[1] |
ZHANG Y, XU Z C, CAO Y C. Host antiviral responses against avian infectious bronchitis virus (IBV): focus on innate immunity[J]. Viruses, 2021, 13(9):1698.
|
[2] |
CAVANAGH D. Coronavirus avian infectious bronchitis virus[J]. Vet Res, 2007, 38(2):281-297.
|
[3] |
LEGNARDI M, TUCCIARONE C M, FRANZO G, et al. Infectious bronchitis virus evolution, diagnosis and control[J]. Vet Sci, 2020, 7(2):79.
|
[4] |
FRANZO G, LEGNARDI M, TUCCIARONE C M, et al. Evolution of infectious bronchitis virus in the field after homologous vaccination introduction[J]. Vet Res, 2019, 50(1):92.
|
[5] |
SHAHZAD M I, ANWAR S, ASHRAF H, et al. Antiviral activities of Cholistani plants against common poultry viruses[J]. Trop Biomed, 2020, 37(4):1129-1140.
|
[6] |
KONG N, CHEN X Y, FENG J, et al. Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1[J]. Acta Pharm Sin B, 2021, 11(12):4045-4054.
|
[7] |
LI K W, LIANG Y Y, CHENG A, et al. Antiviral properties of baicalin:a concise review[J]. Rev Bras Farmacogn, 2021, 31(4):408-419.
|
[8] |
LI R, WANG L X. Baicalin inhibits influenza virus A replication via activation of type I IFN signaling by reducing miR-146a[J]. Mol Med Rep, 2019, 20(6):5041-5049.
|
[9] |
QIN S, HUANG X Z, QU S G. Baicalin induces a potent innate immune response to inhibit respiratory syncytial virus replication via regulating viral non-structural 1 and matrix RNA[J]. Front Immunol, 2022, 13:907047.
|
[10] |
CHEN K H, WANG S F, WANG S Y, et al. Pharmacological development of the potential adjuvant therapeutic agents against coronavirus disease 2019[J]. J Chin Med Assoc, 2020, 83(9):817-821.
|
[11] |
LIN C J, TSAI F J, HSU Y M, et al. Study of baicalin toward COVID-19 treatment:in silico target analysis and in vitro inhibitory effects on SARS-CoV-2 proteases[J]. Biomed Hub, 2021, 6(3):122-137.
|
[12] |
陈功义, 郝振芳, 王建超. 黄芩苷在鸡胚上对鸡常见病毒AIV、NDV、IBV的作用效果[J]. 中兽医医药杂志, 2015, 34(2):5-7.CHEN G Y, HAO Z F, WANG J C. Effect of baicalin on several fowl viruses in chicken embryos[J]. Journal of Traditional Chinese Veterinary Medicine, 2015, 34(2):5-7. (in Chinese)
|
[13] |
薛 洋, 闫延华, 付敬敬, 等. 黄芩苷防治雏鸡传染性支气管炎的药理作用[J]. 江苏农业学报, 2017, 33(5):1082-1092.XUE Y, YAN Y H, FU J J, et al. Pharmacology of prevention and control of avian infectious bronchitis by baicalin[J]. Jiangsu Journal of Agricultural Sciences, 2017, 33(5):1082-1092. (in Chinese)
|
[14] |
FENG H P, ZHANG K, ZHANG K, et al. Antiviral activity and underlying mechanisms of baicalin against avian infectious bronchitis virus in vitro[J]. Avian Pathol, 2022, 51(6):574-589.
|
[15] |
刘卫容, 李明佳, 向谈婷, 等. 黄芩抑制鸡传染性支气管炎病毒增殖的作用机制研究[J]. 中国家禽, 2019, 41(18):24-27.LIU W R, LI M J, XIANG T T, et al. Study on the inhibiting mechanism of IBV by Scutellaria baicalensis[J]. China Poultry, 2019, 41(18):24-27. (in Chinese)
|
[16] |
CHEN S W, LIU Q, ZHANG L N, et al. The role of REC8 in the innate immune response to viral infection[J]. J Virol, 2022, 96(6):e0217521.
|
[17] |
TAO W, FU T, HE Z J, et al. Immunomodulatory effects of Radix isatidis polysaccharides in vitro and in vivo[J]. Exp Ther Med, 2021, 22(6):1405.
|
[18] |
ZHANG F L, YIN X J, YAN Y L, et al. Pharmacokinetics and pharmacodynamics of Huanglian-Houpo decoction based on berberine hydrochloride and magnolol against H1N1 influenza virus[J]. Eur J Drug Metab Pharmacokinet, 2022, 47(1):57-67.
|
[19] |
詹铀超, 秦 笙, 陈 富. 黄芩苷抗呼吸道合胞病作用的研究[J]. 国际检验医学杂志, 2017, 38(14):1907-1909.ZHAN Y C, QIN S, CHEN F. Study on effect and mechanism of baicalin on antiviral effects about respiratory syncytial virus[J]. International Journal of Laboratory Medicine, 2017, 38(4):1907-1909. (in Chinese)
|
[20] |
GAO M Y, WANG Q L, ZHAO W J, et al. Serotype, antigenicity, and pathogenicity of a naturally recombinant TW I genotype infectious bronchitis coronavirus in China[J]. Vet Microbiol, 2016, 191:1-8.
|
[21] |
FENG H P, WANG X Z, ZHANG J Y, et al. Combined effect of Shegandilong granule and doxycycline on immune responses and protection against avian infectious bronchitis virus in broilers[J]. Front Vet Sci, 2021, 8:756629.
|
[22] |
ZHANG Y, LI X Y, Zhang B S, et al. In vivo antiviral effect of plant essential oils against avian infectious bronchitis virus[J]. BMC Vet Res, 2022, 18(1):90.
|
[23] |
KHAZEEI TABARI M A, IRANPANAH A, BAHRAMSOLTANI R, et al. Flavonoids as promising antiviral agents against SARS-CoV-2 infection:a mechanistic review[J]. Molecules, 2021, 26(13):3900.
|
[24] |
FANG S G, SHEN S, TAY F P L, et al. Selection of and recombination between minor variants lead to the adaptation of an avian coronavirus to primate cells[J]. Biochem Biophys Res Commun, 2005, 336(2):417-423.
|
[25] |
FRANZO G, TUCCIARONE C M, LEGNARDI M, et al. Effect of genome composition and codon bias on infectious bronchitis virus evolution and adaptation to target tissues[J]. BMC Genomics, 2021, 22(1):244.
|
[26] |
FANG S G, CHEN B, TAY F P L, et al. An arginine-to-proline mutation in a domain with undefined functions within the helicase protein (Nsp13) is lethal to the coronavirus infectious bronchitis virus in cultured cells[J]. Virology, 2007, 358(1):136-147.
|
[27] |
ZHAN Y Z, TA W J, TANG W J, et al. Potential antiviral activity of isorhamnetin against SARS-CoV-2 spike pseudotyped virus in vitro[J]. Drug Dev Res, 2021, 82(8):1124-1130.
|
[28] |
SONG J K, ZHANG L, XU Y F, et al. The comprehensive study on the therapeutic effects of baicalein for the treatment of COVID-19 in vivo and in vitro[J]. Biochem Pharmacol, 2021, 183:114302.
|
[29] |
FUNG T S, LIU D X. Human coronavirus:host-pathogen interaction[J]. Annu Rev Microbiol, 2019, 73:529-557.
|
[30] |
OJHA N K, LIU J J, YU T Q, et al. Interplay of the ubiquitin proteasome system and the innate immune response is essential for the replication of infectious bronchitis virus[J]. Arch Virol, 2021, 166(8):2173-2185.
|
[31] |
LEI J, KUSOV Y, HILGENFELD R. Nsp3 of coronaviruses:structures and functions of a large multi-domain protein[J]. Antiviral Res, 2018, 149:58-74.
|
[32] |
KINT J, DICKHOUT A, KUTTER J, et al. Infectious bronchitis coronavirus inhibits STAT1 signaling and requires accessory proteins for resistance to type I interferon activity[J]. J Virol, 2015, 89(23):12047-12057.
|
[33] |
YANG H, DONG Y R, BIAN Y, et al. The influenza virus PB2 protein evades antiviral innate immunity by inhibiting JAK1/STAT signalling[J]. Nat Commun, 2022, 13(1):6288.
|
[34] |
MA Y L, WANG C L, XUE M, et al. The coronavirus transmissible gastroenteritis virus evades the type I interferon response through IRE1α-mediated manipulation of the microRNA miR-30a-5p/SOCS1/3 axis[J]. J Virol, 2018, 92(22):e00728-18.
|
[35] |
CROKER B A, KIU H, PELLEGRINI M, et al. IL-6 promotes acute and chronic inflammatory disease in the absence of SOCS3[J]. Immunol Cell Biol, 2012, 90(1):124-129.
|