Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (11): 4058-4070.doi: 10.11843/j.issn.0366-6964.2022.11.031
• BASIC VETERINARY MEDICINE • Previous Articles Next Articles
HUANG Xiaoyu1, YANG Qiaoli1, YAN Zunqiang1, WANG Pengfei1, SHI Hairen2, GUN Shuangbao1,3*
Received:
2021-10-26
Online:
2022-11-23
Published:
2022-11-25
CLC Number:
HUANG Xiaoyu, YANG Qiaoli, YAN Zunqiang, WANG Pengfei, SHI Hairen, GUN Shuangbao. Characterization of circRNA Expression Profiles Involved in Intestines of Clostridium Perfringens Type C-infected Diarrheal Piglet[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(11): 4058-4070.
[1] | ROOD J I.Virulence genes of Clostridium perfringens[J].Annu Rev Microbiol, 1998, 52:333-360. |
[2] | ROOD J I, COLE S T.Molecular genetics and pathogenesis of Clostridium perfringens[J].Microbiol Rev, 1991, 55(4):621-648. |
[3] | POPOFF M R, BOUVET P.Genetic characteristics of toxigenic Clostridia and toxin gene evolution[J].Toxicon, 2013, 75:63-89. |
[4] | UZAL F A, VIDAL J E, MCCLANE B A, et al.Clostridium perfringens toxins involved in Mammalian veterinary diseases[J].Open Toxinology J, 2010, 2:24-42. |
[5] | SONGER J G.Clostridia as agents of zoonotic disease[J].Vet Microbiol, 2010, 140(3-4):399-404. |
[6] | SONGER J G, UZAL F A.Clostridial enteric infections in pigs[J].J Vet Diagn Invest, 2005, 17(6):528-536. |
[7] | UZAL F A, MCCLANE B A.Recent progress in understanding the pathogenesis of Clostridium perfringens type C infections[J].Vet Microbiol, 2011, 153(1-2):37-43. |
[8] | UZAL F A, MCCLANE B A, CHEUNG J K, et al.Animal models to study the pathogenesis of human and animal Clostridium perfringens infections[J].Vet Microbiol, 2015, 179(1-2):23-33. |
[9] | POPESCU F, WYDER M, GURTNER C, et al.Susceptibility of primary human endothelial cells to C.perfringens beta-toxin suggesting similar pathogenesis in human and porcine necrotizing enteritis[J].Vet Microbiol, 2011, 153(1-2):173-177. |
[10] | SILVA R O S, JUNIOR C A O, GUEDES R M C, et al.Clostridium perfringens:A review of the disease in pigs, horses and broiler chickens[J].Ciência Rural, 2015, 45(6):1027-1034. |
[11] | DINH H, HONG Y H, LILLEHOJ H S.Modulation of microRNAs in two genetically disparate chicken lines showing different necrotic enteritis disease susceptibility[J].Vet Immunol Immunopathol, 2014, 159(1-2):74-82. |
[12] | MA M L, GURJAR A, THEORET J R, et al.Synergistic effects of Clostridium perfringens enterotoxin and beta toxin in rabbit small intestinal loops[J].Infect Immun, 2014, 82(7):2958-2970. |
[13] | UZAL F A, SAPUTO J, SAYEED S, et al.Development and application of new mouse models to study the pathogenesis of Clostridium perfringens type C enterotoxemias[J].Infect Immun, 2009, 77(12):5291-5299. |
[14] | MEMCZAK S, JENS M, ELEFSINIOTI A, et al.Circular RNAs are a large class of animal RNAs with regulatory potency[J].Nature, 2013, 495(7441):333-338. |
[15] | HANSEN T B, JENSEN T I, CLAUSEN B H, et al.Natural RNA circles function as efficient microRNA sponges[J].Nature, 2013, 495(7441):384-388. |
[16] | JECK W R, SORRENTINO J A, WANG K, et al.Circular RNAs are abundant, conserved, and associated with alu repeats[J].RNA, 2013, 19(2):141-157. |
[17] | GRUNER H, CORTÉS-LÓPEZ M, COOPER D A, et al.CircRNA accumulation in the aging mouse brain[J].Sci Rep, 2016, 6:38907. |
[18] | HUANG X Y, SUN W Y, YAN Z Q, et al.Novel insights reveal anti-microbial gene regulation of piglet intestine immune in response to Clostridium perfringens infection[J].Sci Rep, 2019, 9(1):1963. |
[19] | KELLY D, O'BRIEN J J, MCCRACKEN K J.Effect of creep feeding on the incidence, duration and severity of post-weaning diarrhoea in pigs[J].Res Vet Sci, 1990, 49(2):223-228. |
[20] | LANGMEAD B, TRAPNELL C, POP M, et al.Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J].Genome Biol, 2009, 10(3):R25. |
[21] | GLAŽAR P, PAPAVASILEIOU P, RAJEWSKY N.circBase:A database for circular RNAs[J].RNA, 2014, 20(11):1666-1670. |
[22] | GAO Y, ZHANG J Y, ZHAO F Q.Circular RNA identification based on multiple seed matching[J].Brief Bioinform, 2018, 19(5):803-810. |
[23] | ZHOU L, CHEN J H, LI Z Z, et al.Integrated profiling of microRNAs and mRNAs:microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma[J].PLoS One, 2010, 5(12):e15224. |
[24] | LOVE M I, HUBER W, ANDERS S.Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J].Genome Biol, 2014, 15(12):550. |
[25] | YOUNG M D, WAKEFIELD M J, SMYTH G K, et al.Gene ontology analysis for RNA-seq:accounting for selection bias[J].Genome Biol, 2010, 11(2):R14. |
[26] | XIE C, MAO X Z, HUANG J J, et al.KOBAS 2.0:A web server for annotation and identification of enriched pathways and diseases[J].Nucleic Acids Res, 2011, 39(Web Server issue):W316-W322. |
[27] | MAO X Z, CAI T, OLYARCHUK J G, et al.Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary[J].Bioinformatics, 2005, 21(19):3787-3793. |
[28] | SHANNON P, MARKIEL A, OZIER O, et al.Cytoscape:A software environment for integrated models of biomolecular interaction networks[J].Genome Res, 2003, 13(11):2498-2504. |
[29] | WANG P F, HUANG X Y, YAN Z Q, et al.Analyses of miRNA in the ileum of diarrheic piglets caused by Clostridium perfringens type C[J].Microb Pathog, 2019, 136:103699. |
[30] | HUANG X Y, SUN W Y, YAN Z Q, et al.Integrative Analyses of long non-coding RNA and mRNA involved in piglet ileum immune response to Clostridium perfringens type C infection[J].Front Cell Infect Microbiol, 2019, 9:130. |
[31] | LIU C X, LI X, NAN F, et al.Structure and degradation of circular RNAs regulate PKR activation in innate immunity[J].Cell, 2019, 177:865-880. |
[32] | ZHENG Q P, BAO C Y, GUO W J, et al.Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs[J].Nat Commun, 2016, 7:11215. |
[33] | EBBESEN K K, KJEMS J, HANSEN T B.Circular RNAs:Identification, biogenesis and function[J].Biochim Biophys Acta, 2016, 1859(1):163-168. |
[34] | XIE H J, REN X L, XIN S N, et al.Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer[J].Oncotarget, 2016, 7(18):26680-26691. |
[35] | EL-DALY S M, MORSY S M, MEDHAT D, et al.The diagnostic efficacy of circulating miRNAs in monitoring the early development of colitis-induced colorectal cancer[J].J Cell Biochem, 2019, 120(10):16668-16680. |
[36] | DO D N, DUDEMAINE P L, FOMENKY B E, et al.Integration of miRNA and mRNA co-expression reveals potential regulatory roles of miRNAs in developmental and immunological processes in calf ileum during early growth[J].Cells, 2018, 7(9):134. |
[37] | LIANG G X, MALMUTHUGE N, MCFADDEN T B, et al.Potential regulatory role of microRNAs in the development of bovine gastrointestinal tract during early life[J].PLoS One, 2014, 9(3):e92592. |
[38] | XU Z, ZHANG Y Y, DING J J, et al.miR-17-3p downregulates mitochondrial antioxidant enzymes and enhances the radiosensitivity of prostate cancer cells[J].Mol Ther Nucleic Acids, 2018, 13:64-77. |
[39] | KERKHOFF C, NACKEN W, BENEDYK M, et al.The arachidonic acid-binding protein S100A8/A9 promotes NADPH oxidase activation by interaction with p67phox and Rac-2[J].FASEB J, 2005, 19(3):467-469. |
[40] | VOGL T, TENBROCK K, LUDWIG S, et al.MRP8 and MRP14 are endogenous activators of toll-like receptor 4, promoting lethal, endotoxin-induced shock[J].Nat Med, 2007, 13(9):1042-1049. |
[41] | ZHAO B Y, LU R F, CHEN J J, et al.S100A9 blockade prevents lipopolysaccharide-induced lung injury via suppressing the NLRP3 pathway[J].Respir Res, 2021, 22(1):45. |
[42] | ZHANG X M, WEI L Y, WANG J, et al.Suppression colitis and colitis-associated colon cancer by anti-S100A9 antibody in mice[J].Front Immunol, 2017, 8:1774. |
[43] | CHEN L S, HUANG Y, DUAN Z X, et al.Exosomal miR-500 derived from lipopolysaccharide-treated macrophage accelerates liver fibrosis by suppressing MFN2[J].Front Cell Dev Biol, 2021, 9:716209. |
[44] | ZHANG L, DING Y, YUAN Z Y, et al.MicroRNA-500 sustains nuclear factor-κB activation and induces gastric cancer cell proliferation and resistance to apoptosis[J].Oncotarget, 2015, 6(4):2483-2495. |
[45] | DING P P, LI L, LI L Y, et al.C5aR1 is a master regulator in colorectal tumorigenesis via immune modulation[J].Theranostics, 2020, 10(19):8619-8632. |
[46] | BLANCHARD H, LEGRAND P, PÉDRONO F.Fatty Acid Desaturase 3 (Fads3) is a singular member of the Fads cluster[J].Biochimie, 2011, 93(1):87-90. |
[47] | JIN Y Y, WANG J, ZHANG M, et al.Role of bta-miR-204 in the regulation of adipocyte proliferation, differentiation, and apoptosis[J].J Cell Physiol, 2019, 234(7):11037-11046. |
[48] | WANG W, YANG Q L, HUANG X Y, et al.Effects of miR-204 on apoptosis and inflammatory response of Clostridium perfringens beta2 toxin induced IPEC-J2 cells via targeting BCL2L2[J].Microb Pathog, 2021, 156:104906. |
[1] | LI Jiannan, YUAN Liming, HUA Jinlian. Progress on the Application of CD46 in Breeding of Livestock for Disease Resistance [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 1866-1874. |
[2] | YANG Xiaofeng, QIN Xiaowei, LÜ Lihua. Protective Effect of a Derivative of MNQ Against LPS-Induced Inflammatory Injury in Bovine Ovarian Follicular Granulosa Cells in Vitro [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2032-2041. |
[3] | ZHENG Rui, LIU Zishi, ZHANG Kangyou, YAN Yong, WEI Ling, ZEREN Wengmu, DINGZE Demi, HUANG Jianjun, WANG Li, WEI Yong. Isolation, Identification and Biological Characterization of Colletotrichum jasminigenum in Stems of Peanuts [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2206-2213. |
[4] | HE Xiaolan, ZHAO Yankun, MENG Lu, LIU Huimin, GAO Jiaojiao, ZHENG Nan. Research Progress in Heteroresistance of Staphylococcus aureus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1432-1445. |
[5] | LIU Weiye, HUANG Xuewei. Research Progress of Non-coding RNA in Infectious Bursal Disease Virus Infection [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1488-1498. |
[6] | ZHANG Yanmin, ZHAO Dongxu, WANG Wenlong. Mechanism of Resistance to Ivermectin in the Haemonchus contortus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1511-1520. |
[7] | DAI Fan, LIU Zhanyou, ZHANG Xuyang, LI Wu. Aconitate Decarboxylase 1 Could Regulate the Inflammatory Response Caused by BCG [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1696-1706. |
[8] | WU Shangjie, LUAN Yuanyuan, WANG Mingkun, ZHANG Hechun, YU Bo, MA Yuehui, JIANG Lin, HE Xiaohong. Advances of Disease-Resistant Breeding on Ovine Brucellosis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 882-893. |
[9] | LI Pengxu, LI Shijing, SUN Jun, XIANG Wei, ZHAO Miaomiao, HOU Tianmu, LI Huaming, GUANG Min, CHEN Ruige, XU Mengran, WU Xiaomin, JIANG Hexiang, LEI Liancheng, ZHANG Fuxian. Molecular Subtyping and Identification of Streptococcus suis Meningitidis Type 2 and Its Biological Characteristics [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1192-1207. |
[10] | LIU Xinhuan, YUN Jialei, MAO Li, LI Jizong, HAO Fei, HE Miaofeng, YANG Leilei, ZHANG Wenwen, CHENG Zilong, SUN Min, LIU Maojun, WANG Shaohui, BAI Juan, LI Wenliang. Isolation, Identification, Virulence Genes and Drug Resistance Analysis of Escherichia coli Isolated from Diarrheal Goat and Sheep [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3445-3454. |
[11] | WANG Zhengrong, MA Xun, ZHANG Yanyan, SUN Yan, MENG Jimeng, BO Xinwen. Differential Expression Profile of CircRNA in Protoscolex, Hydatid Cyst Wall and Adult of Echinococcus granulosus [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(8): 3474-3489. |
[12] | ZHOU Weiwei, WANG Xuefeng, ZHANG Mengjie, YANG Juan, SUN Yuelong, ZHANG Zufeng, ZHANG Yuxin, DOU Jiahong, WANG Ziying, DAI Xiaofeng, LI Xiumei. Analysing the Mechanism of Sihuang Zhili Granule in the Treatment of Piglet Diarrhea Based on Biological Network Function Modules and Compatibility Rules [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 3031-3043. |
[13] | ZHAO Feifei, LI Jie, HAN Ning, XIE Shiting, ZENG Zhenling. Antibacterial Drug Resistance Analysis of Klebsiella pneumoniae Isolated from Slaughterhouse [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 3044-3053. |
[14] | ZHAO Yangfei, YU Yanghuan, WANG Jinming, ZHANG Jianhai, SUN Zilong, NIU Ruiyan, WANG Jundong. Effects of IL-17A Knockout on Fluoride-Induced Hepatic Inflammation and Hepatocyte Apoptosis [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(7): 3108-3117. |
[15] | AN Zongqi, ZHAN Siyuan, LI Li, ZHANG Hongping. ceRNA-mediated Function of CircRNA on Critical Economic Traits in Animals [J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(6): 2215-2222. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||