Acta Veterinaria et Zootechnica Sinica ›› 2024, Vol. 55 ›› Issue (11): 5230-5237.doi: 10.11843/j.issn.0366-6964.2024.11.038
• Preventive Veterinary Medicine • Previous Articles Next Articles
Qi ZHANG1,2(), Ningning DONG1, Xiaomei TAN2, Zhengwang SHI3, Na LI2, Wenqi ZHU1, Aoxing TANG2, Chuanfeng LI2, Jie ZHU2, Guangqing LIU2, Yan SU1,*(
), Chunchun MENG1,2,*(
)
Received:
2024-01-02
Online:
2024-11-23
Published:
2024-11-30
Contact:
Yan SU, Chunchun MENG
E-mail:1658735668@qq.com;2006au@163.com;mengcc@shvri.ac.cn
CLC Number:
Qi ZHANG, Ningning DONG, Xiaomei TAN, Zhengwang SHI, Na LI, Wenqi ZHU, Aoxing TANG, Chuanfeng LI, Jie ZHU, Guangqing LIU, Yan SU, Chunchun MENG. Fusion Expression of African Swine Fever Virus p30 Protein and CRM197 and Evaluation of Its Immunogenicity in Mice[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5230-5237.
Table 1
Primer sequences and amplified fragments"
目的基因 Target gene | 寡核苷酸序列(5′→3′) Oligonucleotide sequence |
p30 | F: GCCATGGCTGATATCGGATCCATGAAAATGGAGGTCATC |
R: TCCACCACCACCAGATCCACCACCACCTTTTTTTTTTAAAAGTTTAATAAC | |
CRM197(A) | F: GGTGGTGGATCTGGTGGTGGTGGATCTATGGGCGCGGATGATGTG |
R: CTCGAGTGCGGCCGCAAGCTTGCGCACGCGGTTGCCCGC |
Fig. 2
Prokaryotic expression and purification of p30 protein and fusion protein p30-CRM197 (A) M. Protein maker; 1. pColdI whole bacteria after no-load induction; 2. Whole bacteria after p30 protein induction; 3. p30 protein induction supernatant: 4. p30 protein induction precipitate; 5. Whole bacteria after no-load induction of pET32a; 6. Whole bacteria after p30-CRM197(A) protein induction; 7. p30-CRM197(A) protein induction supernatant; 8. p30-CRM197(A) protein precipitated after induction; 9. Purified p30 protein; 10. Purified p30-CRM197(A) protein"
1 |
ZHOU X T , LI N , LUO Y Z , et al. Emergence of African swine fever in China, 2018[J]. Transbound Emerg Dis, 2018, 65 (6): 1482- 1484.
doi: 10.1111/tbed.12989 |
2 | 石建州, 何健, 刘阳坤, 等. 非洲猪瘟疫苗研究进展[J]. 中国兽医学报, 2022, 42 (5): 1057-1065, 1076. |
SHI J Z , HE J , LIU Y K , et al. Progress in development of vaccine against African swine fever[J]. Chinese Journal of Veterinary Medicine, 2022, 42 (5): 1057-1065, 1076. | |
3 | 王西西, 陈青, 吴映彤, 等. 非洲猪瘟疫苗研究进展[J]. 中国动物传染病学报, 2018, 26 (2): 89- 94. |
WANG X X , CHEN Q , WU Y T , et al. Recent progress on vaccine development against African swine fever[J]. Chinese Journal of Animal Infectious Diseases, 2018, 26 (2): 89- 94. | |
4 |
SÁNCHEZ-CORDÓN P J , MONTOYA M , REIS A L , et al. African swine fever: a re-emerging viral disease threatening the global pig industry[J]. Vet J, 2018, 233, 41- 48.
doi: 10.1016/j.tvjl.2017.12.025 |
5 |
ARIAS M , DE LA TORRE A , DIXON L , et al. Approaches and perspectives for development of African swine fever virus vaccines[J]. Vaccines (Basel), 2017, 5 (4): 35.
doi: 10.3390/vaccines5040035 |
6 |
RAMIREZ-MEDINA E , VUONO E , O'DONNELL V , et al. Differential effect of the deletion of African swine fever virus virulence-associated genes in the induction of attenuation of the highly virulent Georgia strain[J]. Viruses, 2019, 11 (7): 599.
doi: 10.3390/v11070599 |
7 |
TEKLUE T , SUN Y , ABID M , et al. Current status and evolving approaches to African swine fever vaccine development[J]. Transbound Emerg Dis, 2020, 67 (2): 529- 542.
doi: 10.1111/tbed.13364 |
8 |
GÓMEZ-PUERTAS P , RODRÍGUEZ F , OVIEDO J M , et al. The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response[J]. Virology, 1998, 243 (2): 461- 471.
doi: 10.1006/viro.1998.9068 |
9 |
BARDERAS M G , RODRÍGUEZ F , GÓMEZ-PUERTAS P , et al. Antigenic and immunogenic properties of a chimera of two immunodominant African swine fever virus proteins[J]. Arch Virol, 2001, 146 (9): 1681- 1691.
doi: 10.1007/s007050170056 |
10 |
BRÖKER M , COSTANTINO P , DETORA L , et al. Biochemical and biological characteristics of cross-reacting material 197 (CRM197), a non-toxic mutant of diphtheria toxin: use as a conjugation protein in vaccines and other potential clinical applications[J]. Biologicals, 2011, 39 (4): 195- 204.
doi: 10.1016/j.biologicals.2011.05.004 |
11 |
MALITO E , BURSULAYA B , CHEN C , et al. Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197[J]. Proc Natl Acad Sci U S A, 2012, 109 (14): 5229- 5234.
doi: 10.1073/pnas.1201964109 |
12 | 陈柯. 白喉毒素突变体CRM197的研究及应用[J]. 微生物学免疫学进展, 2022, 50 (3): 70- 76. |
CHEN K . Research and application of diphtheria toxin mutant CRM197[J]. Progress in Microbiology and Immunology, 2022, 50 (3): 70- 76. | |
13 |
GRUBER W C , SCOTT D A , EMINI E A . Development and clinical evaluation of Prevnar 13, a 13-valent pneumocococcal CRM197 conjugate vaccine[J]. Ann N Y Acad Sci, 2012, 1263, 15- 26.
doi: 10.1111/j.1749-6632.2012.06673.x |
14 |
DAGAN R , POOLMAN J , SIEGRIST C A . Glycoconjugate vaccines and immune interference: a review[J]. Vaccine, 2010, 28 (34): 5513- 5523.
doi: 10.1016/j.vaccine.2010.06.026 |
15 |
TOBIAS J , JASINSKA J , BAIER K , et al. Enhanced and long term immunogenicity of a Her-2/neu multi-epitope vaccine conjugated to the carrier CRM197 in conjunction with the adjuvant Montanide[J]. BMC Cancer, 2017, 17 (1): 118.
doi: 10.1186/s12885-017-3098-7 |
16 |
TANG X Z , YU W L , SHEN L J , et al. Conjugation with 8-arm PEG and CRM197 enhances the immunogenicity of SARS-CoV-2 ORF8 protein[J]. Int Immunopharmacol, 2022, 109, 108922.
doi: 10.1016/j.intimp.2022.108922 |
17 |
GUTTORMSEN H K , SHARPE A H , CHANDRAKER A K , et al. Cognate stimulatory B-cell-T-cell interactions are critical for T-cell help recruited by glycoconjugate vaccines[J]. Infect Immun, 1999, 67 (12): 6375- 6384.
doi: 10.1128/IAI.67.12.6375-6384.1999 |
18 |
WANG K H , ZHOU L Z , ZHANG X , et al. Hepatitis E vaccine candidate harboring a non-particulate immunogen of E2 fused with CRM197 fragment A[J]. Antiviral Res, 2019, 164, 154- 161.
doi: 10.1016/j.antiviral.2019.02.013 |
19 |
LIU L Q , CHEN T T , ZHOU L Z , et al. A bacterially expressed SARS-CoV-2 receptor binding domain fused with cross-reacting material 197 a-domain elicits high level of neutralizing antibodies in mice[J]. Front Microbiol, 2022, 13, 854630.
doi: 10.3389/fmicb.2022.854630 |
20 |
赵旭阳, 靳家鑫, 路闻龙, 等. 非洲猪瘟病毒免疫逃逸分子机制研究进展[J]. 畜牧兽医学报, 2022, 53 (7): 2074- 2082.
doi: 10.11843/j.issn.0366-6964.2022.07.005 |
ZHAO X Y , JIN J X , LU W L , et al. Advances in the molecular mechanism of immune escape of African swine fever virus[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (7): 2074- 2082.
doi: 10.11843/j.issn.0366-6964.2022.07.005 |
|
21 | 黄剑, 李国新, 童光志. 非洲猪瘟的流行病学及疫苗研究新进展[J]. 中国动物传染病学报, 2022, 30 (4): 197- 205. |
HUANG J , LI G X , TONG G Z . Epidemiology of African swine fever and progress in vaccine research[J]. Chinese Journal of Animal Infectious Diseases, 2022, 30 (4): 197- 205. | |
22 |
GÓMEZ-PUERTAS P , RODRÍGUEZ F , OVIEDO J M , et al. Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization[J]. J Virol, 1996, 70 (8): 5689- 5694.
doi: 10.1128/jvi.70.8.5689-5694.1996 |
23 | 徐娅玲. ASFV亚单位疫苗和多肽疫苗免疫效力的评估[D]. 贵阳: 贵州大学, 2022. |
XU Y L. Assessment of the immune efficacy of ASFV subunit vaccines and peptide vaccines[D]. Guiyang: Guizhou University, 2022. (in Chinese) |
[1] | Lu FENG, Hong TIAN, Haixue ZHENG, Zhengwang SHI, Juncong LUO, Xiaoyang ZHANG, Juanjuan WEI, Jing ZHOU, Huancheng LIAO, Wanying WANG. A Detection Method of African Swine Fever Virus based on Enzymatic Recombinase Amplification [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(9): 4226-4231. |
[2] | ZHOU Yang, WU Weizi, CAO Weisheng, WANG Fuguang, XU Xiuqiong, ZHONG Wenxia, WU Liyang, YE Jian, LU Shousheng. A Whole Genome Sequencing Method for African Swine Fever Virus based on Nanopore Sequencing Technology was Established [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2080-2089. |
[3] | LÜ Yadi, YANG Jie, XIE Wenting, XU Ting, CHEN Ruiai. Construction and Evaluation of the Immune Effect of Recombinant Genotype Ⅶ NDV Strain Co-expressing Membrane-bound and Water-soluble HA Protein of Avian Influenza Virus H9N2 [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2123-2134. |
[4] | XU Zhenyu, DENG Xiaoyu, WANG Yueli, SUN Can, WU Aodi, CAO Jian, YI Jihai, WANG Yong, WANG Zhen, CHEN Chuangfu. Biological Characteristics of Brucella abortus A19ΔBtpA Deletion Strain and Its Immunogenicity Study [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2135-2145. |
[5] | YU Qisheng, ZHU Qing, ZHOU Qun, SONG Xin, ZHANG Jiaqi, CHEN Taoyun, XU Lin, ZHANG Chaohui, ZHANG Bin. Expression of BCoV Spike Protein by Baculovirus Expression System and Its Immunogenicity in Mice [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 640-648. |
[6] | YAN Wenqian, HOU Jing, YANG Jinke, HAO Yu, YANG Xing, SHI Xijuan, ZHANG Dajun, BIE Xintian, CHEN Guohui, CHEN Lingling, HE Lu, ZHAO Meiyu, ZHAO Siyue, ZHENG Haixue, ZHANG Keshan. Monoclonal Antibody against D1133 L Protein of African Swine Fever Virus Inhibits Its Replication [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 854-859. |
[7] | Pinghua LI, Shulun HUANG, Keqiang ZHANG, Feng LIU, Pu SUN, Dong LI, Huifang BAO, Yimei CAO, Xingwen BAI, Xueqing MA, Kun LI, Hong YUAN, Zaixin LIU, Zengjun LU. Rescue and Immunogenicity Analysis of Recombinant Foot-and-Mouth Disease Virus with the Chimera of G-H Loop Gene of the Epidemic Strain [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 5222-5229. |
[8] | Mei LI, Suyu MU, Hu DONG, Shuo LI, Songjia PAN, Huichen GUO, Shiqi SUN. Isolation, Purification and Immunogenicity Evaluation of Senecavirus A Intact Particle and Empty Capsid [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4562-4570. |
[9] | Mengli WU, Hualin SUN, Jifei YANG, Yaru ZHAO, Guiquan GUAN, Hong YIN, Qingli NIU. Construction of a Passaged Porcine Alveolar Macrophage Cell Line Stably Expressing the Porcine BRD4-BD1/2 Protein and Its Effects on ASFV Proliferation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(10): 4646-4659. |
[10] | BAI Yun, XIE Qingyun, OUYANG Wei, GAN Yuan, YUAN Ting, ZHAO Dongming, BU Zhigao, SHAO Guoqing, FENG Zhixin. Establishment of a Serological Method for Early Detection of African Swine Fever Virus Infection Based on Mucosal sIgA Antibody [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 300-310. |
[11] | LIU Chuanxia, WANG Xiao, LI Xuewen, BAO Miaofei, LI Tingting, CHEN Xin, WENG Changjiang, ZHENG Jun. Preparation of Monoclonal Antibody of African Swine Fever Virus pE120R [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(1): 388-394. |
[12] | FENG Yongzhi, GONG Ting, WU Dongdong, GAO Qi, ZHENG Xiaoyu, ZHANG Guihong, SUN Yankuo. Analysis of Factors Affecting the Infectivity of African Swine Fever Virus on Cultured Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3406-3414. |
[13] | LIU Taoxue, SU Bingqian, QI Yanli, GUO Jiangtao, LIU Zhonghu, CHU Beibei, WANG Jiang, ZENG Lei. Preparation of the Monoclonal Antibody against the African Swine Fever Virus p30 Protein and Identification of the Antigenic Epitope [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3415-3423. |
[14] | DING Xiaoyan, HE Jiuxiang, ZHOU Xiaoyang, ZHOU Yuxin, LI Jintao. Preliminary Identification of Host Regulatory Genes and Virulence Genes during African Swine Fever Virus Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 2964-2971. |
[15] | WANG Ying, ZHU Jiahong, ZHAO Jiakai, JI Pinpin, CHEN Xu, ZHANG Lu, LIU Baoyuan, SUN Yani, ZHAO Qin. Screening and Identification of Nanobodies against NP419L Protein of African Swine Fever Virus and Its Preliminary Application of Antibody Detection [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2509-2520. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||