Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (12): 5511-5526.doi: 10.11843/j.issn.0366-6964.2024.12.017
• Animal Genetics and Breeding • Previous Articles Next Articles
QI Junying1(), PEI Quanbang1, ZHANG Wenkui1, XU Teng1, ZUO Mingxing1, HAN Buying2, LI Xue2, LIU Dehui2, WANG Song2, ZHOU Baicheng3, ZHAO Kai2, TIAN Dehong2,*(
)
Received:
2024-05-28
Online:
2024-12-23
Published:
2024-12-27
Contact:
TIAN Dehong
E-mail:13639787053@163.com;tiandehong@nwipb.cas.cn
CLC Number:
QI Junying, PEI Quanbang, ZHANG Wenkui, XU Teng, ZUO Mingxing, HAN Buying, LI Xue, LIU Dehui, WANG Song, ZHOU Baicheng, ZHAO Kai, TIAN Dehong. Genome-wide Selective Signal Identification and Association Analysis of Candidate Genes for Tibetan Sheep Wool Traits[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(12): 5511-5526.
Fig. 5
Manhattan map of Fst and Pi ratio joint analysis The horizontal coordinate represents the ratio of Pi sample to Pi control, the vertical coordinate represents the Fst value, the gray area represents the area that was not selective sweep, and the red and green represent the area that was selective sweep"
Table 2
Candidate genes screened by the top 5% Fst and Pi ratio values"
染色体 Chromosome | 基因 Gene | 编号 ID | 描述 Description |
6 | FGF5 | ENSOARG00020008615 | fibroblast growth factor 5 |
6 | FGFR3 | ENSOARG00020023492 | fibroblast growth factor receptor 3 |
19 | MITF | ENSOARG00020020821 | melanocyte inducing transcription factor |
14 | MC1R | ENSOARG00020003524 | melanocortin 1 receptor |
16 | GHR | ENSOARG00020006196 | growth hormone receptor |
1 | WNT2B | ENSOARG00020013948 | Wnt family member 2B |
19 | WNT5A | ENSOARG00020020359 | Wnt family member 5A |
Table 3
Population Hardy-Weinberg equilibrium test"
数量 (N) Number | 基因 Gene | 染色体 Chromosome | 外显子 Exon | 长度/bp Length | 基因纯合度 (Ho) Gene homogeneity | 基因杂合度 (He) Gene heterozygosity | 有效等位基因数 (Ne) Effective number of alleles | 多态信息含量 (PIC) Polymorphism information content | P |
108 | FGF5 | 6 | 3 | 1 742 | 0.510 | 0.493 | 1.970 | 0.371 | 0.722 |
108 | FGFR3 | 6 | 10 | 2 589 | 0.480 | 0.467 | 1.878 | 0.358 | 0.797 |
Table 5
Correlation analysis between FGF5 genotype and wool traits"
性状 Trait | Mean±SE | P | ||
TT (n=34) | CT (n=54) | CC (n=20) | ||
羊绒长度/mm Cashmere length | 106.74±14.28 | 107.76±17.84 | 115.35±19.48 | 0.169 |
羊毛长度/mm Wool length | 241.26±47.78A | 253.39±53.92A | 308.7±33.29B | 0.000 009 |
羊绒细度/μm Cashmere fineness | 24.98±2.30A | 25.98±2.47AB | 27.20±3.53B | 0.013 |
羊毛细度/μm Wool fineness | 46.17±4.84A | 46.66±6.03A | 53.19±5.87B | 0.000 028 |
有髓毛含量/% Medullary content | 22.49±14.30A | 28.19±17.24AB | 36.08±22.27B | 0.025 |
无髓毛含量/% Non-medullary content | 60.77±15.09A | 51.28±12.99BCa | 43.74±15.09BCb | 0.000 113 |
两型毛含量/% Two types of hair content | 9.32±9.03a | 16.59±14.46bc | 17.91±19.49bc | 0.035 |
干死毛含量/% Dry dead hair content | 7.15±9.40 | 4.39±8.54 | 2.28±4.45 | 0.098 |
断裂强力/N Breaking force | 36.46±13.03 | 35.00±13.25 | 39.89±9.86 | 0.339 |
断裂强度/(N·ktex-1) Breaking strength | 56.96±21.34 | 55.38±22.07 | 62.82±18.20 | 0.408 |
断裂伸长率/% Elongation at break | 14.32±4.40 | 14.27±4.37 | 15.93±3.99 | 0.312 |
洗净率/% Cleaning rate | 86.36±7.96 | 86.19±7.66 | 84.06±8.38 | 0.530 |
Table 6
Correlation analysis of FGFR3 genotype and wool traits"
性状Trait | Mean±SE | P | ||
TT (n=42) | CT (n=52) | CC (n=14) | ||
羊绒长度/mm Cashmere length | 108.07±18.31 | 109.42±17.22 | 109.00±15.11 | 0.932 |
羊毛长度/mm Wool length | 234.36±47.46A | 266.50±52.26B | 311.36±32.65C | 0.000 003 |
羊绒细度/μm Cashmere fineness | 25.07±2.17A | 26.14±2.51AB | 27.42±4.09B | 0.012 |
羊毛细度/μm Wool fineness | 45.73±4.88A | 47.82±6.22A | 53.27±6.51B | 0.000 253 |
有髓毛含量/% Medullary content | 22.90±14.38a | 31.16±19.24ab | 30.47±20.04ab | 0.048 |
无髓毛含量/% Non-medullary content | 59.09±16.03Aa | 49.34±13.86ABb | 47.32±11.35ABb | 0.002 |
两型毛含量/% Two types of hair content | 9.60±10.17a | 17.11±15.01b | 19.87±19.36b | 0.013 |
干死毛含量/% Dry dead hair content | 8.19±10.49Aa | 2.86±6.07Bb | 2.35±4.97b | 0.004 |
断裂强力/N Breaking force | 34.70±13.40 | 36.53±12.25 | 40.78±11.41 | 0.296 |
断裂强度/(N·ktex-1) Breaking strength | 54.70±21.20 | 57.50±21.45 | 64.00±19.91 | 0.364 |
断裂伸长率/% Elongation at break | 14.27±4.20 | 14.44±4.53 | 16.16±3.81 | 0.347 |
洗净率/% Cleaning rate | 87.06±7.49 | 85.22±7.89 | 84.57±8.93 | 0.432 |
Fig. 12
Pearson correlation coefficients between wool traits The darker the color, the stronger the correlation, greater than 0.7 is a strong correlation, 0.3-0.7 is a moderate correlation, less than 0.3 is a weak correlation. ** indicates a very significant correlation (P < 0.01), * indicates a significant correlation (P < 0.05)"
1 | 赵有璋. 现代中国养羊[M]. 北京: 金盾出版社, 2005. |
ZHAO Y Z . Modern sheep rearing in China[M]. Beijing: Jindun Publishing House, 2005. | |
2 |
颜寿东, 张惠萍, 张亚君, 等. 青海省不同品种羊羊毛纤维物理性能分析[J]. 中国草食动物, 2009, 29 (3): 60- 61.
doi: 10.3969/j.issn.2095-3887.2009.03.026 |
YAN S D , ZHANG H P , ZHANG Y J , et al. Analysis of physical properties of wool fibers of different breeds of sheep in Qinghai Province[J]. China Herbivore, 2009, 29 (3): 60- 61.
doi: 10.3969/j.issn.2095-3887.2009.03.026 |
|
3 | 邓诗品, 凌士希, 赵仁璧, 等. 欧拉羊生产性能的研究[J]. 中国畜牧杂志, 1964, (4): 1- 5. |
DENG S P , LING S X , ZHAO R B , et al. Study on production performance of Oular sheep[J]. Chinese Journal of Animal Science, 1964, (4): 1- 5. | |
4 | MCKENZIE G W. A search for quantitative trait loci affecting wool colour[D]. Christchurch: Lincoln University, 2002. |
5 |
GONG H , ZHOU H T , FORREST R H J , et al. Wool keratin-associated protein genes in sheep-a review[J]. Genes (Basel), 2016, 7 (6): 24.
doi: 10.3390/genes7060024 |
6 |
LIU D H , LI X , WANG L , et al. Genome-wide association studies of body size traits in Tibetan sheep[J]. BMC Genomics, 2024, 25 (1): 739.
doi: 10.1186/s12864-024-10633-3 |
7 |
ZHU M T , YANG Y L , YANG H , et al. Whole-genome resequencing of the native sheep provides insights into the microevolution and identifies genes associated with reproduction traits[J]. BMC Genomics, 2023, 24 (1): 392.
doi: 10.1186/s12864-023-09479-y |
8 |
ZHAO F P , XIE R , FANG L Z , et al. Analysis of 206 whole-genome resequencing reveals selection signatures associated with breed-specific traits in Hu sheep[J]. Evol Appl, 2024, 17 (6): e13697.
doi: 10.1111/eva.13697 |
9 | ZHANG W T , JIN M L , LI T T , et al. Whole-genome resequencing reveals selection signal related to sheep wool fineness[J]. Animals (Basel), 2023, 13 (18): 2944. |
10 | 和东迁, 陶金忠, 陈丽尧, 等. 与毛纤维性状相关的角蛋白相关蛋白研究进展[J]. 农业生物技术学报, 2021, 29 (6): 1198- 1205. |
HE D Q , TAO J Z , CHEN L Y , et al. Research progress of keratin-related proteins related to hair fiber traits[J]. Journal of Agricultural Biotechnology, 2021, 29 (6): 1198- 1205. | |
11 |
CHEN S F , ZHOU Y Q , CHEN Y R , et al. fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34 (17): i884- i890.
doi: 10.1093/bioinformatics/bty560 |
12 |
LI H , DURBIN R . Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25 (14): 1754- 1760.
doi: 10.1093/bioinformatics/btp324 |
13 |
QUINLAN A R , HALL I M . BEDTools: a flexible suite of utilities for comparing genomic features[J]. Bioinformatics, 2010, 26 (6): 841- 842.
doi: 10.1093/bioinformatics/btq033 |
14 |
WANG K , LI M Y , HAKONARSON H . ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data[J]. Nucleic Acids Res, 2010, 38 (16): e164.
doi: 10.1093/nar/gkq603 |
15 | CHANG C C , CHOW C C , TELLIER L C A M , et al. Second-generation PLINK: rising to the challenge of larger and richer datasets[J]. GigaScience, 2015, 4 (1): 7. |
16 |
YANG J , LEE S H , GODDARD M E , et al. GCTA: a tool for genome-wide complex trait analysis[J]. Am J Hum Genet, 2011, 88 (1): 76- 82.
doi: 10.1016/j.ajhg.2010.11.011 |
17 |
ASHBURNER M , BALL C A , BLAKE J A , et al. Gene ontology: tool for the unification of biology[J]. Nat Genet, 2000, 25 (1): 25- 29.
doi: 10.1038/75556 |
18 |
KANEHISA M , GOTO S . KEGG: kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Res, 2000, 28 (1): 27- 30.
doi: 10.1093/nar/28.1.27 |
19 |
LIU N , LI H G , LIU K D , et al. Differential expression of genes and proteins associated with wool follicle cycling[J]. Mol Biol Rep, 2014, 41, 5343- 5349.
doi: 10.1007/s11033-014-3405-1 |
20 | SU P , WU H , HUANG Y H , et al. The hoof color of Australian white sheep is associated with genetic variation of the MITF gene[J]. Animals (Basel), 2023, 13 (20): 3218. |
21 |
MARKLUND L , MOLLER M J , SANDBERG K , et al. A missense mutation in the gene for melanocyte-stimulating hormone receptor (MCIR) is associated with the chestnut coat color in horses[J]. Mamm Genome, 1996, 7 (12): 895- 899.
doi: 10.1007/s003359900264 |
22 |
ALAM M , BELOW D A , CHÉRET J , et al. Growth hormone operates as a neuroendocrine regulator of human hair growth ex vivo[J]. J Invest Dermatol, 2019, 139 (7): 1593- 1596.
doi: 10.1016/j.jid.2018.12.022 |
23 |
FU J , HSU W . Epidermal Wnt controls hair follicle induction by orchestrating dynamic signaling crosstalk between the epidermis and dermis[J]. J Invest Dermatol, 2013, 133 (4): 890- 898.
doi: 10.1038/jid.2012.407 |
24 |
SIMONSON L , OLDHAM E , CHANG H . Overactive Wnt5a signaling disrupts hair follicle polarity during mouse skin development[J]. Development, 2022, 149 (22): dev200816.
doi: 10.1242/dev.200816 |
25 | 张稳, 刘罗兰, 冯登侦, 等. 哺乳动物毛囊周期性生长调控机制的研究进展[J]. 生命科学研究, 2021, 25 (3): 240- 248. |
ZHANG W , LIU L L , FENG D Z , et al. Advances in regulatory mechanisms of mammalian hair follicle periodic growth[J]. Life Science Research, 2021, 25 (3): 240- 248. | |
26 | PHUA S H, SCOBIE D R, O'CONNELL D, et al. Preliminary linkage studies in sheep of keratin and keratin-associated protein genes with fleece weight, wool fibre diameter and fibre curvature[C]//Proceedings of the New Zealand Society of Animal Production. Dunedin, 2015: 101-105. |
27 | LI T T , JIN M L , WANG H H , et al. Whole-genome scanning for selection signatures reveals candidate genes associated with growth and tail length in sheep[J]. Animals (Basel), 2024, 14 (5): 687. |
28 |
LI X , YANG J , SHEN M , et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits[J]. Nat Commun, 2020, 11 (1): 2815.
doi: 10.1038/s41467-020-16485-1 |
29 |
WRAY N R . Allele frequencies and the r2 measure of linkage disequilibrium: impact on design and interpretation of association studies[J]. Twin Res Hum Genet, 2005, 8 (2): 87- 94.
doi: 10.1375/twin.8.2.87 |
30 |
BARRETT J C , CARDON L R . Evaluating coverage of genome-wide association studies[J]. Nat Genet, 2006, 38 (6): 659- 662.
doi: 10.1038/ng1801 |
31 |
马玉红, 雅文海. 玉树高原型藏羊毛纤维物理性能分析[J]. 青海畜牧兽医杂志, 2013, 43 (1): 13- 14.
doi: 10.3969/j.issn.1003-7950.2013.01.007 |
MA Y H , YA W H . Determination on physical characteristic of Plateau type of tibetan-sheep wool fiber[J]. Chinese Qinghai Journal of Animal and Veterinary Sciences, 2013, 43 (1): 13- 14.
doi: 10.3969/j.issn.1003-7950.2013.01.007 |
|
32 | ZHAN X , CULPEPPER A , REDDY M , et al. Human oncogenes detected by a defined medium culture assay[J]. Oncogene, 1987, 1 (4): 369- 376. |
33 |
HAUB O , DRUCKER B , GOLDFARB M . Expression of the murine fibroblast growth factor 5 gene in the adult central nervous system[J]. Proc Natl Acad Sci U S A, 1990, 87 (20): 8022- 8026.
doi: 10.1073/pnas.87.20.8022 |
34 |
NATARELLI N , GAHOONIA N , SIVAMANI R K . Integrative and mechanistic approach to the hair growth cycle and hair loss[J]. J Clin Med, 2023, 12 (3): 893.
doi: 10.3390/jcm12030893 |
35 |
SUN S N , ZHAO B H , LI J L , et al. Regulation of hair follicle growth and development by different alternative spliceosomes of FGF5 in rabbits[J]. Genes (Basel), 2024, 15 (4): 409.
doi: 10.3390/genes15040409 |
36 |
TAKAHASHI R , TAKAHASHI G , KAMEYAMA Y , et al. Gender-difference in hair length as revealed by Crispr-based production of long-haired mice with dysfunctional FGF5 mutations[J]. Int J Mol Sci, 2022, 23 (19): 11855.
doi: 10.3390/ijms231911855 |
37 |
FATIMA N , JIA L Y , LIU B N , et al. A homozygous missense mutation in the fibroblast growth factor 5 gene is associated with the long-hair trait in Angora rabbits[J]. BMC Genomics, 2023, 24 (1): 298.
doi: 10.1186/s12864-023-09405-2 |
38 |
OLSEN S K , GARBI M , ZAMPIERI N , et al. Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs[J]. J Biol Chem, 2003, 278 (36): 34226- 34236.
doi: 10.1074/jbc.M303183200 |
39 | 金诗曼, 张国民, 王聂平. 成纤维细胞生长因子受体在糖脂代谢性疾病中的研究进展[J]. 亚洲临床医学杂志, 2024, 7 (1): 53- 55. |
JIN S M , ZHANG G M , WANG N P . Research progress of fibroblast growth factor receptors in glycolipid metabolism diseases[J]. Asian Journal of Clinical Medicine, 2024, 7 (1): 53- 55. | |
40 |
CAI Y D , FU W W , CAI D W , et al. Ancient genomes reveal the evolutionary history and origin of cashmere-producing goats in China[J]. Mol Biol Evol, 2020, 37 (7): 2099- 2109.
doi: 10.1093/molbev/msaa103 |
41 |
WANG X L , YU H H , LEI A M , et al. Generation of gene-modified goats targeting MSTN and FGF5 via zygote injection of CRISPR/Cas9 system[J]. Sci Rep, 2015, 5, 13878.
doi: 10.1038/srep13878 |
42 |
HIGGINS C A , PETUKHOVA L , HAREL S , et al. FGF5 is a crucial regulator of hair length in humans[J]. Proc Natl Acad Sci U S A, 2014, 111 (29): 10648- 10653.
doi: 10.1073/pnas.1402862111 |
43 |
XU X L , WU S J , QI S Y , et al. Increasing GSH-Px activity and activating wnt pathway promote fine wool growth in FGF5-edited sheep[J]. Cells, 2024, 13 (11): 985.
doi: 10.3390/cells13110985 |
44 | JIN M , LIU X Y , LU Y P , et al. Effects of FGF5-mediated LncRNA on the skin fibroblast growth of Liaoning Cashmere goats[J]. Indian J Anim Health, 2023, 62 (2): 277- 285. |
45 |
霍竞, 郭子显, 全宇璐, 等. 成纤维细胞生长因子受体3基因突变致胎儿四肢发育异常的研究进展[J]. 山东医药, 2022, 62 (25): 96- 99.
doi: 10.3969/j.issn.1002-266X.2022.25.024 |
HUO J , GUO Z X , QUAN Y L , et al. Research progress on abnormal development of fetal limbs caused by mutation of fibroblast growth factor receptor 3 gene[J]. Shandong Medical Journal, 2022, 62 (25): 96- 99.
doi: 10.3969/j.issn.1002-266X.2022.25.024 |
|
46 |
CHOI S W , ABITBOL J M , CHENG A G . Hair cell regeneration: from animals to humans[J]. Clin Exp Otorhinolaryngol, 2024, 17 (1): 1- 14.
doi: 10.21053/ceo.2023.01382 |
[1] | Ting WANG, Yuanqing ZHANG, Yibo YAN, Mingjun SHANGGUAN, Hongyu GUO, Zhiwu WANG. The Genetic Structure Analysis and the Comparative Analysis of Selection Signals in 'Tezanghan' Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(7): 2913-2926. |
[2] | CAO Yuzhu, XING Yuxin, MA Chenglin, GUAN Hongbo, JIA Qihui, KANG Xiangtao, TIAN Yadong, LI Zhuanjian, LIU Xiaojun, LI Hong. Biological Characterization of Chicken FGF6 Gene and Association of Its Polymorphisms with Economic Traits [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1536-1550. |
[3] | ZHONG Xin, ZHANG Hui, ZHANG Chong, LIU Xiaohong. Research Progress on Genetic Breeding of Reproductive Performance in Sows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 438-450. |
[4] | Xiaokun LIN, Mengmeng DU, Lisheng ZHOU, Zhengang HUANG, Di WANG, Donghui ZHOU, Xinxin CAO, Jianning HE, Jinshan ZHAO, Hegang LI. Genome-Wide Association Study of Wool Economic Traits in Aohan Fine Wool Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4346-4359. |
[5] | ZHU Xueli, ZHANG Longchao, WANG Lixian, PU Lei, LIU Xin. Association Analysis of AQP9 and RPS10 Gene Polymorphisms with Backfat Thickness in Beijing Black Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 87-98. |
[6] | TANG Xinxin, ZHENG Jumei, LUO Na, YING Fan, ZHU Dan, LI Sen, LIU Dawei, AN Bingxing, WEN Jie, ZHAO Guiping, LI Hegang. Genetic Mechanism of Broiler Leg Disease Based on Genome-Wide Association Analysis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 99-109. |
[7] | BI Yazhen, SHANG Mingyu, HU Wenping, ZHANG Li. Correlation and Regression Analysis among Growth Traits and Association Analysis of TRHDE Gene Polymorphism with Growth Traits in Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1415-1428. |
[8] | SU Yanfang, YANG Man, NIU Naiqi, HOU Xinhua, ZHANG Longchao. Association Analysis of FABP3 and SCD Gene Polymorphisms with Meat Quality Traits in Beijing Black Pigs [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(3): 966-975. |
[9] | ZHANG Zhengkai, LI Yefang, YE Shaohui, JIANG Lin, MA Yuehui. Research Progress of Environmental Adaptability in Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2035-2046. |
[10] | MA Lixia, CAO Guowei, ZHU Hongfang, DENG Zhanzhao, CAI Zhengyun, ZHOU Chenghao, HAN Wei, GU Yaling, ZHANG Juan. Analysis of Genetic Variation in a Conserved Population of Jingyuan Chickens Based on RAD-seq [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(7): 2104-2117. |
[11] | ZHOU Li, GAO Zhanhong, HOU Shengzhen, YANG Baochun, WANG Zhiyou, GUI Linsheng. Difference Analysis of Meat Quality and Muscle Fiber Characteristics between Newborn and Adult Black Tibetan Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(3): 700-710. |
[12] | XU Jingyi, XU Haoqi, HU Lirong, ZHANG Fan, GAO Qing, LUO Hanpeng, ZHANG Hailiang, SHI Rui, LI Xiang, LIU Lin, GUO Gang, WANG Yachun. Association Analysis of MET Gene Single Nucleotide Polymorphism with Reproduction and Milk Production Traits in Chinese Holstein Cattle [J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 3769-3785. |
[13] | CHU Jinyu, LI Shaomei, YANG Ge, MOU Chunyan. Mining Key Genes of Arrector Pili Muscle Development in Tibetan Sheep Based on Transcriptome Data [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(8): 2171-2180. |
[14] | PENG Yaxin, LIU Jun, ZHAO Shiyu, XU Zaiyan, ZUO Bo. Detection of SNPs in Porcine RXRB Gene and Their Association Analysis with Growth, Fattening and Reproduction Traits [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 596-609. |
[15] | LI Wufeng, SUN Yutong, GUAN Jiawei, ZHAO Jingwei, DU Min. Key Regulatory Factors of Intramuscular Fat Deposition in Donkey [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(2): 364-375. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||