[1] |
MAVIAN C, LÓPEZ-BUENO A, MARTÍN R, et al. Comparative pathogenesis, genomics and phylogeography of mousepox[J]. Viruses, 2021, 13(6):1146.
|
[2] |
ADNAN N, HAQ Z U, MALIK A, et al. Human monkeypox virus: an updated review[J]. Medicine (Baltimore), 2022, 101(35):e30406.
|
[3] |
ALAKUNLE E, MOENS U, NCHINDA G, et al. Monkeypox Virus in Nigeria: infection biology, epidemiology, and evolution[J]. Viruses, 2020, 12(11):1257.
|
[4] |
MONTICELLI S R, EARLEY A K, STONE R, et al. Vaccinia virus glycoproteins A33, A34, and B5 form a complex for efficient endoplasmic reticulum to trans-Golgi network transport[J]. J Virol, 2020, 94(7):e02155-19.
|
[5] |
MOSS B. Membrane fusion during poxvirus entry[J]. Semin Cell Dev Biol, 2016, 60:89-96.
|
[6] |
SMITH G L, MURPHY B J, LAW M. Vaccinia virus motility[J]. Annu Rev Microbiol, 2003, 57:323-342.
|
[7] |
DAVIES D H, MCCAUSLAND M M, VALDEZ C, et al. Vaccinia virus H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in mice[J]. J Virol, 2005, 79(18):11724-11733.
|
[8] |
MENG X Z, ZHONG Y M, EMBRY A, et al. Generation and characterization of a large panel of murine monoclonal antibodies against vaccinia virus[J]. Virology, 2011, 409(2):271-279.
|
[9] |
CRICKARD L, BABAS T, SETH S, et al. Protection of rabbits and immunodeficient mice against lethal poxvirus infections by human monoclonal antibodies[J]. PLoS One, 2012, 7(11):e48706.
|
[10] |
FANG M, CHENG H, DAI Z P, et al. Immunization with a single extracellular enveloped virus protein produced in bacteria provides partial protection from a lethal orthopoxvirus infection in a natural host[J]. Virology, 2006, 345(1):231-243.
|
[11] |
SINGH K, GITTIS A G, GITTI R K, et al. The vaccinia virus H3 envelope protein, a major target of neutralizing antibodies, exhibits a glycosyltransferase fold and binds UDP-glucose[J]. J Virol, 2016, 90(10):5020-5030.
|
[12] |
裴晓方, 于学杰. 病毒学检验[M]. 北京:人民卫生出版社, 2005.PEI X F, YU X J. Experimental virology[M]. Beijing:People's Medical Publishing House, 2005(in Chinese)
|
[13] |
REED L L, MUENCH H. A simple method of estimating fifty per cent endpoints[J]. Am J Epidemiol, 1938, 27(3):493-497.
|
[14] |
CHAN W M, KALKANOGLU A E, WARD B M. The inability of vaccinia virus A33R protein to form intermolecular disulfide-bonded homodimers does not affect the production of infectious extracellular virus[J]. Virology, 2010, 408(1):109-118.
|
[15] |
THÉZÉ J, TAKATSUKA J, LI Z, et al. New insights into the evolution of Entomopoxvirinae from the complete genome sequences of four entomopoxviruses infecting Adoxophyes honmai, Choristoneura biennis, Choristoneura rosaceana, and Mythimna separata[J]. J Virol, 2013, 87(14):7992-8003.
|
[16] |
DA FONSECA F G, WOLFFE E J, WEISBERG A, et al. Effects of deletion or stringent repression of the H3L envelope gene on vaccinia virus replication[J]. J Virol, 2000, 74(16):7518-7528.
|
[17] |
DA FONSECA F G, WOLFFE E J, WEISBERG A, et al. Characterization of the vaccinia virus H3L envelope protein:topology and posttranslational membrane insertion via the C-terminal hydrophobic tail[J]. J Virol, 2000, 74(16):7508-7517.
|
[18] |
LIN C L, CHUNG C S, HEINE H G, et al. Vaccinia virus envelope H3L protein binds to cell surface Heparan sulfate and is important for intracellular mature virion morphogenesis and virus infection in vitro and in vivo[J]. J Virol, 2000, 74(7):3353-3365.
|
[19] |
HENDRICKSON R C, WANG C L, HATCHER E L, et al. Orthopoxvirus genome evolution:the role of gene loss[J]. Viruses, 2010, 2(9):1933-1967.
|
[20] |
BABKIN I V, BABKINA I N, TIKUNOVA N V. An update of orthopoxvirus molecular evolution[J]. Viruses, 2022, 14(2):388.
|