

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (12): 5998-6012.doi: 10.11843/j.issn.0366-6964.2025.12.006
王雨珊, 刘旺景*
收稿日期:2024-11-14
发布日期:2025-12-24
通讯作者:
刘旺景,主要从事反刍动物营养与畜产品品质研究,E-mail:liuwj@gsau.edu.cn
作者简介:王雨珊(2004-),女,福建长汀人,本科生,主要从事反刍动物营养与畜产品品质研究,E-mail:3249446671@qq.com
基金资助:WANG Yushan, LIU Wangjing*
Received:2024-11-14
Published:2025-12-24
摘要: 黄酮类化合物是源自天然植物的一类活性成分,具有抗氧化、抗炎、降低氧化应激、改善肠道菌群结构、保护肠黏膜、调节免疫和促进生长等药理效果。本文系统性地综述了黄酮类化合物在动物肠道健康及屏障保护中的作用,简述了其独特的物理化学特性,归纳了其在生物体内的消化、吸收及代谢途径,重点阐述了黄酮类化合物与肠道微生物的互作效应,深入剖析了黄酮类物质可通过介导肠道微生物区系,产生短链脂肪酸、胆汁酸及其受体和色氨酸等关键代谢产物来影响肠道屏障的生理功能。旨在为植物源黄酮类化合物在动物饲养与生产实践中的开发利用,尤其是幼龄动物肠道健康的研究中奠定坚实的理论基础。
中图分类号:
王雨珊, 刘旺景. 植物源性黄酮类化合物介导微生物保护肠道屏障的机制[J]. 畜牧兽医学报, 2025, 56(12): 5998-6012.
WANG Yushan, LIU Wangjing. Mechanisms of Plant-derived Flavonoids Mediating Microbial Protection of the Intestinal Barrier[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(12): 5998-6012.
| [1] BAI Y X, ZENG Z Q, XIE Z Y, et al. Effects of polysaccharides from Fuzhuan brick tea on immune function and gut microbiota of cyclophosphamide-treated mice[J]. J Nutr Biochem, 2022, 101: 108947. [2] 寇鸿千, 秦 彤, 刘 明, 等. 多酚调控动物肠道健康的作用机制及植物多酚在猪生产中的应用研究进展[J]. 动物营养学报, 2024, 36(4): 2104-2117. KOU H Q, QIN T, LIU M, et al. The mechanism of polyphenols regulating animal intestinal health and the application of plant polyphenols in pig production[J]. Chinese Journal of Animal Nutrition, 2024, 36(4): 2104-2117.(in Chinese) [3] 黄素艳, 崔柯鑫, 周德庆, 等. 植物多酚改善肠道屏障及糖脂代谢的研究进展[J]. 食品研究与开发, 2024, 45(6): 218-224. HUANG S Y, CUI K X, ZHOU D Q, et al. Plant polyphenols improve intestinal barrier and glucose and lipid metabolism: A review[J]. Food Research and Development, 2024, 45(6): 218-224.(in Chinese) [4] SHI Y, ZHONG L, FAN Y D, et al. The protective effect of Mulberry leaf flavonoids on high-carbohydrate-induced liver oxidative stress, inflammatory response and intestinal microbiota disturbance in Monopterus albus[J]. Antioxidants, 2022, 11(5): 976. [5] ZHENG S L, ZHANG H, LIU R H, et al. Do short chain fatty acids and phenolic metabolites of the gut have synergistic anti-inflammatory effects? - New insights from a TNF-α-induced Caco-2 cell model[J]. Food Res Int, 2021, 139: 109833. [6] FAIZUL H, ADEEL A M, LI M W, et al. Potential of mulberry leaf biomass and its flavonoids to improve production and health in ruminants: mechanistic insights and prospects[J]. Animals, 2020, 10(11): 2076. [7] 陈 斌, 刘 洁, 詹敏敏, 等. 黄酮类化合物与肠道菌群互作研究进展[J]. 中国食品学报, 2022, 22(6): 369-381. CHEN B, LIU J, ZHAN M M, et al. Research progress on the interaction between flavonoids and intestinal microbiota[J]. Journal of Chinese Institute of Food Science & Technology, 2022, 22(6): 369-381. (in Chinese) [8] WAHLSTRÖM A, SAYIN S I, HANNS-ULRICH M, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism[J]. Cell Metab, 2016, 24(1): 41-50. [9] 曹纬国, 刘志勤, 邵 云, 等. 黄酮类化合物药理作用的研究进展[J]. 西北植物学报, 2003, 23(12):2241-2247. CAO W G, LIU Z Q, SHAO Y, et al. A progress in pharmacological research of flavonoids[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(12):2241-2247. (in Chinese) [10] 文开新, 王成章, 严学兵, 等. 黄酮类化合物生物学活性研究进展[J]. 草业科学, 2010, 27(6):115-122. WEN K X, WANG C Z, YAN X B, et al. Research progress of flavonoids biological activity[J]. Pratacultural Science, 2010, 27(6):115-122. (in Chinese) [11] 余 芳, 金 涌. 黄酮类化合物的体内外代谢研究进展[J]. 山东化工, 2021, 50(22): 106-108,112. YU F, JIN Y. The research progress of flavonoids metabolism in vivo and in vitro[J]. Shandong Chemical Industry, 2021, 50(22): 106-108,112. (in Chinese) [12] HOSTETLER G L, RALSTON R A, SCHWARTZ S J, et al. Flavones: Food sources, bioavailability, metabolism, and bioactivity[J]. Adv Nutr,2017, 8(3): 423-435. [13] MUROTA K, NAKAMURA Y, UEHARA M, et al. Flavonoid metabolism: the interaction of metabolites and gut microbiota[J]. Bioscience, Biosci Biotechnol Biochem, 2018, 82(4): 600-610. [14] ERLUND I, KOSONEN T, ALFTHAN G, et al. Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers[J]. Eur J Clin Pharmacol, 2000, 56(8): 545-553. [15] ISLAM M A, PUNT A, SPENKELINK B, et al. Conversion of major soy isoflavone glucosides and aglycones in in vitro intestinal models[J]. Mol Nutr Food Res,2014, 58(3): 503-515. [16] 何佳珂, 于 洋, 陈西敬, 等. 黄酮类化合物的药物代谢研究进展[J]. 中国中药杂志, 2010, 35(21): 2789-2794. HE J K, YU Y, CHEN X J, et al. Research progress on drug metabolism of flavanoids[J]. China journal of Chinese Materia Medica, 2010, 35(21): 2789-2794. (in Chinese) [17] 吴 方, 陈 桂, 曹 政, 等. 糖基化黄酮类化合物与肠道菌群的相互作用影响机体健康的研究进展[J]. 中国临床新医学, 2021, 14(10): 970-975. WU F, CHEN G, CAO Z, et al. Research progress in the interaction between glycosylated flavonoids and gut microbiota for human health[J]. Chinese Journal of New Clinical Medicine, 2021, 14(10): 970-975. (in Chinese) [18] YOSHIKAZU S, SETSUKO Y, MASAYUKI T, et al. Cloning and expression of a novel NADP(H)-dependent daidzein reductase, an enzyme involved in the metabolism of daidzein, from equol-producing Lactococcus strain 20-92[J]. Appl Environ Microbiol, 2010, 76(17): 5892-5901. [19] DULANTHA U, MONTOYA C A, MACE L, et al. Biotransformation of rutin in in vitro porcine ileal and colonic fermentation models[J]. J Agric Food Chem,2023,71(33):12487-12496. [20] YANG G H, HONG S, YANG P J, et al. Discovery of an ene-reductase for initiating flavone and flavonol catabolism in gut bacteria[J]. Nat Commun, 2021, 12(1): 790-790. [21] BERGER L M, WEIN R, BLANK R, et al. Bioavailability of the flavonol quercetin in cows after intraruminal application of quercetin aglycone and rutin[J]. J Dairy Sci, 2012, 95(9): 5047-5055. [22] BERGER L M, WEIN S, BLANK R, et al. Bioavailability of the flavonol quercetin in cows after intraruminal application of quercetin aglycone and rutin[J].J Dairy Sci, 2015, 95(9): 5047-5055. [23] CUI K, GUO X D, TU Y. Effect of dietary supplementation of rutin on lactation performance, ruminal fermentation and metabolism in dairy cows[J].J Anim Physiol Anim Nutr (Berl), 2015, 99(6): 1065-1073. [24] BERGER L M, BLANK R, ZORN F, et al. Ruminal degradation of quercetin and its influence on fermentation in ruminants[J].J Dairy Sci, 2015, 98(8): 5688-5698. [25] 师少军. 肠道“药物代谢酶-外排转运体偶联”对黄酮类化合物生物利用度影响的研究进展[J]. 中国医院药学杂志, 2019, 39(20): 2107-2112. SHI S J. Recent advances in intestinal "drug-metabolizing enzyme-efflux transporter coupling" and effect on bioavailability of flavonoids[J]. Chinese Journal of Hospital Pharmacy, 2019, 39(20): 2107-2112. (in Chinese) [26] ANDREA J, JEMMIFER M, SUSAN M, et al. Absorption of quercetin-3-glucoside and quercetin-4'-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter[J]. Biochem Pharmacol, 2003, 65(7): 1199-1026. [27] MUROTA K, NAKAMURA Y, UEHARA M, et al. Flavonoid metabolism: the interaction of metabolites and gut microbiota[J]. Biosci Biotechnol Biochem, 2018, 82(4): 600-610. [28] JIA L, WU J P, LEI Y, et al. Oregano essential oils mediated intestinal microbiota and metabolites and improved growth performance and intestinal barrier function in sheep[J]. Front Immunol, 2022, 13908015-908015. [29] 闫亚美, 冯丹萍, 陈晓燕, 等. 黑果枸杞花色苷的肥胖干预作用研究进展[J]. 食品科学技术学报, 2020, 38(4): 21-26. YAN Y M, FENG D P, CHEN X Y, et al. Review of obesity intervention of anthocyanins from lycium ruthenicum murr[J]. Journal of Food Science and Technology, 2020, 38(4): 21-26. (in Chinese) [30] 王海涛, 石姗姗, 李银霞, 等. 染料木素的抑菌活性及其机制的研究[J]. 营养学报, 2008(4): 403-406,409. WANG H T, SHI S S, LI Y X, et al. Study on anti-microbial activity of genistein and its mechanism[J]. Acta Nutrimenta Sinica, 2008(4): 403-406,409. (in Chinese) [31] SZENTKUTI L, RIEDESEL H, ENSS M L, et al. Pre-epithelial mucus layer in the colon of conventional and germ-free rats[J]. Histochem J, 1990, 22(9): 491-497. [32] 方圆圆, 吴 亚, 陈彦辉, 等. 不同益生菌干预对高脂饮食诱导肥胖小鼠脂代谢及脂多糖影响的研究[J]. 中国实验诊断学, 2019, 23(4): 692-695. FANG Y Y, WU Y, CHEN Y H, et al. Influence of different probiotic on lipid metabolism and LPS of high fat diet induced obese mice[J]. Chinese Journal of Laboratory Diagnosis, 2019, 23(4): 692-695. (in Chinese) [33] JE-KYUNG R, KIM S J, SANG-HYUN R, et al. Reconstruction of LPS transfer cascade reveals structural determinants within LBP, CD14, and TLR4-MD2 for efficient LPS recognition and transfer[J]. Immunity, 2017, 46(1): 38-50. [34] 李娇娇. 异黄酮调节肠道屏障功能与蠕动功能的作用机制[D]. 南昌:南昌大学, 2021. LI J J. The mechanism of isoflavones in regulating intestinal barrier function and peristaltic function[J]. Nanchang: Nanchang University, 2021. (in Chinese) [35] ZHU L D, LU X X, LIU L, et al. Akkermansia muciniphila protects intestinal mucosa from damage caused by S. pullorum by initiating proliferation of intestinal epithelium[J]. Vet Res, 2020, 51(1): 34. [36] LIU L L, LIU Z L, LI H, et al. Naturally occurring TPE-CA maintains gut microbiota and bile acids homeostasis via FXR signaling modulation of the liver-gut axis[J]. Front Pharmacol, 2020, 11: 12. [37] LLOYD-PRICE J, ARZE C, ANANTHAKRISHNAN A N, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases[J]. Nature, 2019, 569(7758): 655-662. [38] ZWOLINSKA-WCISLO M, BRZOZOWSKI T, BUDAK A, et al. Effect of Candida colonization on human ulcerative colitis and the healing of inflammatory changes of the colon in the experimental model of colitis ulcerosa[J]. J Physiol Pharmacol, 2009, 60(1): 107-118. [39] DAVID L A, MAURICE C F, CARMODY R N, et al. Diet rapidly and reproducibly alters the human gut microbiome[J]. Nature, 2014, 505(7484): 559-563. [40] FANG T Y, WEI T, HAI X R, et al. The effects of short-chain fatty acids on rat colonic hypermotility induced by water avoidance stress[J]. Drug Des Devel Ther, 2020, 14: 4671-4684. [41] 沙珊珊, 董世荣, 杨玉菊. 肠道菌群及代谢物调控宿主肠道免疫的研究进展[J]. 生物技术通报, 2023, 39(8): 126-136. SHA S S, DONG S R, YANG Y J, et al. Research progress in gut microbiota and metabolites regulating host intestinal immunity[J]. Biotechnology Bulletin, 2023, 39(8): 126-136. (in Chinese) [42] 段钰卉. 基于“肠道菌群-SCFAs-GPR41/GPR43-GLP-1”探究桑叶总黄酮治疗2型糖尿病作用机制[D]. 北京:北京中医药大学, 2022. DUAN Y H, et al. Investigating the mechanism of mulberry leaf total flavonoids in the treatment of Type 2 diabetes via the gut microbiota-SCFAs-GPR41/GPR43-GLP-1 axis[D]. Beijing: Beijing University of Chinese Medicine, 2022. (in Chinese) [43] WU Z H, HUANG S M, LI T T, et al. Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis[J]. Microbiome, 2021, 9(1): 184-184. [44] WANG H B, WANG P Y, WANG X, et al. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription[J]. Dig Dis Sci, 2012, 57(12): 3126-3135. [45] PORRAS D, NISTAL E, FLÓREZ-MARTÍNEZ S, et al. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation[J]. Free Radic Biol Med, 2017, 102: 188-202. [46] VOLTOLINI C, BATTERSBY S, ETHERINGTON S L, et al. A novel antiinflammatory role for the short-chain fatty acids in human labor[J]. Endocrinology, 2012, 153(1): 395-403. [47] WANG W, DERNST A, MARTIN B, et al. Butyrate and propionate are microbial danger signals that activate the NLRP3 inflammasome in human macrophages upon TLR stimulation[J]. Cell Rep, 2024, 43(9): 114736. [48] CHIANG J Y L. Bile acids: regulation of synthesis[J]. J Lipid Res, 2009, 50(10): 1955-1966. [49] 王馨怡, 姚军虎, 张 霞, 等. 胆汁酸调控动物肠道健康的作用及机制研究进展[J]. 畜牧兽医学报, 2025, 56(3):1006-1018. WANG X Y, YAO J H, ZHANG X, et al. Advances in effect and mechanism of bile acids regulating animal intestinal health[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(3):1006-1018. (in Chinese) [50] DAHIYA M, JOVELJ, MONAGHAN T, et al. Insilico analysis of changes in predicted metabolic capabilities of intestinal microbiota after fecalmicrobial transplantation for treatment of recurrent Clostridioides difficile Infection [J]. Microorganisms, 2023, 11 (4): 1078. [51] DEVLIN A S, FISCHBACH M A. A biosynthetic pathway for a prominent class of microbiota-derived bileacids[J]. Nat Chem Biol, 2015, 11(9): 685-690. [52] WATANABE M, FUKIYA S, YOKOTA A. Comprehensive evaluation of the bactericidal activities of free bile acids in the large intestine of humansand rodents[J]. J Lipid Res, 2017, 58(6):1143-1152. [53] 陈思平, 韩 丽, 舒 鹏, 等. 胆汁酸膜受体TGR5在胆道疾病中的研究进展[J]. 临床肝胆病杂志, 2022, 38(3): 724-728. CHEN S P, HAN L, SHU P, et al. Research advances in the bile acid membrane receptor TGR5 in biliary tract diseases[J], Journal of Clinical Hepatology, 2022, 38(3): 724-728. (in Chinese) [54] FIORUCCI S, CARINO A, MONIA B, et al. Bile acid signaling in inflammatory bowel diseases[J]. Dig Dis Sci, 2021, 66(3): 674-693. [55] 梁开阳. 黄芪根超微粉对山羊胆汁酸代谢及机体免疫的影响[D]. 重庆:西南大学, 2022. LIANG K Y. Effects of astragalus membranaceus ultrafine particles on the bile acid metabolism and host immunity in young goats[D]. Chongqing: Southwest University, 2022.(in Chinese) [56] FORMAN B M, GOODE E, CHEN J, et al. Identification of a nuclear receptor that is activated by farnesol metabolites[J]. Cell, 1995, 81(5): 687-693. [57] GADALETA R M, GARCIA-IRIGOYEN O, CARIELLO M, et al. Fibroblast growth factor 19 modulates intestinal microbiota and inflammation in presence of farnesoid X receptor[J]. EBioMedicine, 2020, 54: 102719. [58] INAGAKI T, CHOI M, MOSCHETTA A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis[J]. Cell Metab, 2005, 2(4): 217-225. [59] MARTINEZ-AUGUSTIN O, MEDINA F S D. Intestinal bile acid physiology and pathophysiology[J]. World J Gastroenterol, 2008, 14(37): 5630-5640. [60] 陆永娟, 陈芝芸, 何蓓晖, 等. 山楂叶总黄酮对非酒精性脂肪性肝病大鼠肝脏FXR/SREBP-1c表达的影响[J]. 浙江中医杂志, 2018, 53(9): 634-637. LU Y J, CHEN Z Y, HE B H, et al. The effect of total flavonoids from hawthorn leaves on the expression of FXR/SREBP-1c in the liver of rats with non-alcoholic fatty liver disease[J]. Zhejiang Journal of Traditional Chinese Medicine, 2018, 53(9): 634-637.(in Chinese) [61] 部 繁. 黄蜀葵花总黄酮依赖FXR调节“胆汁酸-肠道菌群”稳态改善DSS诱导小鼠结肠炎[D]. 南京:南京中医药大学, 2022. BU F. Effects of total flavone of abelmoschus manihot on alleviating experimental colitis in mice by modulating “bile acid-gut microbiota” homeostasis via farnesoid X receptor-associated pathways[D]. Nanjing: Nanjing University of Chinese Medicine, 2022. (in Chinese) [62] WANG F, ZHAO C Y, TIAN G F, et al. Naringin alleviates atherosclerosis in ApoE-/- Mice by regulating cholesterol metabolism involved in gut microbiota remodeling [J]. J Agric Food Chem, 2020, 68(45): 12651-12660. [63] 刘美静. 基于FXR探讨夏佛塔苷对APAP或高脂饮食诱导肝损伤的保护作用[D]. 广州:广州中医药大学, 2019. LIU M J, The protective effect of schaftoside on liver injury induced by APAP or high fat diet through farnesoid X reporter[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2019.(in Chinese) [64] ZHANG L, MIAO C Y, WANG Z X, et al. Preparation and characterisation of baicalin magnesium and its protective effect in ulcerative colitis via gut microbiota-bile acid axis modulation[J]. J Agric Food Chem, 2024, 126155416-155416. [65] VALLIM T Q D A, TARLING E J, EDWARDS P A. Pleiotropic roles of bile acids in metabolism[J]. Cell Metab, 2013, 17(5): 657-669. [66] CIPRIANI S, MENCARELLI A, CHINI M G, et al. The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis[J]. PLoS One, 2011, 6(10): e25637. [67] YUSTA B, HOLLAND D, KOEHLER J A, et al. ErbB signaling is required for the proliferative actions of GLP-2 in the murine gut[J]. Gastroenterology, 2009, 137(3): 986-996. [68] DONG S J, ZHU M, WANG K, et al. Dihydromyricetin improves DSS-induced colitis in mice via modulation of fecal-bacteria-related bile acid metabolism[J]. Pharmacol Res, 2021,(prepublish): 105767-. [69] 于晓依, 常 畅, 陈天笑, 等. 王不留行黄酮苷改善糖尿病肾病小鼠肠道菌群紊乱和肾脏脂质沉积的研究[J]. 华西药学杂志, 2024, 39(1): 36-42. YU X Y, CHANG C, CHEN T X, et al. Study on vaccarin in improving intestinal flora disorder and renal lipid deposition in diabetes nephropathy mice[J]. West China Journal of Pharmaceutical Sciences, 2024, 39(1): 36-42.(in Chinese) [70] HALIBASIC E, CLAUDEL T, TRAUNER M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond[J]. J Hepatol 2013, 58(1): 155-168. [71] 窦 薇,张晶晶,王峥涛.基于作用靶点的中药药效物质基础与作用机理研究—几种黄酮类化合物对溃疡性结肠炎的保护作用及机制研究[C]//中国药学会中药和天然药物专业委员会,浙江省药学会.2013全国中药与天然药物高峰论坛暨第十三届全国中药和天然药物学术研讨会论文集.上海市复方中药重点实验室,上海中医药大学中药研究所;,2013:5. DOU W, ZHANG J J, WANG Z T. Research on the pharmacodynamic substance basis and mechanism of action of traditional Chinese medicine based on targets—the protective effect and mechanism of several flavonoids on ulcerative colitis[C]// Chinese Pharmaceutical Association Traditional Chinese Medicine and Natural Medicine Professional Committee, Zhejiang Pharmaceutical Association. 2013 National Summit Forum on Traditional Chinese Medicine and Natural Medicine and the 13th National Symposium on Traditional Chinese Medicine and Natural Medicine.Shanghai Key Laboratory of Compound Chinese Medicine, Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 2013:5.(in Chinese) [72] STEEGENGA W T, MISCHKE M, LUTE C, et al. Maternal exposure to a Western-style diet causes differences in intestinal microbiota composition and gene expression of suckling mouse pups[J]. Mol Nutr Food Res, 2017, 61(1): 1600141. [73] RITZE Y, BÁRDOS G, HUBERT A, et al. PP053-SUN EFFECT OF TRYPTOPHAN SUPPLEMENTATION ON DIET-INDUCED NON-ALCOHOLIC FATTY LIVER DISEASE IN MICE[J]. Clin Nutr, 2013, 32: S41-S41. [74] LIANG H W, DAI Z L, KOU J, et al. Dietary L-tryptophan supplementation enhances the intestinal mucosal barrier function in weaned piglets: implication of tryptophan-metabolizing microbiota[J]. Int J Mol Sci, 2018, 20(1): 20-20. [75] ROAGER H M, LICHT T R. Microbial tryptophan catabolites in health and disease[J]. Nature Communications, 2018, 9(1): 3294. [76] WLODARSKA M, LUO C W, KOLDE R, et al. Indoleacrylic acid produced by commensal peptostreptococcus species suppresses inflammation[J]. Cell Host Microbe, 2017, 22(1): 25-37. e6. [77] LAMAS B, NATIVIDAD J M, SOKOL H. Aryl hydrocarbon receptor and intestinal immunity[J]. Mucosal Immunol, 2018, 11(10): 1024-1038. [78] 葛晶晶. 基于肠道菌群和肝脏代谢组学研究柑橘类黄酮对非酒精性脂肪肝病的保护作用[D]. 南昌:南昌大学, 2022. GE J J. Protective effects of citrus flavonoids on non-alcohol fatty liver disease based on gut microbiota and liver metabolomics[D]. Nanchang: Nanchang University, 2022. (in Chinese) [79] 巩家慧, 孔令斌, 张 帆. 肠道微生物介导的色氨酸代谢与肠粘膜屏障研究进展[J]. 中国病原生物学杂志, 2023, 18(9): 1110-1113. GONG J H, KONG L B, ZHANG F. Research progress on intestinal microbe-mediated tryptophan metabolism and intestinal mucosal barrier[J]. Journal of Parasitic Biology,2023,18(9):1110-1113. (in Chinese) |
| [1] | 陆松翠, 郑楠, 王加启, 张养东. 短链脂肪酸检测方法研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3640-3649. |
| [2] | 张晨淼, 陈博文, 蒋林树, 童津津. 纳米技术改良黄酮类化合物在动物健康养殖中的应用潜力[J]. 畜牧兽医学报, 2025, 56(7): 3107-3115. |
| [3] | 潘华, 孙磊, 张军, 刘莉莉, 马文刚, 曹爱智, 吕明斌. 胆汁酸抑菌机制及结构改性的研究进展[J]. 畜牧兽医学报, 2025, 56(6): 2546-2554. |
| [4] | 刘子龙, 李乔, 吴怡, 王慧慧, 李讨讨, 马友记. 肝转录组揭示中草药饲料添加剂可能影响湖羊肝组织胆汁酸代谢和免疫功能[J]. 畜牧兽医学报, 2025, 56(6): 3014-3026. |
| [5] | 宋琳, 赵小伟, 齐英杰, 张养东. 短链脂肪酸对奶牛瘤胃微生物菌群的影响研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2082-2092. |
| [6] | 王卓, 赵雨薇, 屠焰, 刁其玉, 崔凯. β-防御素的生物学特性及其在调控动物肠道屏障中的研究进展[J]. 畜牧兽医学报, 2025, 56(3): 995-1005. |
| [7] | 王馨怡, 姚军虎, 张霞, 张俊. 胆汁酸调控动物肠道健康的作用及机制研究进展[J]. 畜牧兽医学报, 2025, 56(3): 1006-1018. |
| [8] | 张萱, 杨雪, 李新科, 郑楠, 孟璐. 丁酸钠对幼鼠回肠发育、炎症因子及物理屏障功能的调控作用[J]. 畜牧兽医学报, 2025, 56(3): 1278-1289. |
| [9] | 赵雨薇, 王卓, 张城瑞, 屠焰, 刁其玉, 崔凯*. 儿茶素类物质调控动物肠道屏障功能的机制研究及应用进展[J]. 畜牧兽医学报, 2025, 56(12): 6013-6024. |
| [10] | 张鹤馨, 曲悠扬, 陈若瑄, 何欢, 唐琦超, 尹柏双, 王奔, 冯秀晶*. 绿原酸通过抑制NF-κB/NLRP3通路介导的细胞焦亡改善慢性应激致大鼠肠道损伤[J]. 畜牧兽医学报, 2025, 56(12): 6502-6512. |
| [11] | 白慧涛, 孙健, 解伟纯, 王雪莹, 王晓娜, 唐丽杰. 粪菌移植改善仔猪断奶早期肠道屏障功能的作用机制研究进展[J]. 畜牧兽医学报, 2025, 56(11): 5379-5388. |
| [12] | 李新科, 杨雪, 张萱, 孟璐, 张养东, 王加启, 郑楠. 短链脂肪酸对新生幼鼠肝脑发育及免疫功能的影响[J]. 畜牧兽医学报, 2025, 56(11): 5588-5599. |
| [13] | 王睿嘉, 郭世娇, 刘泽政, 石靖雯, 赵熠然, 张华, 王建舫. 超高效液相色谱-质谱技术解析比格犬肝切除围手术期血清代谢组学变化[J]. 畜牧兽医学报, 2025, 56(10): 5302-5314. |
| [14] | 韩福珍, 蔡李萌, 李卓然, 王雪莹, 解伟纯, 匡虹迪, 李佳璇, 崔文, 姜艳平, 李一经, 单智夫, 唐丽杰. 肠道菌群介导次级胆汁酸及其受体调节肠黏膜免疫机制的研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1904-1913. |
| [15] | 谢旖, 邹郦睿, 陶冉, 刘莎, 王江萍, 文利新, 邬静, 王吉. 单宁酸对低剂量T-2毒素诱导小鼠结肠黏膜损伤与菌群失调的保护效应[J]. 畜牧兽医学报, 2023, 54(8): 3582-3594. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||