Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (2): 912-924.doi: 10.11843/j.issn.0366-6964.2025.02.039
• Basic Veterinary Medicine • Previous Articles Next Articles
ZHAO Jingxian1(), YANG Xiaowei1,2,3(
), LIU Yanyan1, ZHAO Ziliang1,4, ZHAO Guangwei1,*(
), ZHAO Yongju2,3,*(
)
Received:
2024-04-07
Online:
2025-02-23
Published:
2025-02-26
Contact:
ZHAO Guangwei, ZHAO Yongju
E-mail:1912790377@qq.com;yangxiaowei396@163.com;stay612@163.com;zyongju@163.com
CLC Number:
ZHAO Jingxian, YANG Xiaowei, LIU Yanyan, ZHAO Ziliang, ZHAO Guangwei, ZHAO Yongju. Analysis of the Effect of TET 1 Gene on Methylation of Mouse uNK Cells based on DNA Methylation Histology Technique[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 912-924.
Table 1
Primer sequences"
名称Name | 序列(5′→3′) Sequence |
GAPDH-F | GTCTCCTCTGACTTCAACAGCG |
GAPDH-R | ACCACCCTGTTGCTGTAGCCAA |
WPRE-F | CGCTATGTGGATACGCTGCTTTA |
WPRE-R | GCAACCAGGATTTATACAAGGAGGA |
β-actin-F | CCACTGTCGAGTCGCGTCC |
β-actin-R | ATTCCCACCATCACACCCTGG |
TET 1-F | TGGGAGAGCTCCCTTTGATGGTTT |
TET 1-R | TTGGGTCAATTGTGCTGCGACATC |
Table 2
Statistical table of output and quality after data trimming"
样本Sample | 序列Reads | 碱基Bases | Q20 | Q20(%) | Q30 | Q30(%) |
NC_uNK-1 | 18 661 773 | 4.95×109 | 4.80×109 | 96.99 | 4.42×109 | 89.16 |
NC_uNK-2 | 17 315 461 | 4.9×109 | 4.75×109 | 96.83 | 4.42×109 | 90.28 |
NC_uNK-3 | 17 357 287 | 4.92×109 | 4.77×109 | 96.97 | 4.42×109 | 89.88 |
TET 1KD_uNK-1 | 17 913 483 | 4.95×109 | 4.80×109 | 96.98 | 4.43×109 | 89.51 |
TET 1KD_uNK-2 | 18 460 166 | 4.92×109 | 4.77×109 | 97.09 | 4.39×109 | 89.30 |
TET 1KD_uNK-3 | 18 510 276 | 5.01×109 | 4.85×109 | 96.86 | 4.43×109 | 88.54 |
Table 3
C site sequencing depth, coverage and Msp I enzyme digestion efficiency statistics of each sample"
样本 Sample | C位点类型 C site type | 全基因组C位点数量 Number of whole genome C site | 平均测序深度 Average sequencing depth | 有效覆盖深度 Effective depth of coverage | 覆盖度Coverage | Msp I酶切效率/% Msp I digestion efficiency | |
测序深度5×以上位点 Sequencing depth of 5× or more site | 测序深度10×以上位点 Sequencing depth of 10× or more site | ||||||
NC-uNK-1 | CG | 4 477 985 | 20.956 05 | 20.956 05 | 0.638 982 | 0.516 772 | 99.53 |
CHG | 9 963 429 | 20.892 63 | 20.892 63 | 0.597 96 | 0.501 204 | ||
CHH | 23 957 443 | 19.630 41 | 19.630 41 | 0.560 375 | 0.464 912 | ||
NC-uNK-2 | CG | 4 827 758 | 14.268 55 | 14.268 55 | 0.518 964 | 0.368 129 | 99.60 |
CHG | 12 425 721 | 15.684 28 | 15.684 28 | 0.544 611 | 0.407 767 | ||
CHH | 32 032 980 | 15.228 59 | 15.228 59 | 0.520731 | 0.387 003 | ||
NC-uNK-3 | CG | 4 739 099 | 14.328 09 | 14.328 09 | 0.500 71 | 0.356 494 | 99.51 |
CHG | 12 170 807 | 15.762 94 | 15.762 94 | 0.522 228 | 0.391 935 | ||
CHH | 31 218 592 | 15.280 84 | 15.280 84 | 0.497 111 | 0.370 422 | ||
TET 1-KD-uNK-1 | CG | 4 971 883 | 15.737 09 | 15.737 09 | 0.559 367 | 0.417 201 | 98.39 |
CHG | 12 485 237 | 16.015 49 | 16.015 49 | 0.533 318 | 0.421 735 | ||
CHH | 31 158 989 | 15.422 20 | 15.422 20 | 0.506 721 | 0.398 892 | ||
TET 1-KD-uNK-2 | CG | 4 921 960 | 18.209 16 | 18.209 16 | 0.615 603 | 0.492 745 | 98.20 |
CHG | 11 919 056 | 17.074 72 | 17.074 72 | 0.542 751 | 0.449 476 | ||
CHH | 29 141 027 | 16.233 09 | 16.233 09 | 0.509 518 | 0.418 160 | ||
TET 1-KD-uNK-3 | CG | 5 326 157 | 15.892 160 | 15.892 16 | 0.560 050 | 0.434 085 | 97.61 |
CHG | 13 524 746 | 14.945 568 | 14.945 57 | 0.492 790 | 0.399 544 | ||
CHH | 33 889 240 | 14.220 125 | 14.220 12 | 0.458 943 | 0.370 210 |
Table 4
DMR in different elements of the key enzyme gene for pyruvate metabolism"
起始 Start | 终止 End | 差异甲基化水平 Diff | 启动子 Promoter | 2K上游 Upstream2k | 外显子 Exon | 内含子 Intron | 基因体 Genebody | 5′非翻译区 5′ UTR | 3′非翻译区 3′ UTR |
150 647 817 | 150 647 953 | 0.418 333 | -- | -- | -- | Acss | Acss | -- | -- |
23 204 147 | 23 204 310 | 0.340 533 | -- | -- | -- | -- | Ldhb | -- | -- |
173 153 059 | 173 153 123 | 0.263 533 | Pck1 | Pck1 | Pck1 | -- | Pck1 | Pck1 | -- |
4 585 071 | 4 585 163 | 0.209 667 | -- | -- | -- | Pcx | Pcx | -- | -- |
89 136 449 | 89 136 466 | 0.207 2 | Pklr | -- | -- | Pklr | Pklr | -- | -- |
160 137 770 | 160 137 858 | -0.111 93 | -- | Pdha1 | Pdha1 | -- | -- | ||
114 147 897 | 114 147 964 | -0.139 11 | -- | -- | -- | Acacb | Acacb | Acacb | -- |
111 626 585 | 111 626 779 | -0.139 57 | -- | -- | Ldhd | -- | Ldhd | -- | Ldhd |
30 606 560 | 30 606 690 | -0.142 03 | -- | -- | -- | Glo1 | Glo1 | -- | -- |
173 152 732 | 173153001 | -0.142 8 | Pck1 | Pck1 | -- | -- | -- | -- | -- |
160 137 879 | 160 137 935 | -0.173 4 | Pdha1 | -- | -- | Pdha1 | Pdha1 | -- | -- |
121 592 596 | 121 592 800 | -0.186 19 | -- | -- | -- | Aldh2 | Aldh2 | -- | -- |
4 618 284 | 4 618 430 | -0.188 06 | -- | -- | Pcx | -- | Pcx | -- | -- |
114 174 985 | 114 175 011 | -0.194 2 | -- | -- | -- | Acacb | Acacb | -- | -- |
44 984 450 | 44 984 669 | -0.194 38 | -- | -- | Grhpr | Grhpr | Grhpr | -- | -- |
114 146 703 | 114 147 413 | -0.198 64 | Acacb | -- | -- | Acacb | Acacb | Acacb | -- |
30 572 773 | 30 572 987 | -0.252 46 | -- | -- | -- | Acyp2 | Acyp2 | -- | -- |
1 | 雒瑞瑞, 王彩莲, 郎侠. DNA甲基化在家畜繁殖中的研究进展[J]. 农业生物技术学报, 2023, 31 (10): 2190- 2199. |
LUO R R , WANG C L , LANG X . Research progress on DNA methylation in domestic animal reproduction[J]. Journal of Agricultural Biotechnology, 2023, 31 (10): 2190- 2199. | |
2 |
TWIGT J M , HAMMICHE F , SINCLAIR K D , et al. Preconception folic acid use modulates estradiol and follicular responses to ovarian stimulation[J]. J Clin Endocrinol Metab, 2011, 96 (2): E322- E329.
doi: 10.1210/jc.2010-1282 |
3 |
CHAN D , MCGRAW S , KLEIN K , et al. Stability of the human sperm DNA methylome to folic acid fortification and short-term supplementation[J]. Hum Reprod, 2017, 32 (2): 272- 283.
doi: 10.1093/humrep/dew308 |
4 |
GRAZUL-BILSKA A T , JOHNSON M L , BOROWICZ P P , et al. Placental development during early pregnancy in sheep: effects of embryo origin on fetal and placental growth and global methylation[J]. Theriogenology, 2013, 79 (1): 94- 102.
doi: 10.1016/j.theriogenology.2012.09.013 |
5 |
BIRD A . DNA methylation patterns and epigenetic memory[J]. Genes Dev, 2002, 16 (1): 6- 21.
doi: 10.1101/gad.947102 |
6 |
SCHVBELER D . Function and information content of DNA methylation[J]. Nature, 2015, 517 (7534): 321- 326.
doi: 10.1038/nature14192 |
7 | 马飞. TET1表观修饰BCL6B调控胃癌进展的机制[D]. 福州: 福建医科大学, 2016. |
MA F. Mechanism of TET1 epigenetic modification of gene BCL6B in the regulation of gastric cancer[D]. Fuzhou: Fujian Medical University, 2016. (in Chinese) | |
8 | 黎明国, 华再东, 毕延震. TET蛋白在配子形成和早期胚胎中的作用研究进展[J]. 中国畜牧杂志, 2023, 59 (11): 71- 77. |
LI M G , HUA Z D , BI Y Z . Research progress on the role of TET protein in gametogenesis and early embryo[J]. Chinese Journal of Animal Science, 2023, 59 (11): 71- 77. | |
9 |
YAMAGUCHI S , HONG K , LIU R , et al. Tet1 controls meiosis by regulating meiotic gene expression[J]. Nature, 2012, 492 (7429): 443- 447.
doi: 10.1038/nature11709 |
10 |
XU M Z , QIAN J L , SI L , et al. The effect of epigenetic changes on the extrusion of the first polar body in pig oocytes during in vitro maturation[J]. Cell Reprogram, 2019, 21 (3): 129- 140.
doi: 10.1089/cell.2018.0071 |
11 |
YAMAGUCHI S , SHEN L , LIU Y T , et al. Role of Tet1 in erasure of genomic imprinting[J]. Nature, 2013, 504 (7480): 460- 464.
doi: 10.1038/nature12805 |
12 |
KHOUEIRY R , SOHNI A , THIENPONT B , et al. Lineage-specific functions of TET1 in the postimplantation mouse embryo[J]. Nat Genet, 2017, 49 (7): 1061- 1072.
doi: 10.1038/ng.3868 |
13 |
PENG V , XING X Y , BANDO J K , et al. Whole-genome profiling of DNA methylation and hydroxymethylation identifies distinct regulatory programs among innate lymphocytes[J]. Nat Immunol, 2022, 23 (4): 619- 631.
doi: 10.1038/s41590-022-01164-8 |
14 |
YANG R L , QU C Y , ZHOU Y , et al. Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis[J]. Immunity, 2015, 43 (2): 251- 263.
doi: 10.1016/j.immuni.2015.07.017 |
15 |
ORLANSKI S , LABI V , REIZEL Y , et al. Tissue-specific DNA demethylation is required for proper B-cell differentiation and function[J]. Proc Natl Acad Sci U S A, 2016, 113 (18): 5018- 5023.
doi: 10.1073/pnas.1604365113 |
16 |
SOJKA D K , YANG L P , YOKOYAMA W M . Uterine natural killer cells[J]. Front Immunol, 2019, 10, 960.
doi: 10.3389/fimmu.2019.00960 |
17 |
JABRANE-FERRAT N . Features of human decidual NK cells in healthy pregnancy and during viral infection[J]. Front Immunol, 2019, 10, 1397.
doi: 10.3389/fimmu.2019.01397 |
18 | 杨晓伟, 赵永聚. 哺乳动物子宫自然杀伤(uNK)细胞对妊娠的调控作用[J]. 畜牧兽医学报, 2020, 51 (5): 899- 906. |
YANG X W , ZHAO Y J . The regulation role of uterine natural killer (uNK) cells during pregnancy in mammals[J]. Acta Veterinaria Et Zootechnica Sinica, 2020, 51 (5): 899- 906. | |
19 |
XIE M , LI Y , MENG Y Z , et al. Uterine natural killer cells: a rising star in human pregnancy regulation[J]. Front Immunol, 2022, 13, 918550.
doi: 10.3389/fimmu.2022.918550 |
20 |
DÍAZ-HERNÁNDEZ I , ALECSANDRU D , GARCÍA-VELASCO J A , et al. Uterine natural killer cells: from foe to friend in reproduction[J]. Hum Reprod Update, 2021, 27 (4): 720- 746.
doi: 10.1093/humupd/dmaa062 |
21 | 杨晓伟, 赵自亮, 付雨, 等. TET1基因对小鼠uNK细胞增殖及IFN-γ、VEGF-C和TGF-β1转录水平的影响[J]. 畜牧兽医学报, 2023, 54 (3): 1221- 1228. |
YANG X W , ZHAO Z L , FU Y , et al. Effects of TET1 gene on the proliferation of mouse uNK cells and the transcriptional level of IFN-γ, VEGF-C and TGF-β1[J]. Acta Veterinaria Et Zootechnica Sinica, 2023, 54 (3): 1221- 1228. | |
22 | 赵柯郁, 苏丽娅. 胚胎发育过程的表观遗传调控研究进展[J]. 生物学杂志, 2023, 40 (6): 99- 103. |
ZHAO K Y , SU L Y . Advancement of epigenetic regulation in embryonic development[J]. Journal of Biology, 2023, 40 (6): 99- 103. | |
23 |
QIAN D C , ULRICH B C , PENG G , et al. Outcomes stratification of head and neck cancer using pre- and post-treatment DNA methylation from peripheral blood[J]. Int J Radiat Oncol Biol Phys, 2023, 115 (5): 1217- 1228.
doi: 10.1016/j.ijrobp.2022.11.009 |
24 |
STURGEON S R , SELA D A , BROWNE E P , et al. Prediagnostic white blood cell DNA methylation and risk of breast cancer in the prostate lung, colorectal, and ovarian cancer screening trial (PLCO) cohort[J]. Cancer Epidemiol Biomarkers Prev, 2021, 30 (8): 1575- 1581.
doi: 10.1158/1055-9965.EPI-20-1717 |
25 | 郭静思, 李馨阳, 杨跃辉. 甲基转移酶样蛋白家族在肿瘤疾病中的相关研究进展[J]. 中国药学杂志, 2024, 59 (5): 392- 397. |
GUO J S , LI X Y , YANG Y H . Research progress in research on methyltransferase-like protein family in cancer diseases[J]. Chinese Pharmaceutical Journal, 2024, 59 (5): 392- 397. | |
26 |
VASCONCELOS S , CANIÇAIS C , CHUVA DE SOUSA LOPES S M , et al. The role of DNA hydroxymethylation and TET enzymes in placental development and pregnancy outcome[J]. Clin Epigenet, 2023, 15 (1): 66.
doi: 10.1186/s13148-023-01483-z |
27 |
CUI Y H , LI T , YANG D H , et al. miR-29 regulates Tet1 expression and contributes to early differentiation of mouse ESCs[J]. Oncotarget, 2016, 7 (40): 64932- 64941.
doi: 10.18632/oncotarget.10751 |
28 |
NAKATSUKASA H , ODA M , YIN J H , et al. Loss of TET proteins in regulatory T cells promotes abnormal proliferation, Foxp3 destabilization and IL-17 expression[J]. Int Immunol, 2019, 31 (5): 335- 347.
doi: 10.1093/intimm/dxz008 |
29 |
LAIRD P W . Principles and challenges of genome-wide DNA methylation analysis[J]. Nat Rev Genet, 2010, 11 (3): 191- 203.
doi: 10.1038/nrg2732 |
30 | 王倩倩. 双加氧酶Tet对DNA甲基化修饰的影响及相关调控机制研究[D]. 北京: 中国农业大学, 2018. |
WANG Q Q. Effects of Tet dioxygenases on DNA methylation and related regulatory mechanisms[D]. Beijing: China Agricultural University, 2018. (in Chinese) | |
31 |
GRAY L R , TOMPKINS S C , TAYLOR E B . Regulation of pyruvate metabolism and human disease[J]. Cell Mol Life Sci, 2014, 71 (14): 2577- 2604.
doi: 10.1007/s00018-013-1539-2 |
32 |
ELIA I , ROWE J H , JOHNSON S , et al. Tumor cells dictate anti-tumor immune responses by altering pyruvate utilization and succinate signaling in CD8+ T cells[J]. Cell Metab, 2022, 34 (8): 1137- 1150. e6.
doi: 10.1016/j.cmet.2022.06.008 |
33 |
WENES M , JACCARD A , WYSS T , et al. The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function[J]. Cell Metab, 2022, 34 (5): 731- 746. e9.
doi: 10.1016/j.cmet.2022.03.013 |
34 |
PALMIERI E M , GONZALEZ-COTTO M , BASELER W A , et al. Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase[J]. Nat Commun, 2020, 11 (1): 698.
doi: 10.1038/s41467-020-14433-7 |
35 |
LIU Y Z , WANG R Y , ZHANG L C , et al. The lipid metabolism gene FTO influences breast cancer cell energy metabolism via the PI3K/AKT signaling pathway[J]. Oncol Lett, 2017, 13 (6): 4685- 4690.
doi: 10.3892/ol.2017.6038 |
36 | LIAO S , LIANG L , YUE C X , et al. CD38 is involved in cell energy metabolism via activating the PI3K/AKT/mTOR signaling pathway in cervical cancer cells[J]. Int J Oncol, 2020, 57 (1): 338- 354. |
37 |
LIU X L , LIU L D , CHEN K Y , et al. Huaier shows anti-cancer activities by inhibition of cell growth, migration and energy metabolism in lung cancer through PI3K/AKT/HIF-1α pathway[J]. J Cell Mol Med, 2021, 25 (4): 2228- 2237.
doi: 10.1111/jcmm.16215 |
38 |
INFANTINO V , SANTARSIERO A , CONVERTINI P , et al. Cancer cell metabolism in hypoxia: role of HIF-1 as key regulator and therapeutic target[J]. Int J Mol Sci, 2021, 22 (11): 5703.
doi: 10.3390/ijms22115703 |
39 |
CERNIGLIA G J , DEY S , GALLAGHER-COLOMBO S M , et al. The PI3K/Akt pathway regulates oxygen metabolism via pyruvate dehydrogenase (PDH)-E1α phosphorylation[J]. Mol Cancer Ther, 2015, 14 (8): 1928- 1938.
doi: 10.1158/1535-7163.MCT-14-0888 |
40 |
ZHOU S Q , SAKAMOTO K . Pyruvic acid/ethyl pyruvate inhibits melanogenesis in B16F10 melanoma cells through PI3K/AKT, GSK3β, and ROS-ERK signaling pathways[J]. Genes Cells, 2019, 24 (1): 60- 69.
doi: 10.1111/gtc.12654 |
41 |
LUO Z S , ZENG W Z , DU G C , et al. Enhancement of pyruvic acid production in Candida glabrata by engineering hypoxia-inducible factor 1[J]. Bioresour Technol, 2020, 295, 122248.
doi: 10.1016/j.biortech.2019.122248 |
42 | WANG Y , HUANG Y , YANG J , et al. Pyruvate is a prospective alkalizer to correct hypoxic lactic acidosis[J]. Mil Med Res, 2018, 5 (1): 13. |
43 |
XIE B Y , LV Q Y , NING C C , et al. TET1-GPER-PI3K/AKT pathway is involved in insulin-driven endometrial cancer cell proliferation[J]. Biochem Biophys Res Commun, 2017, 482 (4): 857- 862.
doi: 10.1016/j.bbrc.2016.11.124 |
44 |
ALI M M , PHILLIPS S A , MAHMOUD A M . HIF1α/TET1 pathway mediates hypoxia-induced adipocytokine promoter hypomethylation in human adipocytes[J]. Cells, 2020, 9 (1): 134.
doi: 10.3390/cells9010134 |
[1] | HUANG Xinhe, LI Haonan, ZHOU Xiao, XU Jiajing, ZHANG Yuanshu, HAN Zhengkang. Effects and Mechanism on the Synthesis of Milk Components and Cell Proliferation in Mouse Mammary Epithelial Cells by Phytoestrogen Daidzein [J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 417-429. |
[2] | Tong ZHAO, Wenzhe YANG, Feilong PAN, Shuchen ZHAO, Kexiang LIU, Zhanjun LÜ, Lijia ZHAO. Bisphenol A Inhibits Testosterone Synthesis in TM3 Cells by Upregulating Apoa1 Gene Expression [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(8): 3516-3525. |
[3] | Wangqing BAN MA, Xi CHEN, Yi YUE, Yurong SU, Hua YUE, Cheng TANG. Isolation, Identification and Partial Biological Characteristics of a Bovine Respiratory Coronavirus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 3094-3104. |
[4] | ZHUANG Cuicui, HAN Bo. Mechanism of Mitochondrial Damage in Bovine Mammary Epithelial Cells and Mouse Mammary Gland Infected with Escherichia coli Isolated from Bovine Mastitis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 822-833. |
[5] | Ruifang LI, Manyu ZHANG, Qing SUN, Jingying DU, Wei JIANG, Zengqiang LI, Luming XIA, Quan WANG. Experimental Study on the Production of Cysts in Mice Infected with Toxoplasma gondii Tachyzoites of PRU Strain [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4620-4629. |
[6] | LIANG Rui, FAN Xiaorui, ZHANG Jinqiang, PANG Quanhai. Effects of Mouse Melanocyte Silencing and Overexpression of Pigment Epithelium-Derived Factor on Melanin Synthesis [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3916-3930. |
[7] | CHEN Xihong, LU Guicong, WANG Haolei, GOU Shaoxiao, YU Yongxiong, LIN Tao, JIANG Caode. Isochlorogenic Acid C Inhibits Mammary Inflammatory Response through NF-κB Signaling Pathway Using Bovine Mammary Gland Cells and Mouse Mammary Gland Tissue [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(9): 3931-3940. |
[8] | HUANG Jiang, LI Chuang, CUI Yueqi, YUAN Xueying, ZHAO Zhicheng, LIU Yu, ZHOU Yulong, ZHU Zhanbo, ZHANG Zecai. Study on the Effect of Gut Microbiota Disturbance on Susceptibility to BVDV Based on a Mouse Model [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3466-3473. |
[9] | ZHU Jiaqiao, CHENG Laiyang, CAO Jiangqin, ZHU Min, LI Junwei, JU Huimin, LIU Zongping. Preliminary Study on the Location and Function of XRCC1 in Oocyte and Early Embryos [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(5): 2126-2133. |
[10] | YANG Xiaowei, ZHAO Ziliang, FU Yu, YU Zixiao, ZHAO Yongju. Effects of TET1 Gene on the Proliferation of Mouse uNK Cells and the Transcriptional Level of IFN-γ, VEGF-C and TGF-β1 [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 1221-1228. |
[11] | WU Xuemei, YANG Xin, YUAN Yajie, YIN Yanling, LAI Peng, SONG Junke, SHI Huaiping, ZHAO Guanghui. Immunomodulatory Effect of C5a/C5aR Signal during Cryptosporidium parvum Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2621-2632. |
[12] | LI Hui, XIONG Jing, MEI Cui, WANG Shiyuan, ZHOU Yang, LI Xiaofen, FU Guihua, ZHANG Yang, CHENG Peng, HE Yuzhang, CHEN Hongwei. The Safety and Stability of the Antimicrobial Peptide CRAMP and Its Role in Eradicating Pseudomonas aeruginosa Biofilms [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(5): 1576-1586. |
[13] | WANG Fei, YANG Jie, Lü Qingjie, WANG Mixue, LIU Peng, ZHANG Ruoyu, SHI Congcong, WANG Xueying, LIN Lin, HUA Lin, SONG Wenbo, LIANG Wan, CHEN Huanchun, WU Bin, PENG Zhong. Isolation and Genomic Characterization of a Meningitis Causing Pasteurella multocida [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(12): 4346-4355. |
[14] | FENG Meiying, WEI Hengxi, LI Li, ZHANG Shouquan. The Preliminary Research of the Protein Coding Ability of lncRNA-Tubb4b and Its Regulation on Microtubule Genes [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(1): 179-187. |
[15] | YANG Xiaohua, LIU Fangfang, ZHANG Fenglin, YI Xin, CHEN Lin, SHU Gang, WANG Lina, ZHU Xiaotong, GAO Ping, JIANG Qingyan, WANG Songbo. Effects of Dietary Fish Oil on Estrous Cycles and Body Heat Production in Mice Fed High-fat Diets [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(7): 1891-1902. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||