[1] PAN B T, JOHNSTONE R M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro:selective externalization of the receptor[J]. Cell, 1983, 33(3):967-978.
[2] JOHNSTONE R M, ADAM M, HAMMOND J R, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. J Biol Chem, 1987, 262(19):9412-9420.
[3] JOHNSTONE R M, MATHEW A, MASON A B, et al. Exosome formation during maturation of mammalian and avian reticulocytes:evidence that exosome release is a major route for externalization of obsolete membrane proteins[J]. J Cell Physiol, 1991, 147(1):27-36.
[4] VALADI H, EKSTRÖM K, BOSSIOS A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9(6):654-659.
[5] 徐兆坤, 李武,王玉炯. 外泌体在机体抗结核分枝杆菌感染中的作用及其应用[J].畜牧兽医学报,2018,49(9):1803-1809.
XU Z K, LI W, WANG Y J. The roles and applications of exosomes in the host defense against Mycobacterium tuberculosis infection[J]. Acta Veterinaria et Zootechnica Sinica, 2018, 49(9):1803-1809. (in Chinese)
[6] CAZZOLI R, BUTTITTA F, DI NICOLA M, et al. microRNAs derived from circulating exosomes as noninvasive biomarkers for screening and diagnosing lung cancer[J]. J Thorac Oncol, 2013, 8(9):1156-1162.
[7] KRUGER S, ELMAGEED Z Y A, HAWKE D H, et al. Molecular characterization of exosome-like vesicles from breast cancer cells[J]. BMC Cancer, 2014, 14(1):44.
[8] WAHLGREN J, STATELLO L, SKOGBERG G, et al. Delivery of small interfering RNAs to cells via exosomes[M]//SHUM K, ROSSI J. SiRNA Delivery Methods. Methods in Molecular Biology, vol 1364.
New York:Humana Press, 2016:105-125.
[9] KUMAR L, VERMA S, VAIDYA B, et al. Exosomes:natural carriers for siRNA delivery[J]. Curr Pharm Des, 2015, 21(31):4556-4565.
[10] SKOG J, WÜRDINGER T, VAN RIJN S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers[J]. Nat Cell Biol, 2008, 10(12):1470-1476.
[11] CHEN I H, XUE L, HSU C C, et al. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer[J]. Proc Natl Acad Sci U S A, 2017, 114(12):3175-3180.
[12] KALRA H, ADDA C G, LIEM M, et al. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma[J]. Proteomics, 2013, 13(22):3354-3364.
[13] PISITKUN T, SHEN R F, KNEPPER M A. Identification and proteomic profiling of exosomes in human urine[J]. Proc Natl Acad Sci U S A, 2004, 101(36):13368-13373.
[14] NILSSON J, SKOG J, NORDSTRAND A, et al. Prostate cancer-derived urine exosomes:a novel approach to biomarkers for prostate cancer[J]. Br J Cancer, 2009, 100(10):1603-1607.
[15] BELL B M, KIRK I D, HILTBRUNNER S, et al. Designer exosomes as next-generation cancer immunotherapy[J]. Nanomedicine, 2016, 12(1):163-169.
[16] KIM M S, HANEY M J, ZHAO Y L, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells[J]. Nanomedicine, 2016, 12(3):655-664.
[17] SCHOREY J S, CHENG Y, SINGH P P, et al. Exosomes and other extracellular vesicles in host-pathogen interactions[J]. EMBO Rep, 2015, 16(1):24-43.
[18] VAN DER POL E, BÖING A N, HARRISON P, et al. Classification, functions, and clinical relevance of extracellular vesicles[J]. Pharmacol Rev, 2012, 64(3):676-705.
[19] KELLER S, SANDERSON M P, STOECK A, et al. Exosomes:from biogenesis and secretion to biological function[J]. Immunol Lett, 2006, 107(2):102-108.
[20] SHAO H L, IM H, CASTRO C M, et al. New technologies for analysis of extracellular vesicles[J]. Chem Rev, 2018, 118(4):1917-1950.
[21] RATAJCZAK J, WYSOCZYNSKI M, HAYEK F, et al. Membrane-derived microvesicles:important and underappreciated mediators of cell-to-cell communication[J]. Leukemia, 2006, 20(9):1487-1495.
[22] JIANG J X, MIKAMI K, VENUGOPAL S, et al. Apoptotic body engulfment by hepatic stellate cells promotes their survival by the JAK/STAT and Akt/NF-κB-dependent pathways[J]. J Hepatol, 2009, 51(1):139-148.
[23] ALENQUER M, AMORIM M J. Exosome biogenesis, regulation, and function in viral infection[J]. Viruses, 2015, 7(9):5066-5083.
[24] CHIVET M, HEMMING F, PERNET-GALLAY K, et al. Emerging role of neuronal exosomes in the central nervous system[J]. Front Physiol, 2012, 3:145.
[25] AKERS J C, GONDA D, KIM R, et al. Biogenesis of extracellular vesicles (EV):exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies[J]. J Neurooncol, 2013, 113(1):1-11.
[26] SIMONS M, RAPOSO G. Exosomes-vesicular carriers for intercellular communication[J]. Curr Opin Cell Biol, 2009, 21(4):575-581.
[27] VLASSOV A V, MAGDALENO S, SETTERQUIST R, et al. Exosomes:current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials[J]. Biochim Biophys Acta, 2012, 1820(7):940-948.
[28] LLORENTE A, SKOTLAND T, SYLVÄNNE T, et al. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells[J]. Biochim Biophys Acta, 2013, 1831(7):1302-1309.
[29] VILLARROYA-BELTRI C, BAIXAULI F, GUTIÉ-RREZ-VÁZQUEZ C, et al. Sorting it out:Regulation of exosome loading[J]. Semin Cancer Biol, 2014, 28:3-13.
[30] LEE Y, EL ANDALOUSSI S, WOOD M J. Exosomes and microvesicles:extracellular vesicles for genetic information transfer and gene therapy[J]. Hum Mol Genet, 2012, 21(R1):R125-R134.
[31] THAKUR B K, ZHANG H Y, BECKER A, et al. Double-stranded DNA in exosomes:a novel biomarker in cancer detection[J]. Cell Res, 2014, 24(6):766-769.
[32] LÄSSER C, ELDH M, LÖTVALL J. Isolation and characterization of RNA-containing exosomes[J]. J Vis Exp, 2012(59):3037.
[33] COAKLEY G, MAIZELS R M, BUCK A H. Exosomes and other extracellular vesicles:The new communicators in parasite infections[J]. Trends Parasitol, 2015, 31(10):477-489.
[34] RAPOSO G, NIJMAN H W, STOORVOGEL W, et al. B lymphocytes secrete antigen-presenting vesicles[J]. J Exp Med, 1996, 183(3):1161-1172.
[35] TWU O, DE MIGUEL N, LUSTIG G, et al. Trichomonas vaginalis exosomes deliver cargo to host cells and mediate host:parasite interactions[J]. PLoS Pathog, 2013, 9(7):e1003482.
[36] COUPER K N, BARNES T, HAFALLA J C R, et al. Parasite-derived plasma microparticles contribute significantly to malaria infection-induced inflammation through potent macrophage stimulation[J]. PLoS Pathog, 2010, 6(1):e1000744.
[37] MANTEL P Y, HOANG A N, GOLDOWITZ I, et al. Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system[J]. Cell Host Microbe, 2013, 13(5):521-534.
[38] CAMPOS F M F, FRANKLIN B S, TEIXEIRA-CARVALHO A, et al. Augmented plasma microparticles during acute Plasmodium vivax infection[J]. Malar J, 2010, 9:327.
[39] GEIGER A, HIRTZ C, BÉCUE T, et al. Exocytosis and protein secretion in Trypanosoma[J]. BMC Microbiol, 2010, 10:20.
[40] TORRECILHAS A C T, TONELLI R R, PAVANELLI W R, et al. Trypanosoma cruzi:parasite shed vesicles increase heart parasitism and generate an intense inflammatory response[J]. Microbes Infect, 2009, 11(1):29-39.
[41] LI Y, LIU Y, XIU F, et al. Characterization of exosomes derived from Toxoplasma gondii and their functions in modulating immune responses[J]. Int J Nanomed, 2018, 13:467-477.
[42] LI Y W, XIU F M, MOU Z Z, et al. Exosomes derived from Toxoplasma gondii stimulate an inflammatory response through JNK signaling pathway[J]. Nanomedicine, 2018, 13(10):1157-1168.
[43] POPE S M, LÄSSER C. Toxoplasma gondii infection of fibroblasts causes the production of exosome-like vesicles containing a unique array of mRNA and miRNA transcripts compared to serum starvation[J]. J Extracell Vesicles, 2013, 2(1):22484.
[44] GHOSH J, BOSE M, ROY S, et al. Leishmania donovani targets Dicer1 to downregulate miR-122, lower serum cholesterol, and facilitate murine liver infection[J]. Cell Host Microbe, 2013, 13(3):277-288.
[45] HASSANI K, SHIO M T, MARTEL C, et al. Absence of metalloprotease GP63 alters the protein content of Leishmania exosomes[J]. PLoS One, 2014, 9(4):e95007.
[46] LI S, GONG P T, TAI L X, et al. Extracellular vesicles secreted by Neospora caninum are recognized by toll-like receptor 2 and modulate host cell innate immunity through the MAPK signaling pathway[J]. Front Immunol, 2018, 9:1633.
[47] EICHENBERGER R M, RYAN S, JONES L, et al. Hookworm secreted extracellular vesicles interact with host cells and prevent inducible colitis in mice[J]. Front Immunol, 2018, 9:850.
[48] 朱丽慧. 日本血吸虫exosomes调控虫体与宿主互作的功能研究[D]. 北京:中国农业科学院, 2016.
ZHU L H. Studies on the mechanisms of parasite-host interaction mediated exosomes secreted by S. japonicum[D]. Beijing:Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[49] ROIG J, SAIZ M L, GALIANO A, et al. Extracellular vesicles from the helminth Fasciola hepatica prevent DSS-induced acute ulcerative colitis in a T-lymphocyte independent mode[J]. Front Microbiol, 2018, 9:1036.
[50] ZAMANIAN M, FRASER L M, AGBEDANU P N, et al. Release of small RNA-containing exosome-like vesicles from the human filarial parasite Brugia malayi[J]. PLoS Negl Trop Dis, 2015, 9(9):e4069.
[51] AMIN A, BILIC I, LIEBHART D, et al. Trichomonads in birds-a review[J]. Parasitology, 2014, 141(6):733-747.
[52] MIELCZAREK E, BLASZKOWSKA J. Trichomonas vaginalis:pathogenicity and potential role in human reproductive failure[J]. Infection, 2016, 44(4):447-458.
[53] 刘鹏月, 安春丽. 肺孢子菌肺炎辅助诊断方法研究进展[J]. 中国微生态学杂志, 2014, 26(4):471-474.
LIU P Y, AN C L. The pneumocystis antigen and bacterial components for the diagnosis of Pneumocystis pneumonia[J]. Chinese Journal of Microecology, 2014, 26(4):471-474. (in Chinese)
[54] FICHOROVA R N, TRIFONOVA R T, GILBERT R O, et al. Trichomonas vaginalis lipophosphoglycan triggers a selective upregulation of cytokines by human female reproductive tract epithelial cells[J]. Infect Immun, 2006, 74(10):5773-5779.
[55] OLMOS-ORTIZ L M, BARAJAS-MENDIOLA M A, BARRIOS-RODILES M, et al. Trichomonas vaginalis exosome-like vesicles modify the cytokine profile and reduce inflammation in parasite-infected mice[J]. Parasite Immunol, 2017, 39(6):e12426.
[56] ESKDALE J, KUBE D, TESCH H, et al. Mapping of the human IL10, gene and further characterization of the 5' flanking sequence[J]. Immunogenetics, 1997, 46(2):120-128.
[57] 聂明权. 禽三种原虫病的发生和诊疗[J]. 现代畜牧科技, 2017(8):72.
NIE M Q.Occurrence and diagnosis of three protozoal diseases in poultry[J]. Modern Animal Husbandry Science & Technology, 2017(8):72. (in Chinese)
[58] PAIS T F, CHATTERJEE S. Brain macrophage activation in murine cerebral malaria precedes accumulation of leukocytes and CD8+ T cell proliferation[J]. J Neuroimmunol, 2005, 163(1-2):73-83.
[59] PIED S, RÉNIA L, NÜSSLER A, et al. Inhibitory activity of IL-6 on malaria hepatic stages[J]. Parasite Immunol, 1991, 13(2):211-217.
[60] REGEV-RUDZKI N, WILSON D W, CARVALHO T G, et al. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles[J]. Cell, 2013, 153(5):1120-1133.
[61] LIU W M, LI Y Y, SHAW K S, et al. African origin of the malaria parasite Plasmodium vivax[J]. Nat Commun, 2014, 5(1):3346.
[62] GUALDRÍN-LÍPEZ M, FLANNERY E L, KANGWANRANGSAN N, et al. Characterization of Plasmodium vivax proteins in plasma-derived exosomes from malaria-infected liver-chimeric humanized mice[J]. Front Microbiol, 2018, 9:1271.
[63] TENTER A M, HECKEROTH A R, WEISS L M. Toxoplasma gondii:from animals to humans[J]. Int J Parasitol, 2000, 30(12-13):1217-1258.
[64] KIM M J, JUNG B K, CHO J, et al. Exosomes secreted by Toxoplasma gondii-infected L6 cells:their effects on host cell proliferation and cell cycle changes[J]. Korean J Parasitol, 2016, 54(2):147-154.
[65] SZEMPRUCH A J, SYKES S E, KIEFT R, et al. Extracellular vesicles from Trypanosoma brucei mediate virulence factor transfer and cause host anemia[J]. Cell, 2016, 164(1-2):246-257.
[66] CESTARI I, RAMIREZ M I. Inefficient complement system clearance of Trypanosoma cruzi metacyclic trypomastigotes enables resistant strains to invade eukaryotic cells[J]. PLoS One, 2010, 5(3):e9721.
[67] CESTARI I, ANSA-ADDO E, DEOLINDO P, et al. Trypanosoma cruzi immune evasion mediated by host cell-derived microvesicles[J]. J Immunol, 2012, 188(4):1942-1952.
[68] NOGUEIRA P M, RIBEIRO K, SILVEIRA A C O, et al. Vesicles from different Trypanosoma cruzi strains trigger differential innate and chronic immune responses[J]. J Extracell Vesicles, 2015, 4(1):28734.
[69] SAMOIL V, DAGENAIS M, GANAPATHY V, et al. Vesicle-based secretion in schistosomes:Analysis of protein and microRNA (miRNA) content of exosome-like vesicles derived from Schistosoma mansoni[J]. Sci Rep, 2018, 8:3286.
[70] 王立辉. 日本血吸虫外泌体相关分子的初步研究[D]. 天津:天津天津农学院, 2018.
WANG L H. Studies on the functions of exosomes related molecules in Schistosoma japohicum[D]. Tianjin:Tianjin Agricultural University, 2018. (in Chinese)
[71] SIMBARI F, MCCASKILL J, COAKLEY G, et al. Plasmalogen enrichment in exosomes secreted by a nematode parasite versus those derived from its mouse host:implications for exosome stability and biology[J]. J Extracell Vesicles, 2016, 5:30741.
[72] TZELOS T, MATTHEWS J B, BUCK A H, et al. A preliminary proteomic characterisation of extracellular vesicles released by the ovine parasitic nematode, Teladorsagia circumcincta[J]. Vet Parasitol, 2016, 221:84-92.
[73] CAI P F, GOBERT G N, MCMANUS D P. MicroRNAs in parasitic helminthiases:current status and future perspectives[J]. Trends Parasitol, 2016, 32(1):71-86.
[74] FROMM B, OVCHINNIKOV V, HØYE E, et al. On the presence and immunoregulatory functions of extracellular microRNAs in the trematode Fasciola hepatica[J]. Parasite Immunol, 2017, 39(2):e12399.
[75] FROMM B, TRELIS M, HACKENBERG M, et al. The revised microRNA complement of Fasciola hepatica reveals a plethora of overlooked microRNAs and evidence for enrichment of immuno-regulatory microRNAs in extracellular vesicles[J]. Int J Parasitol, 2015, 45(11):697-702.
[76] BUCK A H, COAKLEY G, SIMBARI F, et al. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity[J]. Nat Commun, 2014, 5:5488.
[77] OFIR-BIRIN Y, ABOU KARAM P, RUDIK A, et al. Monitoring extracellular vesicle cargo active uptake by imaging flow cytometry[J]. Front Immunol, 2018, 9:1011. |