[1] BUSSI C, GUTIERREZ M G. Mycobacterium tuberculosis infection of host cells in space and time[J]. FEMS Microbiol Rev, 2019, 43(4):341-361. [2] PAULSON T. Epidemiology:a mortal foe[J]. Nature, 2013, 502(7470):S2-S3. [3] MAYER-BARBER K D, BARBER D L. Innate and adaptive cellular immune responses to Mycobacterium tuberculosis infection[J]. Cold Spring Harb Perspect Med, 2015, 5(12):a018424. [4] FLYNN J L, CHAN J. Immune evasion by Mycobacterium tuberculosis:living with the enemy[J]. Curr Opin Immunol, 2003, 15(4):450-455. [5] GENGENBACHER M, KAUFMANN S H E. Mycobacterium tuberculosis:success through dormancy[J]. FEMS Microbiol Rev, 2012, 36(3):514-532. [6] MARIOTTI S, PARDINI M, GAGLIARDI M C, et al. Dormant Mycobacterium tuberculosis fails to block phagosome maturation and shows unexpected capacity to stimulate specific human T lymphocytes[J]. J Immunol, 2013, 191(1):274-282. [7] MEDZHITOV R. Inflammation 2010:new adventures of an old flame[J]. Cell, 2010, 140(6):771-776. [8] FENG J L, LUO P, YUAN Y X, et al. Research progress on the role of TCA cycle intermediate metabolites in inflammation and immunity[J]. Chinese Bulletin of Life Sciences, 2022, 34(5):532-542. (in Chinese) 冯金龙, 罗培, 袁业现, 等. 三羧酸循环中间产物调控炎症和免疫的研究进展[J]. 生命科学, 2022, 34(5):532-542. [9] LITTLEWOOD-EVANS A, SARRET S, APFEL V, et al. GPR91 senses extracellular succinate released from inflammatory macrophages and exacerbates rheumatoid arthritis[J]. J Exp Med, 2016, 213(9):1655-1662. [10] BANERJEE A, HERRING C A, CHEN B, et al. Succinate produced by intestinal microbes promotes specification of tuft cells to suppress ileal inflammation[J]. Gastroenterology, 2020, 159(6):2101-2115.e5. [11] LEE C G L, JENKINS N A, GILBERT D J, et al. Cloning and analysis of gene regulation of a novel LPS-inducible cDNA[J]. Immunogenetics, 1995, 41(5):263-270. [12] DOMÍNGUEZ-ANDRÉS J, NOVAKOVIC B, LI Y, et al. The itaconate pathway is a central regulatory node linking innate immune tolerance and trained immunity[J]. Cell Metab, 2019, 29(1):211-220.e5. [13] ZHAO H K, WU L, YAN G F, et al. Inflammation and tumor progression:signaling pathways and targeted intervention[J]. Signal Transduct Target Ther, 2021, 6(1):263. [14] ZHAO Y, ZOU W L, DU J F, et al. The origins and homeostasis of monocytes and tissue-resident macrophages in physiological situation[J]. J Cell Physiol, 2018, 233(10):6425-6439. [15] LI Y K, ZHANG P, WANG C C, et al. Immune responsive gene 1(IRG1) promotes endotoxin tolerance by increasing A20 expression in macrophages through reactive oxygen species[J]. J Biol Chem, 2013, 288(23):16225-16234. [16] MICHELUCCI A, CORDES T, GHELFI J, et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production[J]. Proc Natl Acad Sci U S A, 2013, 110(19):7820-7825. [17] TOMLINSON K L, LUNG T W F, DACH F, et al. Staphylococcus aureus induces an itaconate-dominated immunometabolic response that drives biofilm formation[J]. Nat Commun, 2021, 12(1):1399. [18] RIQUELME S A, LIIMATTA K, WONG FOK LUNG T, et al. Pseudomonas aeruginosa utilizes host-derived itaconate to redirect its metabolism to promote biofilm formation[J]. Cell Metab, 2020, 31(6):1091-1106.e6. [19] KAWAI T, AKIRA S. TLR signaling[J]. Semin Immunol, 2007, 19(1):24-32. [20] AKIRA S, TAKEDA K, KAISHO T. Toll-like receptors:critical proteins linking innate and acquired immunity[J]. Nat Immunol, 2001, 2(8):675-680. [21] ZHAO W Y, CHE C Y, LIU K X, et al. Fenretinide inhibits neutrophil recruitment and IL-1β production in Aspergillus fumigatus keratitis[J]. Cornea, 2018, 37(12):1579-1585. [22] COURTOIS G, GILMORE T D. Mutations in the NF-κB signaling pathway:implications for human disease[J]. Oncogene, 2006, 25(51):6831-6843. [23] RODRÍGUEZ N, MAGES J, DIETRICH H, et al. MyD88-dependent changes in the pulmonary transcriptome after infection with Chlamydia pneumoniae[J]. Physiol Genomics, 2007, 30(2):134-145. [24] DANIELS B P, KOFMAN S B, SMITH J R, et al. The nucleotide sensor ZBP1 and kinase RIPK3 induce the enzyme IRG1 to promote an antiviral metabolic state in neurons[J]. Immunity, 2019, 50(1):64-76.e4. [25] NAIR S, HUYNH J P, LAMPROPOULOU V, et al. Irg1 expression in myeloid cells prevents immunopathology during M. tuberculosis infection[J]. J Exp Med, 2018, 215(4):1035-1045. [26] KONG F P, SALDARRIAGA O A, SPRATT H, et al. Transcriptional profiling in experimental visceral leishmaniasis reveals a broad splenic inflammatory environment that conditions macrophages toward a disease-promoting phenotype[J]. PLoS Pathog, 2017, 13(1):e1006165. [27] REN K, LV Y Z, ZHUO Y J, et al. Suppression of IRG-1 reduces inflammatory cell infiltration and lung injury in respiratory syncytial virus infection by reducing production of reactive oxygen species[J]. J Virol, 2016, 90(16):7313-7322. [28] GAUTAM A, DIXIT S, PHILIPP M T, et al. Interleukin-10 alters effector functions of multiple genes induced by Borrelia burgdorferi in macrophages to regulate Lyme disease inflammation[J]. Infect Immun, 2011, 79(12):4876-4892. [29] WU R L, LIU J, TANG D L, et al. The dual role of ACOD1 in inflammation[J]. J Immunol, 2023, 211(4):518-526. [30] BOMFIM C C B, FISHER L, AMARAL E P, et al. Mycobacterium tuberculosis induces Irg1 in murine macrophages by a pathway involving both TLR-2 and STING/IFNAR signaling and requiring bacterial phagocytosis[J]. Front Cell Infect Microbiol, 2022, 12:862582. [31] YANG Y F, DU L Z, ZHU Z X, et al. The regulatory role of p53 on expression of Nfkbiz gene[J]. Chinese Journal of Animal Infectious Diseases, 2014, 22(3):61-68. (in Chinese) 杨逸凡, 杜立中, 朱紫祥, 等. p53调控Nfkbiz基因表达的研究[J]. 中国动物传染病学报, 2014, 22(3):61-68. [32] PENG C, OUYANG Y B, LU N H, et al. The NF-κB signaling pathway, the microbiota, and gastrointestinal tumorigenesis:recent advances[J]. Front Immunol, 2020, 11:1387. |