAKUR A, PINTO F E, HANSEN H S, et al. Intrapulmonary (i. pulmon.) pull immunization with the tuberculosis subunit vaccine candidate H56/CAF01 after intramuscular (i. m.) priming elicits a distinct innate myeloid response and activation of antigen-presenting cells than i. m. or i. pulmon. prime immunization alone[J]. Front Immunol, 2020, 11:803. [52] RITTER K, BEHRENDS J, ERDMANN H, et al. Interleukin-23 instructs protective multifunctional CD4 T cell responses after immunization with the Mycobacterium tuberculosis subunit vaccine H1 DDA/TDB independently of interleukin-17A[J]. J Mol Med (Berl), 2021, 99(11):1585-1602. [53] MARINA-GARCÍA N, FRANCHI L, KIM Y G, et al. Clathrin-and dynamin-dependent endocytic pathway regulates muramyl dipeptide internalization and NOD2 activation[J]. J Immunol, 2009, 182(7):4321-4327. [54] IWICKA E, HAJTUCH J, DZIERZBICKA K, et al. Muramyl dipeptide-based analogs as potential anticancer compounds:strategies to improve selectivity, biocompatibility, and efficiency[J]. Front Oncol, 2022, 12:970967. [55] CAO L T, LI J, ZHANG J R, et al. Beta-glucan enhanced immune response to Newcastle disease vaccine and changed mRNA expression of spleen in chickens[J]. Poult Sci, 2023, 102(2):102414. [56] LIU Y, LIU X L, YANG L, et al. Adjuvanticity of β-glucan for vaccine against Trichinella spiralis[J]. Front Cell Dev Biol, 2021, 9:701708. [57] KHADEMI F, TAHERI R A, YOUSEFI AVARVAND A, et al. Are chitosan natural polymers suitable as adjuvant/delivery system for anti-tuberculosis vaccines?[J]. Microb Pathog, 2018, 121:218-223. [58] YANG Y, XING R E, LIU S, et al. Chitosan, hydroxypropyltrimethyl ammonium chloride chitosan and sulfated chitosan nanoparticles as adjuvants for inactivated Newcastle disease vaccine[J]. Carbohydr Polym, 2020, 229:115423. [59] WANG Z B, SHAN P, LI S Z, et al. The mechanism of action of acid-soluble chitosan as an adjuvant in the formulation of nasally administered vaccine against HBV[J]. RSC Adv, 2016, 6(99):96785-96797. [60] SHU M Y, ZHAO L H, SHI K L, et al. Chitosan particle stabilized Pickering emulsion/interleukin-12 adjuvant system for Pgp3 subunit vaccine elicits immune protection against genital chlamydial infection in mice[J]. Front Immunol, 2022, 13:989620. [61] GARÇON N, CHOMEZ P, VAN MECHELEN M. Glaxosmithkline adjuvant systems in vaccines:concepts, achievements and perspectives[J]. Expert Rev Vaccines, 2007, 6(5):723-739. [62] KHULLAR N, GUPTA C M, SEHGAL S. Immune response studies in relation to protection induced by using MDP as an adjuvant in malaria[J]. Immunol Invest, 1988, 17(1):1-17. |
[1] | ZHANG Jixian, FAN Dingkun, FU Yuze, JIAO Shuai, MA Tao, BI Yanliang, ZHANG Naifeng. Research Progress on Mechanism and Application of Postbiotics in Regulating Animal Intestinal Health [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1926-1935. |
[2] | ZHANG Yuanxu, LI Jing, WANG Zezhao, CHEN Yan, XU Lingyang, ZHANG Lupei, GAO Xue, GAO Huijiang, LI Junya, ZHU Bo, GUO Peng. Advances in Animal Genetic Evaluation Software [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1827-1841. |
[3] | PENG Peiya, CHEN Yuhan, YANG Long, WANG Ming, ZHAO Ruiting, HE Jun, YIN Yulong, LIU Mei. Research Progress of Copy Number Variation in Livestock [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1356-1369. |
[4] | ZHANG Xumei, WEI Yurong, XU Chenghui, YANG Tong, SHI Huijun, FU Qiang, YANG Li. To Analyze the Mechanism of Berberine in the Treatment of Salmonella Gallinarum Infection Based on Network Pharmacology and Experimental Verification [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3557-3570. |
[5] | XIA Chunqiu, WAN Fachun, LIU Lei, SHEN Weijun, XIAO Dingfu. Valine: Biological Function and Application in Livestock and Poultry Diets [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4502-4513. |
[6] | BI Ruichen, LIU Xiangze, HU Zeqiong, YANG Meixue, QIAO Jianing, HUANG Jia, GUO Fangshen, KONG Linghua, WANG Zhong. Research Progress on the Application of Plant Polyphenols in Poultry Field [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4488-4501. |
[7] | SUN Kangtai, LIU Bin, LIU Jun, JIANG Dawei, YAO Zhipeng, GE Yiqiang, DENG Xiaoming. Research Progress and Trend Analysis Based on Bibliometric of The National Key Research and Development Program “Animal Project” during the 13th Five-Year Period [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(9): 2819-2832. |
[8] | ZHAO Zhixian, CHANG Xuerui, GUO Yong, LONG Cheng, SHENG Xihui, WANG Xiangguo, XING Kai, XIAO Longfei, LIN Zili, NI Hemin, QI Xiaolong. Research Progress on Nutritional Regulation of Semen Quality in Breeder Roosters [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2435-2443. |
[9] | SUN Yanjin, XUE Ya’nan, ZHONG Tao, WANG Linjie, LI Li, ZHANG Hongping, ZHAN Siyuan. The Function of HuR and Its Regulation on Muscle Growth and Development [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1345-1353. |
[10] | WU Xiangyun, LIU Yana, ZHOU Zheqi, PAN Yuanhu, HAO Haihong, CHENG Guyue, WANG Yulian. Research Progress on Antibacterial Effect and Mechanism of Polysaccharides [J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(6): 1167-1176. |
[11] | ZHAN Si-yuan,LI Li,WANG Lin-jie,ZHONG Tao,ZHANG Hong-ping. Research Progress of Long Noncoding RNAs in the Regulation of Skeletal Muscle Development [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(4): 637-644. |
[12] | LIU Hua-nan, CAO Wei-jun, YANG Fan, ZHENG Hai-xue. Research Progress of Torovirus [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2013, 44(8): 1173-1181. |
[13] | HAO Gang, LE Guo-wei, SHI Yong-hui. The Action Mechanism of Two Analogues of the Antimicrobial Peptide BuforinⅡ on Staphylococcus aureus Membrane [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2013, 44(7): 1124-1130. |
[14] | ZHANG Chenfei;CHEN Changhai;LIU Yaoxing. Research Progress of Nipah Virus [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2012, 43(5): 669-675. |
[15] | LIU Yu-qin;ZHANG Xiu-ying;MA De-ying;LI Qun-dao. Study on Mechanism of Action of Chinese Herbal Medicine on Escherichia coli-induced Diarrhea of Piglet [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2005, 36(6): 620-624. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||