Acta Veterinaria et Zootechnica Sinica ›› 2025, Vol. 56 ›› Issue (1): 365-377.doi: 10.11843/j.issn.0366-6964.2025.01.034
• Preventive Veterinary Medicine • Previous Articles Next Articles
WANG Hengtai1(), LU Lang1, JIANG Hui1, CHENG Junsheng2, LIU Minghe2, CHU Yuefeng3, XU Jian3, LI Peng1,*(
), DING Jiabo1,*(
)
Received:
2024-02-28
Online:
2025-01-23
Published:
2025-01-18
Contact:
LI Peng, DING Jiabo
E-mail:17861509833@163.com;lipeng01@caas.cn;dingjiabo@caas.cn
CLC Number:
WANG Hengtai, LU Lang, JIANG Hui, CHENG Junsheng, LIU Minghe, CHU Yuefeng, XU Jian, LI Peng, DING Jiabo. Biological Function of MgtC Protein in Brucella abortus to Low-Mg2+ Resistant Environment[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 365-377.
Table 1
Amplification primer sequence"
引物名称 Primer | 引物序列(5′→3′) Sequence | 长度/ bp Length | 作用 Function |
mgtC-RL-F | GCGTTTCAGCCTACTTAT | 140 | mgtC转录水平的检测 |
mgtC-RL-R | CGGTTCGTTCCTTCAATA | ||
BAB_RS26555-UP-F | GAAGATTCCGTTCTTCCAGAGCACGGCTGC | 1 000 | 扩增mgtC上游同源臂 |
BAB_RS26555-UP-R | CTCATTTACCGCCTGCTTGGGCACCC | ||
BAB_RS26555-DOWN-F | GACTGCAATCTCATTTGCCGCCCGG | 1 000 | 扩增mgtC下游同源臂 |
BAB_RS26555-DOWN-R | GTGGTCCAGAATGCGTCGAACAGCCGTTC | ||
pBBR-mgtC-F | CACTTTCGTTTCTCCGGGGGCTAC | 916 | 扩增带有自身启动子mgtC基因 |
pBBR-mgtC-R | TTATAATCCAGAAAGGCCACCGGAATC | ||
2308-16S-F | GCTGCCCACTGTCACCACCA | 153 | mgtC转录水平的内参 |
2308-16S-R | CGCAACCCTCGCCCTTAGTT |
Fig. 1
Construction diagram of Brucella abortus mgtC deletion strains and their recuperated strains A. PCR verification of pUCML-mgtC strain (M. DL5000 DNA marker; 1. pUCML-mgtC (PCR product is 2 000 bp); 2. Negative control); B. Brucella abortus S2308ΔmgtC deletion strain PCR verification (M. DL5000 DNA marker; 1. Brucella abortus S2308 parent strain (PCR product is 2 717 bp); 2. S2308ΔmgtC (PCR product is 2 000 bp); 3. Negative Control); C. PCR verification of pBBR1MCS-mgtC strain (M. DL5000 DNA marker; 1. pBBR1MCS-mgtC (PCR product is 917 bp); 2. Negative control); D. PCR verification of complementary strains of Brucella abortus S2308ΔmgtC(pBBR1MCS-mgtC) (M. DL5000 DNA marker; 1. S2308ΔmgtC(pBBR1MCS-mgtC) (PCR product is 917 bp); 2. Negative control); E. Brucella abortus S2308ΔmgtC strain and S2308ΔmgtC(pBBR1MCS-mgtC) gene expression were verified by qPCR"
Fig. 2
The mgtC is also a key gene in response to low Mg2+ stress in Brucella abortus A.Determination of the growth curve of Brucella abortus S2308 in high/low Mg2+ medium; B. Determination of CFU content of Brucella abortus S2308 at 4, 12 and 24 h induction in low Mg2+ environment; C. Relative expression of mgtC gene in Brucella abortus S2308 induced at 4, 12 and 24 h in low Mg2+ environment; D. Determination of growth curves of Brucella abortus S2308, S2308ΔmgtC, S2308ΔmgtC (pBBR1MCS-mgtC) in high Mg2+ environment; E. Determination of growth curves of Brucella abortus S2308, S2308ΔmgtC, S2308ΔmgtC (pBBR1MCS-mgtC) in low Mg2+ environment. *. P < 0.05; **. P < 0.01; ***. P < 0.001;ns.P>0.05"
Fig. 3
Transcriptomic analysis of Brucella abortus parent strains and MgtC deletion strains under low Mg2+ conditions A. Volcano map of mgtC gene deletion between Brucella abortus and parental strains under low Mg2+ conditions; B. Differential gene heat maps of mgtC gene deletion strains and parental strains of Brucella abortus under low Mg2+ conditions, in Fig. B, S2308 induced by low Mg2+ is labeled as S_U_1/2/3, and S2308ΔmgtC induced by low Mg2+ is labeled as C_U_1/2/3; C. GO function analysis of mgtC gene deletion between Brucella abortus and parental strains under low Mg2+ conditions, S2308 induced in low Mg2+ environment is labeled as S2308_LOW_MG, and S2308 induced in low Mg2+ environment is labeled as D_C_LOW_MG; D. Intracellular ATP content of S2308、S2308ΔmgtC, S2308ΔmgtC (pBBR1MCS-mgtC) in 107 bacteria under high/low Mg2+ environment. ns. P > 0.05;*. P < 0.05; **. P < 0.01; ***. P < 0.001"
Fig. 4
Functional analysis of MgtC in Brucella abortus resistance to environmental stress A. The survival rate of S2308, S2308ΔmgtC, S2308ΔmgtC(pBBR1MCS-mgtC) in TSB with the final concentration of hydrogen peroxide of 5.0 and 2.5 mmol ·L-1; B. The survival rate of S2308(A), S2308ΔmgtC(B), S2308ΔmgtC(pBBR1MCS-mgtC)(C) with the same amount of bacteria in acidic environment with final concentration of pH=5.5 or 4.5; C. Survival of S2308, S2308ΔmgtC, S2308ΔmgtC(pBBR1MCS-mgtC) at 25, 42 ℃, 0.4 mmol ·L-1 2, 2-bipyridine, 0.5 mmol ·L-1 SNP on TSA plates with the same bacterial content. *. P < 0.05; **. P < 0.01; ***. P < 0.001"
Fig. 7
MgtC did not affect the intracellular viability of Brucella abortus and its pathogenicity to mice A. At 1, 4, 24, 48, 72 h after infection, S2308, S2308ΔmgtC, S2308ΔmgtC(pBBR1MCS-mgtC) intracellular bacterial CFU were detected; B. Bacterial load in spleen of S2308, S2308ΔmgtC, S2308ΔmgtC(pBBR1MCS-mgtC) mice at 2, 4, 6, and 8 weeks after infection. *. P < 0.05; **. P < 0.01; ***. P < 0.001"
1 |
GROISMAN E A , CHAN C . Cellular adaptations to cytoplasmic Mg2+ limitation[J]. Annu Rev Microbiol, 2021, 75, 649- 672.
doi: 10.1146/annurev-micro-020518-115606 |
2 | HE Y Q . Analyses of Brucella pathogenesis, host immunity, and vaccine targets using systems biology and bioinformatics[J]. Front Cell Inf Microbiol, 2012, 2, 2. |
3 |
LALSIAMTHARA J , LEE J H . Development and trial of vaccines against Brucella[J]. J Vet Sci, 2017, 18 (S1): 281- 290.
doi: 10.4142/jvs.2017.18.S1.281 |
4 |
JIAO H W , ZHOU Z X , LI B W , et al. The mechanism of facultative intracellular parasitism of Brucella[J]. Int J Mol Sci, 2021, 22 (7): 3673.
doi: 10.3390/ijms22073673 |
5 | 谢士杰, 彭小薇, 冯宇, 等. 布鲁氏菌逃避宿主免疫机制的研究进展[J]. 生命科学, 2019, 31 (9): 871- 878. |
XIE S J , PENG X W , FENG Y , et al. Mechanism of Brucella evading from host immune response[J]. Chinese Bulletin of Life Sciences, 2019, 31 (9): 871- 878. | |
6 |
IWADATE Y , GOLUBEVA Y A , SLAUCH J M . Cation homeostasis: coordinate regulation of polyamine and magnesium levels in Salmonella[J]. mBio, 2023, 14 (1): e0269822.
doi: 10.1128/mbio.02698-22 |
7 |
GROISMAN E A , KAYSER J , SONCINI F C . Regulation of polymyxin resistance and adaptation to low-Mg2+ environments[J]. J Bacteriol, 1997, 179 (22): 7040- 7045.
doi: 10.1128/jb.179.22.7040-7045.1997 |
8 |
CHAMNONGPOL S , CROMIE M , GROISMAN E A . Mg2+ sensing by the Mg2+ sensor PhoQ of Salmonella enterica[J]. J Mol Biol, 2003, 325 (4): 795- 807.
doi: 10.1016/S0022-2836(02)01268-8 |
9 |
CHOI J , GROISMAN E A . Horizontally acquired regulatory gene activates ancestral regulatory system to promote Salmonella virulence[J]. Nucleic Acids Res, 2020, 48 (19): 10832- 10847.
doi: 10.1093/nar/gkaa813 |
10 |
DALEBROUX Z D , MILLER S I . Salmonellae PhoPQ regulation of the outer membrane to resist innate immunity[J]. Curr Opin Microbiol, 2014, 17, 106- 113.
doi: 10.1016/j.mib.2013.12.005 |
11 |
WEISS R L , MORRIS D R . Cations and ribosome structure. I. Effects of the 30S subunit of substituting polyamines for magnesium ion[J]. Biochemistry, 1973, 12 (3): 435- 441.
doi: 10.1021/bi00727a012 |
12 |
WEIKUM J , VAN DYCK J F , SUBRAMANI S , et al. The bacterial magnesium transporter MgtA reveals highly selective interaction with specific cardiolipin species[J]. Biochim Biophys Acta (BBA) Mol Cell Res, 2024, 1871 (1): 119614.
doi: 10.1016/j.bbamcr.2023.119614 |
13 |
WOLF F I , CITTADINI A . Chemistry and biochemistry of magnesium[J]. Mol Aspects Med, 2003, 24 (1-3): 3- 9.
doi: 10.1016/S0098-2997(02)00087-0 |
14 |
PONTES M H , LEE E J , CHOI J , et al. Salmonella promotes virulence by repressing cellulose production[J]. Proc Natl Acad Sci U S A, 2015, 112 (16): 5183- 5188.
doi: 10.1073/pnas.1500989112 |
15 |
PONTES M H , YEOM J , GROISMAN E A . Reducing ribosome biosynthesis promotes translation during low Mg2+ stress[J]. Mol Cell, 2016, 64 (3): 480- 492.
doi: 10.1016/j.molcel.2016.05.008 |
16 |
RAMEZANIFARD R , GOLUBEVA Y A , PALMER A D , et al. TamAB is regulated by PhoPQ and functions in outer membrane homeostasis during Salmonella pathogenesis[J]. J Bacteriol, 2023, 205 (10): e0018323.
doi: 10.1128/jb.00183-23 |
17 |
VERMA S C , QIAN Z , ADHYA S L . Correction: architecture of the Escherichia coli nucleoid[J]. PLoS Genet, 2020, 16 (10): e1009148.
doi: 10.1371/journal.pgen.1009148 |
18 |
MALONEY K E , VALVANO M A . The mgtC gene of Burkholderia cenocepacia is required for growth under magnesium limitation conditions and intracellular survival in macrophages[J]. Infect Immun, 2006, 74 (10): 5477- 5486.
doi: 10.1128/IAI.00798-06 |
19 |
LAVIGNE J P , O'CALLAGHAN D , BLANC-POTARD A B . Requirement of MgtC for Brucella suis intramacrophage growth: a potential mechanism shared by Salmonella enterica and Mycobacterium tuberculosis for adaptation to a low-Mg2+ environment[J]. Infect Immun, 2005, 73 (5): 3160- 3163.
doi: 10.1128/IAI.73.5.3160-3163.2005 |
20 |
SUN D J , LIU Y F , PENG X W , et al. ClpP protease modulates bacterial growth, stress response, and bacterial virulence in Brucella abortus[J]. Vet Res, 2023, 54 (1): 68.
doi: 10.1186/s13567-023-01200-x |
21 |
COLEMAN K J , CORNISH-BOWDEN A , COLE J A . Purification and properties of nitrite reductase from Escherichia coli K12[J]. Biochem J, 1978, 175 (2): 483- 493.
doi: 10.1042/bj1750483 |
22 |
TIAN M X , LI Z C , QU J , et al. The novel LysR-family transcriptional regulator BvtR is involved in the resistance of Brucella abortus to nitrosative stress, detergents and virulence through the genetic regulation of diverse pathways[J]. Vet Microbiol, 2022, 267, 109393.
doi: 10.1016/j.vetmic.2022.109393 |
23 |
ZHENG M , LIN R Q , ZHU J Y , et al. Effector proteins of type IV secretion system: weapons of Brucella used to fight against host immunity[J]. Curr Stem Cell Res Ther, 2024, 19 (2): 145- 153.
doi: 10.2174/1574888X18666230222124529 |
24 |
BLANC-POTARD A B , LAFAY B . MgtC as a horizontally-acquired virulence factor of intracellular bacterial pathogens: evidence from molecular phylogeny and comparative genomics[J]. J Mol Evol, 2003, 57 (4): 479- 486.
doi: 10.1007/s00239-003-2496-4 |
25 |
GROISMAN E A , HOLLANDS K , KRINER M A , et al. Bacterial Mg2+ homeostasis, transport, and virulence[J]. Annu Rev Genet, 2013, 47, 625- 646.
doi: 10.1146/annurev-genet-051313-051025 |
26 |
MADARIS T R , VENKATESAN M , MAITY S , et al. Limiting Mrs2-dependent mitochondrial Mg2+ uptake induces metabolic programming in prolonged dietary stress[J]. Cell Rep, 2023, 42 (3): 112155.
doi: 10.1016/j.celrep.2023.112155 |
27 |
BRUNA R E , KENDRA C G , GROISMAN E A , et al. Limitation of phosphate assimilation maintains cytoplasmic magnesium homeostasis[J]. Proc Natl Acad Sci U S A, 2021, 118 (11): e2021370118.
doi: 10.1073/pnas.2021370118 |
28 |
CHOI S , CHOI E , CHO Y J , et al. The Salmonella virulence protein MgtC promotes phosphate uptake inside macrophages[J]. Nat Commun, 2019, 10 (1): 3326.
doi: 10.1038/s41467-019-11318-2 |
29 |
LI P , WANG H T , SUN W , et al. Impact of MgtC on the fitness of Yersinia pseudotuberculosis[J]. Pathogens, 2023, 12 (12): 1428.
doi: 10.3390/pathogens12121428 |
30 |
PARK M , NAM D , KWEON D H , et al. ATP reduction by MgtC and Mg2+ homeostasis by MgtA and MgtB enables Salmonella to accumulate RpoS upon low cytoplasmic Mg2+ stress[J]. Mol Microbiol, 2018, 110 (2): 283- 295.
doi: 10.1111/mmi.14105 |
31 |
PONTES M H , SEVOSTYANOVA A , GROISMAN E A . When too much ATP is bad for protein synthesis[J]. J Mol Biol, 2015, 427 (16): 2586- 2594.
doi: 10.1016/j.jmb.2015.06.021 |
32 |
JEAN-FRANCOIS F L , DAI J , YU L , et al. Binding of MgtR, a Salmonella transmembrane regulatory peptide, to MgtC, a Mycobacterium tuberculosis virulence factor: a structural study[J]. J Mol Biol, 2014, 426 (2): 436- 446.
doi: 10.1016/j.jmb.2013.10.014 |
33 |
MOUSSOUNI M , NOGARET P , GARAI P , et al. Activity of a synthetic peptide targeting MgtC on Pseudomonas aeruginosa intramacrophage survival and biofilm formation[J]. Front Cell Infect Microbiol, 2019, 9, 84.
doi: 10.3389/fcimb.2019.00084 |
34 |
XIA X H . Horizontal gene transfer and drug resistance involving Mycobacterium tuberculosis[J]. Antibiotics (Basel), 2023, 12 (9): 1367.
doi: 10.3390/antibiotics12091367 |
[1] | LI Yixuan, NIU Jingyi, LI Gang, WAN Chao, FANG Rendong, YE Chao. Research Progress on the Biological Functions of Tegument Proteins Encoded by Pseudorabies Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 957-970. |
[2] | LIU Qiang, NIU Xiaoxia, FANG Min, LIU Yanling, GAO Hui, CHEN Jixiang, JIAHUA Cairang, ZHANG Sinong, LI Yong. Research Progress of Bovine Coronavirus Spike Protein [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 944-956. |
[3] | ZHONG Zhuxia, HU Xiuzhong, XIANG Min, YU Jie, LIU Chenhui, ZHAO Shenglan, WAN Pingmin, WANG Dingfa, ZHOU Yuan, CHENG Lei. Research Progress on Biological Function and Application of Pregnancy Associated Glycoproteins in Livestock Production [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 874-881. |
[4] | GUO Yanli, LI Keqiang, BAI Shaochuan, WANG Tao, WANG Dehe, WANG Qi, LI Lanhui. The Structure, Activity Regulation of ALV-E and Its Effects on Host Function [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2683-2691. |
[5] | XIA Chunqiu, WAN Fachun, LIU Lei, SHEN Weijun, XIAO Dingfu. Valine: Biological Function and Application in Livestock and Poultry Diets [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(11): 4502-4513. |
[6] | ZHENG Xiaonan, LI Tingting, WANG Jinlei, ZHENG Wenbin, ZHU Xingquan. Research Progress on Biological Functions of Dense Granule Proteins of Toxoplasma gondii [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(10): 3345-3357. |
[7] | WANG Weizhen, DENG Zhanzhao, XIN Guosheng, CAI Zhengyun, GU Yaling, ZHANG Juan. The Biological Function of Circular RNA and Its Research Progress in Poultry [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(7): 1778-1788. |
[8] | LIU Yibing, WU Dequn, LIN Zheguang, JI Ting. Review on Biological Function of Royal Jelly [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(6): 1498-1510. |
[9] | ZHANG Jin-wei, LONG Ke-ren, WANG Xun, LI Ming-zhou, MA Ji-deng. The Research Advance of Circular RNA [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2016, 47(11): 2151-2158. |
[10] | ZHANG Song-lin, SHEN Zhi-qiang, LIU Lei, MA Yong-biao, LIU Ji-shan. Advance on Biological Functions of Structural and Non-structural Proteins of Porcine Reproductive and Respiratory Syndrome Virus [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2012, 43(11): 1683-1696. |
[11] | CHEN Jia;;WU Songming;;ZHU Xingquan;HUANG Siyang. Advances on the Studies of Parasite Proteasomes [J]. ACTA VETERINARIA ET ZOOTECHNICA SINICA, 2012, 43(1): 7-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||