Acta Veterinaria et Zootechnica Sinica ›› 2022, Vol. 53 ›› Issue (8): 2763-2772.doi: 10.11843/j.issn.0366-6964.2022.08.033
• CLINICAL VETERINARY MEDICINE • Previous Articles Next Articles
LUORENG Zhuoma1,2, WANG Jinpeng1,2, JIAO Peng1,2, LI Yanxia1,2, DONG Yiwen1,2, WEI Dawei1,2, WNAG Xingping1,2*
Received:
2021-11-25
Online:
2022-08-23
Published:
2022-08-23
CLC Number:
LUORENG Zhuoma, WANG Jinpeng, JIAO Peng, LI Yanxia, DONG Yiwen, WEI Dawei, WNAG Xingping. Construction of Dairy Cow Mastitis Model and Analysis of mRNA Transcription Level of Inflammation Related Cytokine Genes[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(8): 2763-2772.
[1] | KERRO DEGO O, OLIVER S P, ALMEIDA R A. Host-pathogen gene expression profiles during infection of primary bovine mammary epithelial cells with Escherichia coli strains associated with acute or persistent bovine mastitis[J]. Vet Microbiol, 2012, 155(2-4):291-297. |
[2] | ZADOKS R, FITZPATRICK J. Changing trends in mastitis[J]. Ir Vet J, 2009, 62(S4):S59-S70. |
[3] | 吴文学, 李秀波, 李旭妮, 等. 奶牛乳房炎的病原学分析[J]. 中国兽医杂志, 2019, 55(9):114-117.WU W X, LI X B, LI X N, et al. Etiological analysis of mastitis in dairy cow[J]. Chinese Journal of Veterinary Medicine, 2019, 55(9):114-117. (in Chinese) |
[4] | 刘肖利, 刘璐瑶, 李镔罡, 等. 金黄色葡萄球菌性奶牛乳房炎调查及菌株耐药性和毒力分析[J]. 西北农业学报, 2021, 30(10):1452-1460.LIU X L, LIU L Y, LI B G, et al. Cow mastitis caused by Staphylococcus aureus and analysis of its drug resistance and virulence[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2021, 30(10):1452-1460. (in Chinese) |
[5] | CÔTÉ-GRAVEL J, MALOUIN F. Symposium review:Features of Staphylococcus aureus mastitis pathogenesis that guide vaccine development strategies[J]. J Dairy Sci, 2019, 102(5):4727-4740. |
[6] | ZAATOUT N, AYACHI A, KECHA M. Staphylococcus aureus persistence properties associated with bovine mastitis and alternative therapeutic modalities[J]. J Appl Microbiol, 2020, 129(5):1102-1119. |
[7] | DALANEZI F M, JOAQUIM S F, GUIMARÃES F F, et al. Influence of pathogens causing clinical mastitis on reproductive variables of dairy cows[J]. J Dairy Sci, 2020, 103(4):3648-3655. |
[8] | JU Z H, JIANG Q, WANG J P, et al. Genome-wide methylation and transcriptome of blood neutrophils reveal the roles of DNA methylation in affecting transcription of protein-coding genes and miRNAs in E. coli-infected mastitis cows[J]. BMC Genomics, 2020, 21(1):102. |
[9] | MARASHIFARD M, KARIMI ALIABAD Z, MALEK HOSSEINI S A A, et al. Determination of antibiotic resistance pattern and virulence genes in Escherichia coli isolated from bovine with subclinical mastitis in southwest of Iran[J]. Trop Anim Health Prod, 2019, 51(3):575-580. |
[10] | PETZL W, GVNTHER J, MVHLBAUER K, et al. Early transcriptional events in the udder and teat after intra-mammary Escherichia coli and Staphylococcus aureus challenge[J]. Innate Immun, 2016, 22(4):294-304. |
[11] | YANG W, ZERBE H, PETZL W, et al. Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-κB in mammary epithelial cells and to quickly induce TNFα and interleukin-8 (CXCL8) expression in the udder[J]. Mol Immunol, 2008, 45(5):1385-1397. |
[12] | GVNTHER J, KOY M, BERTHOLD A, et al. Comparison of the pathogen species-specific immune response in udder derived cell types and their models[J]. Vet Res, 2016, 47(1):22. |
[13] | GILBERT F B, CUNHA P, JENSEN K, et al. Differential response of bovine mammary epithelial cells to Staphylococcus aureus or Escherichia coli agonists of the innate immune system[J]. Vet Res, 2013, 44(1):40. |
[14] | WANG X P, LUORENG Z M, ZAN L S, et al. Bovine miR-146a regulates inflammatory cytokines of bovine mammary epithelial cells via targeting the TRAF6 gene[J]. J Dairy Sci, 2017, 100(9):7648-7658. |
[15] | ZHANG W Y, LI X Z, XU T, et al. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis[J]. Exp Cell Res, 2016, 349(1):45-52. |
[16] | LI R, ZHANG C L, LIAO X X, et al. Transcriptome microRNA profiling of bovine mammary glands infected with Staphylococcus aureus[J]. Int J Mol Sci, 2015, 16(3):4997-5013. |
[17] | 袁峥嵘. 金黄色葡萄球菌诱导奶牛实验性乳腺炎研究[D]. 北京:中国农业科学院, 2011.YUAN Z R. Study on experimental mastitis induced by Staphylococcus aureus in dairy cattle[D]. Beijing:Chinese Academy of Agricultural Sciences, 2011. (in Chinese) |
[18] | 廖想想. 奶牛金黄色葡萄球菌人工诱导型乳腺炎基因表达谱分析[D]. 扬州:扬州大学, 2014.LIAO X X. Gene expression profiles of mastitis artificially induced by Staphylococcus aureus in Chinese Holstein[D]. Yangzhou:Yangzhou University, 2014. (in Chinese) |
[19] | 杨 箭, 王兴平, 罗仍卓么, 等. miRNA在奶牛乳房炎中的表达模式和分子调控机制[J]. 农业生物技术学报, 2020, 28(11):2069-2079.YANG J, WANG X P, LUORENG Z M, et al. The expression pattern and molecular regulatory mechanism of miRNA in mastitis of dairy cows (Bos taurus)[J]. Journal of Agricultural Biotechnology, 2020, 28(11):2069-2079. (in Chinese) |
[20] | STRANDBERG Y, GRAY C, VUOCOLO T, et al. Lipopolysaccharide and lipoteichoic acid induce different innate immune responses in bovine mammary epithelial cells[J]. Cytokine, 2005, 31(1):72-86. |
[21] | 秦子一, 唐文如, 谢晓丽. 补体系统在肿瘤免疫中的双重作用[J/OL]. 中国免疫学杂志, 2021.[2022-06-01].http://kns.cnki.net/kcms/detail/22.1126.R.20210602.1741.010.htmlQIN Z Y, TANG W R, XIE X L. Dual faces of the complement system in tumor immunity[J/OL]. Chinese Journal of Immunology, 2021.[2022-06-01]. http://kns.cnki.net/kcms/detail/22.1126.R.20210602.1741.010.html (in Chinese) |
[22] | 路 平, 魏少忠, 梁新军. 补体系统与肿瘤免疫的研究进展[J]. 中国肿瘤临床, 2021, 48(13):681-685.LU P, WEI S Z, LIANG X J. Advances in research on the relationship between the complement system and antitumor immune response[J]. Chinese Journal of Clinical Oncology, 2021, 48(13):681-685. (in Chinese) |
[23] | MATHERN D R, HEEGER P S. Molecules great and small:The complement system[J]. Clin J Am Soc Nephrol, 2015, 10(9):1636-1650. |
[24] | 张 玢, 虞 斌, 黄瑞萍, 等. 血清补体B因子与唐氏综合征相关性的初步研究[J]. 中国现代医学杂志, 2012, 22(22):35-38.ZHANG B, YU B, HUANG R P, et al. Preliminary research for the relevance on the concentration of complement factor B and Down's syndrome[J]. China Journal of Modern Medicine, 2012, 22(22):35-38. (in Chinese) |
[25] | SERIRAMALU R, PANG W W, JAYAPALAN J J, et al. Application of champedak mannose-binding lectin in the glycoproteomic profiling of serum samples unmasks reduced expression of alpha-2 macroglobulin and complement factor B in patients with nasopharyngeal carcinoma[J]. Electrophoresis, 2010, 31(14):2388-2395. |
[26] | 徐东进. 系统性红斑狼疮患者免疫球蛋白轻链及补体B因子测定的临床意义[J]. 检验医学与临床, 2012, 9(1):33, 35.XU D J. Clinical value of detecting serum immunoglobulin light chain and factor B in patients with systemic lupus erythematosus[J]. Laboratory Medicine and Clinic, 2012, 9(1):33, 35. (in Chinese) |
[27] | FAGERNESS J A, MALLER J B, NEALE B M, et al. Variation near complement factor I is associated with risk of advanced AMD[J]. Eur J Hum Genet, 2009, 17(1):100-104. |
[28] | VAN LOOKEREN CAMPAGNE M, STRAUSS E C, YASPAN B L. Age-related macular degeneration:Complement in action[J]. Immunobiology, 2016, 221(6):733-739. |
[29] | BRODERICK L, GANDHI C, MUELLER J L, et al. Mutations of complement factor I and potential mechanisms of neuroinflammation in acute hemorrhagic leukoencephalitis[J]. J Clin Immunol, 2013, 33(1):162-171. |
[30] | GALLUZZI L, GREEN D R. Autophagy-independent functions of the autophagy machinery[J]. Cell, 2019, 177(7):1682-1699. |
[31] | 吴 娜, 王 东, 白咸勇. 细胞自噬与肝细胞癌的研究进展[J]. 基础医学与临床, 2021, 41(10):1514-1517.WU N, WANG D, BAI X Y. Progress in research on autophagy and hepatocellular carcinoma[J]. Basic and Clinical Medicine, 2021, 41(10):1514-1517. (in Chinese) |
[32] | 秦 莉, 张 红. 细胞自噬在急性肺损伤中作用机制的研究进展[J]. 山东医药, 2021, 61(17):98-100.QIN L, ZHANG H. Research progress on the mechanism of autophagy in acute lung injury[J]. Shandong Medical Journal, 2021, 61(17):98-100. (in Chinese) |
[33] | SALCHER S, HAGENBUCHNER J, GEIGER K, et al. C10ORF10/DEPP, a transcriptional target of FOXO3, regulates ROS-sensitivity in human neuroblastoma[J]. Mol Cancer, 2014, 13(1):224. |
[34] | SALCHER S, HERMANN M, KIECHL-KOHLENDORFER U, et al. C10ORF10/DEPP-mediated ROS accumulation is a critical modulator of FOXO3-induced autophagy[J]. Mol Cancer, 2017, 16(1):95. |
[35] | STEPP M W, FOLZ R J, YU J, et al. The c10orf10 gene product is a new link between oxidative stress and autophagy[J]. Biochim Biophys Acta, 2014, 1843(6):1076-1088. |
[36] | 杨德娟. IL-21及其受体在自身免疫性疾病中的作用[J]. 中国当代儿科杂志, 2016, 18(5):466-470.YANG D J. Roles of interleukin-21 and its receptor in autoimmune diseases[J]. Chinese Journal of Contemporary Pediatrics, 2016, 18(5):466-470. (in Chinese) |
[37] | LEONARD W J, WAN C K. IL-21 signaling in immunity[J]. F1000Res, 2016, 5:224. |
[38] | PALLIKKUTH S, PARMIGIANI A, PAHWA S. Role of IL-21 and IL-21 receptor on B cells in HIV infection[J]. Crit Rev Immunol, 2012, 32(2):173-195. |
[39] | LINNEBACHER A, MAYER P, MARNET N, et al. Interleukin 21 receptor/ligand interaction is linked to disease progression in pancreatic cancer[J]. Cells, 2019, 8(9):1104. |
[40] | YOUNG D A, HEGEN M, MA H L M, et al. Blockade of the interleukin-21/interleukin-21 receptor pathway ameliorates disease in animal models of rheumatoid arthritis[J]. Arthritis Rheum, 2007, 56(4):1152-1163. |
[1] | FEI Guoqing, NING Zhiyuan, ZHAO Zefang, LIU Yanqiu, LIU Tengfei, LI Xian, CONG Rihua, CHEN Hong, CHEN Shulin. Isolation, Identification of Luteal Cells from Cows during Pregnancy and Investigation of Their Culture Characteristics [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(5): 2214-2225. |
[2] | XIU Haoyu, LI Yingjun, YUAN Kaimin, WANG Chao, YANG Shuhan, Lü Lihua, WANG Dong. Research Progress of Temperature Variation in Different Parts of Body During Estrus in Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1381-1388. |
[3] | XIANG Hui, GUI Linsen, YANG Di, WEI Shihao, GONG Yanbin, SHI Yuangang, MA Yun, DAN Xingang. Research Progress on the Estrus Synchronization-fixed-timed Artificial Insemination Technology in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1412-1422. |
[4] | LI Feifei, ZHANG Chenmiao, TONG Jinjin, JIANG Linshu. Research Progress on the Mechanism of Mitochondrial Autophagy Regulating the Activity of NLRP3 Inflammatory Corpuscles to Improve Animal Health [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1446-1455. |
[5] | YANG Yang, YU Qian, LIU Yucheng, YANG Hua, ZHAO Zhuo, WANG Limin, ZHOU Ping, YANG Qingyong, DAI Rong. Identification and Tissue Expression Analysis of the Sheep MYL Gene Family [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1551-1564. |
[6] | LU Jinye, GAO Yabing, HAN Xinru, LIU Yuzhen, ZHAO Jiayu. The Effect of Streptococcus uberis Infection on Amino Acid Metabolism in Mammary Epithelial Cells [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(4): 1766-1776. |
[7] | SHEN Wenjuan, YANG Zhuo, ZHANG Xinrui, FU Yu, TAO Jinzhong. Research Progress of Microorganisms and Reproductive and Related Diseases in Dairy Cows Reproductive Tract [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 924-932. |
[8] | XIA Shuwen, CHEN Kunlin, SHEN Yangyang, AN Zhenjiang, ZHAO Fang, DING Qiang, ZHONG Jifeng, LIN Zhiping, WANG Huili. The Estimation of Genetic Parameters for Longevity Traits of Holstein Cows in Jiangsu Region [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(3): 1030-1039. |
[9] | ZHANG Xinrui, FU Yu, YANG Zhuo, SHEN Wenjuan, TAO Jinzhong. Study of Early Pregnancy Diagnostic Proteins in Dairy Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 451-460. |
[10] | GAO Xin, SUN Yipeng. Research Progress of Cell Inflammation Induced by Influenza A Virus [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 481-490. |
[11] | KANG Jia, DUAN Xiangru, YIN Xuejiao, YANG Ruochen, LI Taichun, SHAN Xinyu, CHEN Meijing, ZHANG Yingjie, LIU Yueqin. Effects of Cysteine and Methionine on Secondary Hair Follicle Growth and Hair Dermal Papilla Cell Proliferation in vitro in Cashmere Goats [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 515-527. |
[12] | ZHANG Zhifei, TANG Xueying, MIN Li, TONG Xiong, CHEN Weidong, JU Xianghong, LI Dagang. Construction of Gene Coexpression Network Related to Lactation Period and Fecundity in Liver Tissue of Holstein Cows [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 528-539. |
[13] | WANG Dong, LIU Kexin, HE Yanjun, DENG Shouxiang, LIU Yun, MA Weiming. Effects of Dietary Sodium Humate Supplementation on Liver Tissue Inflammation and Antioxidant Capacity of Salmonella Typhimurium-Infected Broilers [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 629-639. |
[14] | CHEN Xueqing, LI Zhiqiang, WU Yulong, ZHANG Chonghao, ZHANG Yuanshu. Expression of Renin Angiotensin System (RAS) in Jejunum Tissues of Piglets with Clinical Diarrhea and Its Relationship with Intestinal Inflammation [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 751-758. |
[15] | ZHUANG Cuicui, HAN Bo. Mechanism of Mitochondrial Damage in Bovine Mammary Epithelial Cells and Mouse Mammary Gland Infected with Escherichia coli Isolated from Bovine Mastitis [J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(2): 822-833. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||