

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (10): 5302-5314.doi: 10.11843/j.issn.0366-6964.2025.10.048
王睿嘉1(
), 郭世娇2, 刘泽政1, 石靖雯1, 赵熠然1, 张华1,*(
), 王建舫3,*(
)
收稿日期:2024-10-11
出版日期:2025-10-23
发布日期:2025-11-01
通讯作者:
张华,王建舫
E-mail:15031889192@163.com;huazhang0914@163.com;wjfhlx@126.com
作者简介:王睿嘉(2002-),女,河北唐山人,硕士生,主要从事动物临床疾病诊断与防治研究,E-mail: 15031889192@163.com
基金资助:
WANG Ruijia1(
), GUO Shijiao2, LIU Zezheng1, SHI Jingwen1, ZHAO Yiran1, ZHANG Hua1,*(
), WANG Jianfang3,*(
)
Received:2024-10-11
Online:2025-10-23
Published:2025-11-01
Contact:
ZHANG Hua, WANG Jianfang
E-mail:15031889192@163.com;huazhang0914@163.com;wjfhlx@126.com
摘要:
本试验旨在分析比格犬腹腔镜肝叶切除术围手术期血清代谢组的变化情况,并探讨其代谢变化的机制。试验选取8只健康年龄、体重相近的比格犬建立肝叶切除模型,在术前、术后7 d和术后14 d采集血清样本,应用超高效液相色谱-四极杆飞行时间质谱联用技术(UHPLC-QTOFMS)检测围手术期血清代谢物的变化情况。结果表明:主成分分析(PCA)结果显示,术后7 d与术前表现出明显的分离趋势,组间差异较大,说明术后7 d和术前血清中的代谢物存在显著性差异;术后14 d与术前血清样品之间有重叠,表明具有相似的化合物,说明术后14 d逐渐恢复术前状态。正交偏最小二乘法-判别分析(OPLS-DA)得分图及模型验证表明,所建的模型具有较好的解释能力和预测能力,不存在过拟合现象。根据OPLS-DA模型第一主成分的变量重要性投影(VIP)>1,t检验P值(P-value)<0.05筛选出差异代谢物。与术前相比,术后7 d共有35个差异代谢物,有13个代谢物下调,22个代谢物上调,其中L-苯丙氨酸参与了苯丙氨酸,酪氨酸和色氨酸生物合成、苯丙氨酸代谢、氨酰tRNA生物合成三个代谢过程,3a, 7a-二羟基-5b-胆固醇参与了初级胆汁酸生物合成的代谢;术后14 d共有42个差异代谢物,有19个代谢物下调,23个代谢物上调,其中1-甲基烟酰胺和烟酰胺参与了烟酸和烟酰胺的代谢。与术后7 d相比,术后14 d发生变化的代谢物较少。京都基因与基因组百科全书(KEGG)代谢通路富集结果显示,与术前相比,术后7 d的差异代谢物显著富集在苯丙氨酸、酪氨酸和色氨酸的生物合成、初级胆汁酸生物合成的代谢通路;术后14 d的差异代谢物显著富集在烟酸和烟酰胺代谢通路。腹腔镜肝叶切除术可引起血清中多种代谢物发生显著变化,苯丙氨酸、酪氨酸和色氨酸的生物合成、初级胆汁酸生物合成对肝损伤的代谢机制具有关键影响,烟酸和烟酰胺的代谢途径在肝恢复过程中起重要作用。
中图分类号:
王睿嘉, 郭世娇, 刘泽政, 石靖雯, 赵熠然, 张华, 王建舫. 超高效液相色谱-质谱技术解析比格犬肝切除围手术期血清代谢组学变化[J]. 畜牧兽医学报, 2025, 56(10): 5302-5314.
WANG Ruijia, GUO Shijiao, LIU Zezheng, SHI Jingwen, ZHAO Yiran, ZHANG Hua, WANG Jianfang. Resolution of Serum Metabolomic Changes during the Perioperative Phase of Hepatectomy in Beagle Dogs Using Ultra-high Performance Liquid Chromatography-mass Spectrometry[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(10): 5302-5314.
表 1
Mod 7和Mod 0的差异代谢物"
| 序号 Number | 代谢物 Metabolite | 质荷比 m/z | 保留时间/min Rt | 变量投影重要度 VIP | P值 P-value | 差异倍数 FC | 趋势 Trend |
| 1 | Morpholine | 88.08 | 206.43 | 2.28 | 0.009 | 0.21 | ↓ |
| 2 | 4-Amino-2-methyl-1-naphthol | 174.09 | 25.44 | 1.86 | 0.010 | 0.58 | ↓ |
| 3 | LysoPE(0:0/18:0) | 482.32 | 222.27 | 1.83 | 0.006 | 0.66 | ↓ |
| 4 | PS(20:5(5Z,8Z,11Z,14Z,17Z)/18:3(6Z,9Z,12Z)) | 804.49 | 240.65 | 2.38 | 0.004 | 0.45 | ↓ |
| 5 | Citronellyl beta-sophoroside | 481.26 | 85.24 | 2.10 | 0.004 | 3.01 | ↑ |
| 6 | L-Phenylalanine | 166.09 | 278.43 | 2.19 | 0.006 | 1.28 | ↑ |
| 7 | 3-Methylhistidine | 170.09 | 395.83 | 2.01 | 0.006 | 1.67 | ↑ |
| 8 | PC(16:0/16:0) | 734.57 | 168.80 | 2.01 | 0.003 | 1.24 | ↑ |
| 9 | 3a,7a-Dihydroxy-5b-cholestane | 405.37 | 23.66 | 2.38 | < 0.001 | 2.77 | ↑ |
| 10 | PC(18:1(9Z)/P-18:1(11Z)) | 770.60 | 160.83 | 1.87 | 0.009 | 1.25 | ↑ |
| 11 | PC(18:2(9Z,12Z)/P-18:1(11Z)) | 768.59 | 159.90 | 2.21 | < 0.001 | 1.34 | ↑ |
| 12 | PC(22:4(7Z,10Z,13Z,16Z)/P-18:0) | 822.63 | 156.30 | 1.90 | 0.006 | 1.27 | ↑ |
| 13 | Isopentyl mercaptan | 105.07 | 318.89 | 1.92 | 0.009 | 2.09 | ↑ |
| 14 | PE(P-18:1(11Z)/18:3(6Z,9Z,12Z)) | 724.53 | 158.11 | 1.81 | 0.004 | 1.48 | ↑ |
| 15 | Kanzonol I | 437.23 | 79.44 | 2.15 | 0.041 | 2.31 | ↑ |
| 16 | 8-Butanoylneosolaniol | 453.21 | 79.36 | 2.16 | 0.038 | 2.36 | ↑ |
| 17 | Tetrahydroaldosterone-3-glucuronide | 541.26 | 93.86 | 2.18 | 0.037 | 2.46 | ↑ |
| 18 | 3-Methylcytosine | 126.07 | 214.23 | 1.76 | 0.019 | 2.02 | ↑ |
| 19 | N-Hexadecanoylpyrrolidine | 310.31 | 222.28 | 1.30 | 0.033 | 0.62 | ↓ |
| 20 | Proline betaine | 144.10 | 291.25 | 1.53 | 0.044 | 0.61 | ↓ |
| 21 | beta-Elemenone | 219.17 | 33.32 | 2.17 | 0.019 | 0.04 | ↓ |
| 22 | 3-Aminobutanoic acid | 104.07 | 318.91 | 1.81 | 0.017 | 1.63 | ↑ |
| 23 | beta-Sinensal | 219.17 | 191.40 | 1.73 | 0.017 | 0.41 | ↓ |
| 24 | Pyro-L-glutaminyl-L-glutamine | 258.11 | 186.23 | 1.89 | 0.022 | 1.51 | ↑ |
| 25 | Heptadecanoyl carnitine | 414.36 | 197.84 | 1.88 | 0.023 | 0.56 | ↓ |
| 26 | Erythrabyssin Ⅱ | 393.21 | 74.16 | 2.15 | 0.042 | 2.31 | ↑ |
| 27 | Threoninyl-Proline | 217.12 | 411.72 | 1.89 | 0.013 | 1.60 | ↑ |
| 28 | 2-Oxoarginine | 174.09 | 346.99 | 1.46 | 0.045 | 0.64 | ↓ |
| 29 | N-Nitroso-pyrrolidine | 101.07 | 304.11 | 1.56 | 0.033 | 0.86 | ↓ |
| 30 | Isosalsolidine | 204.10 | 24.52 | 1.86 | 0.021 | 0.49 | ↓ |
| 31 | 1-Deoxy-D-glucitol | 167.09 | 126.89 | 1.47 | 0.042 | 1.79 | ↑ |
| 32 | PC(18:1(9Z)/P-16:0) | 744.59 | 38.72 | 1.43 | 0.032 | 1.24 | ↑ |
| 33 | PC(15:0/15:0) | 706.54 | 170.56 | 1.78 | 0.022 | 1.35 | ↑ |
| 34 | PC(18:0/P-16:0) | 746.60 | 38.71 | 1.49 | 0.025 | 1.38 | ↑ |
| 35 | beta-Solamarine | 868.51 | 150.90 | 2.01 | 0.010 | 0.44 | ↓ |
表 2
Mod 14和Mod 0的差异代谢物"
| 序号 Number | 代谢物 Metabolite | 质荷比 m/z | 保留时间/min Rt | 变量投影重要度 VIP | P值 P-value | 差异倍数 FC | 趋势 Trend |
| 1 | 4-Amino-2-methyl-1-naphthol | 174.09 | 25.44 | 2.28 | 0.002 | 0.44 | ↓ |
| 2 | beta-Sinensal | 219.17 | 191.40 | 2.45 | 0.005 | 0.26 | ↓ |
| 3 | 2,3,4,5,6,7-Hexahydro-7-methylcyclopent[b]azepin-8(1H)-one | 166.12 | 33.41 | 2.47 | < 0.001 | 0.25 | ↓ |
| 4 | L-Octanoylcarnitine | 288.22 | 228.77 | 2.10 | 0.004 | 0.64 | ↓ |
| 5 | LysoPE(0:0/18:0) | 482.32 | 222.27 | 1.80 | 0.01 | 0.65 | ↓ |
| 6 | beta-Solamarine | 868.51 | 150.90 | 1.38 | 0.006 | 0.37 | ↓ |
| 7 | PS(20:5(5Z,8Z,11Z,14Z,17Z)/18:3(6Z,9Z,12Z)) | 804.49 | 240.65 | 1.41 | 0.001 | 0.35 | ↓ |
| 8 | 1-Methylnicotinamide | 137.07 | 310.52 | 2.41 | 0.001 | 2.47 | ↑ |
| 9 | 1H-Indole-3-carboxaldehyde | 146.06 | 48.34 | 2.52 | < 0.001 | 1.44 | ↑ |
| 10 | Isovalerylglucuronide | 279.11 | 325.39 | 2.44 | 0.002 | 1.29 | ↑ |
| 11 | PC(18:2(9Z,12Z)/P-18:1(11Z)) | 768.59 | 159.90 | 2.08 | 0.003 | 1.27 | ↑ |
| 12 | PC(22:4(7Z,10Z,13Z,16Z)/P-18:0) | 822.63 | 156.30 | 2.11 | 0.001 | 1.26 | ↑ |
| 13 | SM(d18:1/20:0) | 759.63 | 202.42 | 2.09 | 0.004 | 1.33 | ↑ |
| 14 | Niacinamide | 123.06 | 59.76 | 1.73 | 0.049 | 2.24 | ↑ |
| 15 | Morpholine | 88.08 | 206.43 | 1.76 | 0.025 | 0.37 | ↓ |
| 16 | 1,2,3,4-Tetrahydro-2-methyl-b-carboline | 187.12 | 37.84 | 1.65 | 0.044 | 0.50 | ↓ |
| 17 | Riboflavin | 377.15 | 235.12 | 2.06 | 0.019 | 1.48 | ↑ |
| 18 | N-Hexadecanoylpyrrolidine | 310.31 | 222.28 | 1.13 | 0.034 | 0.61 | ↓ |
| 19 | 5′-Methylthioadenosine | 298.10 | 90.37 | 1.57 | 0.047 | 1.59 | ↑ |
| 20 | beta-Elemenone | 219.17 | 33.32 | 1.86 | 0.028 | 0.13 | ↓ |
| 21 | 3-Aminobutanoic acid | 104.07 | 318.91 | 1.72 | 0.040 | 1.58 | ↑ |
| 22 | LysoPE(16:0/0:0) | 454.29 | 225.98 | 1.31 | 0.044 | 0.64 | ↓ |
| 23 | L-Arginine | 175.12 | 524.12 | 2.02 | 0.020 | 1.20 | ↑ |
| 24 | 1,7-Dimethylguanosine | 312.13 | 209.71 | 2.04 | 0.012 | 1.46 | ↑ |
| 25 | PC(16:0/16:0) | 734.57 | 168.80 | 1.92 | 0.012 | 1.18 | ↑ |
| 26 | apo-[3-methylcrotonoyl-CoA:carbon-dioxide ligase(ADP-forming)] | 174.12 | 333.85 | 2.30 | 0.037 | 0.29 | ↓ |
| 27 | Heptadecanoyl carnitine | 414.36 | 197.84 | 1.60 | 0.031 | 0.69 | ↓ |
| 28 | Lactosylceramide (d18:1/16:0) | 862.62 | 210.26 | 1.60 | 0.031 | 1.73 | ↑ |
| 29 | PC(18:1(9Z)/P-18:1(11Z)) | 770.60 | 160.83 | 1.73 | 0.023 | 1.17 | ↑ |
| 30 | Threoninyl-Proline | 217.12 | 411.72 | 2.25 | 0.036 | 1.89 | ↑ |
| 31 | SM(d18:1/24:1(15Z)) | 813.68 | 213.63 | 1.51 | 0.041 | 1.35 | ↑ |
| 32 | 2-Oxoarginine | 174.09 | 346.99 | 2.03 | 0.021 | 0.57 | ↓ |
| 33 | 5-Hydroxy-L-tryptophan | 221.09 | 50.83 | 2.05 | 0.011 | 1.66 | ↑ |
| 34 | Glycerol tributanoate | 303.18 | 123.10 | 1.10 | 0.045 | 3.52 | ↑ |
| 35 | Isosalsolidine | 204.10 | 24.52 | 1.47 | 0.030 | 0.52 | ↓ |
| 36 | Na, Na-Dimethylhistamine | 140.12 | 225.01 | 1.58 | 0.036 | 1.27 | ↑ |
| 37 | SM(d18:1/22:0) | 787.67 | 200.92 | 1.75 | 0.020 | 1.38 | ↑ |
| 38 | PC(18:2(9Z,12Z)/18:0) | 786.60 | 38.71 | 1.49 | 0.040 | 0.80 | ↓ |
| 39 | Isoleucyl-Histidine | 269.16 | 301.39 | 1.80 | 0.019 | 1.60 | ↑ |
| 40 | PC(20:3(8Z,11Z,14Z)/14:0) | 756.55 | 60.08 | 1.88 | 0.042 | 0.63 | ↓ |
| 41 | PC(18:3(6Z,9Z,12Z)/18:0) | 784.58 | 58.81 | 1.53 | 0.036 | 0.71 | ↓ |
| 42 | Isopentyl mercaptan | 105.07 | 318.89 | 1.77 | 0.041 | 1.88 | ↑ |
表 3
Mod 14和Mod 7的差异代谢产物"
| 序号 Number | 代谢物 Metabolite | 质荷比 m/z | 保留时间/min Rt | 变量投影重要度 VIP | P值 P-value | 差异倍数 FC | 趋势 Trend |
| 1 | Thiomorpholine 3-carboxylate | 148.04 | 386.38 | 2.35 | 0.006 | 0.68 | ↓ |
| 2 | Cytarabine | 244.09 | 258.20 | 2.39 | 0.010 | 1.53 | ↑ |
| 3 | SM(d17:1/24:1(15Z)) | 799.67 | 213.31 | 2.69 | 0.009 | 1.57 | ↑ |
| 4 | Kanzonol I | 437.23 | 79.44 | 1.66 | 0.042 | 0.58 | ↓ |
| 5 | Citronellyl beta-sophoroside | 481.26 | 85.24 | 1.69 | 0.040 | 0.55 | ↓ |
| 6 | Niacinamide | 123.06 | 59.76 | 2.20 | 0.035 | 2.49 | ↑ |
| 7 | Proline betaine | 144.10 | 291.25 | 2.33 | 0.036 | 2.22 | ↑ |
| 8 | Phytosphingosine | 318.30 | 40.46 | 2.21 | 0.021 | 0.00 | ↓ |
| 9 | 2,3,4,5,6,7-Hexahydro-7-methylcyclopent[b]azepin-8(1H)-one | 166.12 | 33.41 | 1.77 | 0.026 | 0.42 | ↓ |
| 10 | Ethylbenzene | 107.09 | 33.43 | 1.54 | 0.031 | 0.64 | ↓ |
| 11 | alpha-Methylstyrene | 119.09 | 33.37 | 2.17 | 0.030 | 0.15 | ↓ |
| 12 | Lycoperoside D | 740.46 | 140.02 | 1.27 | 0.047 | 0.70 | ↓ |
| 13 | 3-[(Cyanophenylmethyl)amino]-3-oxopropanoic acid | 219.08 | 213.35 | 2.26 | 0.014 | 1.36 | ↑ |
| 14 | PC(18:2(9Z,12Z)/18:0) | 786.60 | 38.71 | 2.41 | 0.011 | 0.76 | ↓ |
| 15 | Imidazole-4-acetaldehyde | 111.07 | 239.32 | 1.33 | 0.036 | 1.67 | ↑ |
| 16 | L-Isoleucine | 132.10 | 4.91 | 2.04 | 0.028 | 2.49 | ↑ |
| 1 | CHEBIB F T , HARMON A , IRAZABAL MIRA M V , et al. Outcomes and durability of hepatic reduction after combined partial hepatectomy and cyst fenestration for massive polycystic liver disease[J]. J Am Coll Surg, 2016, 223 (1): 118- 126. |
| 2 | GUGLIELMO N , MELANDRO F , IMPROTA L , et al. Early right hepatectomy for severe liver trauma: A case report[J]. Clin Ter, 2015, 166 (2): e108- e110. |
| 3 | JABŁOŃKA B . Hepatectomy for bile duct injuries: When is it necessary?[J]. World J Gastroenterol, 2013, 19 (38): 6348- 6352. |
| 4 | 蔡秀军, 张斌, 陈鸣宇, 等. 我国腹腔镜肝切除术近10年进展与发展趋势[J]. 中国实用外科杂志, 2022, 42 (9): 961- 964. |
| CAI X J , ZHANG B , CHEN M Y , et al. Laparoscopic hepatectomy: progress in the last decade and evolving trends[J]. Chinese Journal of Practical Surgery, 2022, 42 (9): 961- 964. | |
| 5 | DEBBAUT C , DE WILDE D , CASTELEYN C , et al. Modeling the impact of partial hepatectomy on the hepatic hemodynamics using a rat model[J]. IEEE Trans Biomed Eng, 2012, 59 (12): 3293- 3303. |
| 6 | SHIMADA M , KAWAGUCHI M , ISHIKAWA N , et al. Saline-filled laparoscopic surgery: A basic study on partial hepatectomy in a rabbit model[J]. Minim Invasive Ther Allied Technol, 2015, 24 (4): 218- 225. |
| 7 | HAMMOND J S , GODTLIEBSEN F , STEIGEN S , et al. The effects of terlipressin and direct portacaval shunting on liver hemodynamics following 80% hepatectomy in the pig[J]. Clin Sci, 2019, 133 (1): 153- 166. |
| 8 | ZHANG J H , ZHANG P F , CAO J L . Safety and efficacy of precision hepatectomy in the treatment of primary liver cancer[J]. BMC Surg, 2023, 23 (1): 241. |
| 9 | STEEN S , CONWAY C , GUERRA C , et al. 90% hepatectomy with a porto-hepatic shunt in a canine model: A feasibility study[J]. ILAR J, 2012, 53 (1): E1- E8. |
| 10 | SAHAY P , JAIN K , SINHA P , et al. Generation of a rat model of acute liver failure by combining 70% partial hepatectomy and acetaminophen[J]. J Vis Exp, 2019 (153): 10. |
| 11 | SÁNCHEZ-HIDALGO J M , NARANJO A , CIRIA R , et al. Impact of age on liver regeneration response to injury after partial hepatectomy in a rat model[J]. J Surg Res, 2012, 175 (1): e1- e9. |
| 12 | ZHANG H , LIU T , WANG Y , et al. Laparoscopic left hepatectomy in swine: A safe and feasible technique[J]. J Vet Sci, 2014, 15 (3): 417- 422. |
| 13 | KWON Y S , JANG K H , JANG I H . The effects of Korean red ginseng (ginseng radix rubra) on liver regeneration after partial hepatectomy in dogs[J]. J Vet Sci, 2003, 4 (1): 83- 92. |
| 14 | 张肇南. 比格犬腹腔镜左肝叶切除模型的建立及术后肠道菌群变化的研究[D]. 北京: 北京农学院, 2020. |
| ZHANG Z N. Establishment of laparoscopic model of left hepatic lobe resection in beagle dogs and study of intestinal flora[D]. Beijing: Beijing University of Agriculture, 2020. (in Chinese) | |
| 15 | 马丽娜, 李蕾蕾, 康晓冬, 等. 饲粮蛋白质水平对哺乳期犊牛生长性能、血清生化、免疫和抗氧化指标以及血清代谢物的影响[J]. 动物营养学报, 2024, 36 (9): 5776- 5792. |
| MA L N , LI L L , KANG X D , et al. Effect of dietary protein level on growth performance, serum biochemical, immune and Antioxidant Indices and serum metabolites of lactating calves[J]. Chinese Journal of Animal Nutrition, 2024, 36 (9): 5776- 5792. | |
| 16 | SUN H Z , WANG D M , WANG B , et al. Metabolomics of four biofluids from dairy cows: potential biomarkers for milk production and quality[J]. J Proteome Res, 2015, 14 (2): 1287- 1298. |
| 17 | ZHU C , ZHANG Q , ZHAO X , et al. Metabolomic analysis of multiple biological specimens (feces, serum, and urine) by 1H-NMR spectroscopy from dairy cows with clinical mastitis[J]. Animals(Basel), 2023, 13 (4): 741. |
| 18 | JOHNZON C F , DAHLBERG J , GUSTAFSON A M , et al. The effect of lipopolysaccharide-induced experimental bovine mastitis on clinical parameters, inflammatory markers, and the metabolome: A kinetic approach[J]. Front Immunol, 2018, 9, 1487. |
| 19 | 郭延生, 贾启鹏, 陶金忠. 基于GC-MS策略的奶牛热应激血液代谢组学研究[J]. 畜牧兽医学报, 2015, 46 (8): 1356- 1362. |
| GUO Y S , JIA Q P , TAO J Z . Blood metabolomics of dairy cows under heat stress based on GC-MS strategy[J]. Acta Veterinaria et Zootechnica Sinica, 2015, 46 (8): 1356- 1362. | |
| 20 | 刘杰, 郭荣, 张娟, 等. 能量与蛋白质水平对静原鸡生长性能、屠宰性能、血液生化指标及代谢组的影响[J]. 西南农业学报, 2024, 37 (3): 664- 677. |
| LIU J , GUO R , ZHANG J , et al. Effect of energy and protein levels on growth performance, slaughter performance, blood biochemical indexes and metabolome of the chickens[J]. Southwest China Journal of Agricultural Sciences, 2024, 37 (3): 664- 677. | |
| 21 | ZHANG H , WANG J , CAO Y , et al. Laparoscopic left hemihepatectomy in small dogs: An easy and effective new technique[J]. Acta Vet Brno, 2021, 89 (4): 367- 373. |
| 22 | 孙亚新. 基于代谢组学技术的二甲双脈对双酚A诱导大鼠肝损伤的保护作用机制研究[D]. 郑州: 郑州大学, 2020. |
| SUN Y X. Study on the protective mechanism of double vein on rats based on metabolomics technology[D]. Zhengzhou: Zhengzhou University, 2020. (in Chinese) | |
| 23 | 王清平. 苯丙氨酸代谢失调与疾病[J]. 国外医学(生理、病理科学与临床分册), 2001, 21 (6): 451- 453. |
| WANG Q P . Dysregulation of phenylalanine metabolism and disease[J]. Foreign medicine (Physiology, Pathology Science and Clinical Division), 2001, 21 (6): 451- 453. | |
| 24 | VAN GINKEL W G , GOUW A S , VAN DER JAGT E J , et al. Hepatocellular carcinoma in tyrosinemia type 1 without clear increase of AFP[J]. Pediatrics, 2015, 135 (3): e749- e752. |
| 25 | 孙玉然. 基于多组学技术的茵陈蒿汤体内主要成分6,7-二甲氧基香豆素干预酒精性肝损伤的机制[D]. 哈尔滨: 黑龙江中医药大学, 2024. |
| SUN Y R. The mechanism of 6,7-dimethoxycoumarin, a main component in the soup, based on multi-omics technology[D]. Harbin: Heilongjiang University of Traditional Chinese Medicine, 2024. (in Chinese) | |
| 26 | LU Y , SHAO M , XIANG H , et al. Integrative transcriptomics and metabolomics explore the mechanism of kaempferol on improving nonalcoholic steatohepatitis[J]. Food Funct, 2020, 11 (11): 10058- 10069. |
| 27 | 李木子, 张豫川, 阿依木古丽·阿不都热依木, 等. 色氨酸及其代谢物对细胞增殖的影响[J]. 中国细胞生物学学报, 2023, 45 (07): 1104- 1115. |
| LI M Z , ZHANG Y C , AYIMUGULI A , et al. Effects of tryptophan and its metabolites on cell proliferation[J]. Chinese Journal of Cell Biology, 2023, 45 (07): 1104- 1115. | |
| 28 | DU L , LI S , QI L , et al. Metabonomic analysis of the joint toxic action of long-term low-level exposure to a mixture of four organophosphate pesticides in rat plasma[J]. Mol Biosyst, 2014, 10 (5): 1153- 1161. |
| 29 | AN Z , LI C , LV Y , et al. Metabolomics of hydrazine-Induced hepatotoxicity in rats for discovering potential biomarkers[J]. Dis Markers, 2018, 2018 (1): 8473161. |
| 30 | CIAULA A D , GARRUTI G , BACCETTO R L , et al. Bile acid physiology[J]. Annals of hepatology, 2018, 16 (1): 4- 14. |
| 31 | JIAO N , BAKER S S , CHAPA-RODRIGUEZ A , et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD[J]. Gut, 2018, 67 (10): 1881- 1891. |
| 32 | 王朋, 林森, 吴德, 等. 胆汁酸的营养生理作用及代谢调控研究进展[J]. 动物营养学报, 2019, 31 (5): 2002- 2011. |
| WANG P , LIN S , WU D , et al. Recent progress in nutrition physiology role and metabolism regulation of bile acids[J]. Chinese Journal of Animal Nutrition, 2019, 31 (5): 2002- 2011. | |
| 33 | WANG Y F , GUNEWARDENA S , LI F , et al. An FGF15/19-TFEB regulatory loop controls hepatic cholesterol and bile acid homeostasis[J]. Nat Commun, 2020, 11 (1): 3612. |
| 34 | LI T , CHIANG J Y . Bile acid signaling in metabolic disease and drug therapy[J]. Pharmacol Rev, 2014, 66 (4): 948- 983. |
| 35 | WU Y , AQUINO C J , COWAN D J , et al. Discovery of a highly potent, nonabsorbable apical sodium-dependent bile acid transporter inhibitor (GSK2330672) for treatment of type 2 diabetes[J]. J Med Chem, 2013, 56 (12): 5094- 5114. |
| 36 | WANG Y , DING Y , LI J , et al. Targeting the enterohepatic bile acid signaling induces hepatic autophagy via a CYP7A1-AKT-mTOR axis in mice[J]. Cell Mol Gastroenterol Hepatol, 2016, 3 (2): 245- 260. |
| 37 | IBRAHIM S , DAYOUB R , SABERI V , et al. Augmenter of Liver Regeneration (ALR) regulates bile acid synthesis and attenuates bile acid-induced apoptosis via glycogen synthase kinase-3β (GSK-3β) inhibition[J]. Exp Cell Res, 2020, 397 (1): 112343. |
| 38 | RAO A , KOSTERS A , MELLS J E , et al. Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat diet-fed mice[J]. Sci Transl Med, 2016, 8 (357): 357ra122. |
| 39 | MA C , HAN M , HEINRICH B , et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells[J]. Science, 2018, 360 (6391): eaan5931. |
| 40 | 蒲春香, 李金龙, 龚大春, 等. 维生素生物合成途径中酶的代谢与功能的探索[J]. 生物工程学报, 2024, 40 (8): 2570- 2603. |
| PU C X , LI J L , GONG D C , et al. Enzyme metabolism and functions in vitamin biosynthesis pathways[J]. Chinese Journal of Biotechnology, 2024, 40 (8): 2570- 2603. | |
| 41 | STROMSDORFER K L , YAMAGUCHI S , YOON M J , et al. NAMPT-Mediated NAD+ biosynthesis in adipocytes regulates adipose tissue function and multi-organInsulin sensitivity in mice[J]. Cell Rep, 2016, 16 (7): 1851- 1860. |
| 42 | CATON P W , KIESWICH J , YAQOOB M M , et al. Nicotinamide mononucleotide protectsagainst pro-inflammatory cytokine-mediated impairment of mouse isletfunction[J]. Diabetologia, 2011, 54 (12): 3083- 3092. |
| 43 | FAN Y , XUE M , SHAN T , et al. Niacin alleviates extracellular matrix deposition in ethanol+CCl4-induced liver fibrosis through the HSP90/JAK1/STAT3 axis[J]. Food Biosci, 2024, 57, 103454. |
| 44 | ZEMAN M , VECKA M , PERLÍK F , et al. Pleiotropic effects of niacin: current possibilities for its clinical use[J]. Acta Pharm, 2016, 66 (4): 449- 469. |
| 45 | WAN H F , LI J X , LIAO H T , et al. Nicotinamide induces liver regeneration and improves liver function by activating SIRT1[J]. Mol Med Rep, 2019, 19 (1): 555- 562. |
| 46 | TUMMALA K S , GOMES A L , YILMAZ M , et al. Inhibition of de novo NAD+ synthesis by oncogenic URI causes liver tumorigenesis through DNA damage[J]. Cancer cell, 2014, 26 (6): 826- 839. |
| 47 | MA Y , BAO Y , WANG S , et al. Anti-inflammation effects and potential mechanism of saikosaponins by regulating nicotinate and nicotinamide metabolism and arachidonic acid metabolism[J]. Inflammation, 2016, 39 (4): 1453- 1461. |
| 48 | 孙湛博. 原发性肝癌患者肝动脉化疗栓塞术前术后肠道菌群分析及烟酰胺单核苷酸(NMN)在肝癌中的作用及机制研究[D]. 沈阳: 中国医科大学, 2022. |
| SUN Z B. Analysis of the intestinal microbiota before and after hepatic artery chemoembolization in primary liver cancer patients and study on the role and mechanism of nicotinamide mononucleotide (NMN) in liver cancer[D]. Shenyang: China Medical University, 2022. (in Chinese) |
| [1] | 郑浩, 罗芳, 宋承磊, 陶金忠. 基于代谢组学技术筛选人工授精后未妊娠奶牛血浆潜在生物标志物的研究[J]. 畜牧兽医学报, 2025, 56(7): 3252-3264. |
| [2] | 孟祥旭, 李佳, 任德明, 陈奎蓉, 和艺云, 王立贤, 盛熙晖, 王立刚. 民猪猪繁殖与呼吸综合征恢复力高低组血清代谢组学研究[J]. 畜牧兽医学报, 2025, 56(4): 1689-1699. |
| [3] | 王昕昕, 刘小英, 王宜, 王芳, 赵晗, 杜志强, 杨彩侠. 急性热应激通过降低牛磺酸水平影响猪睾丸支持细胞的功能[J]. 畜牧兽医学报, 2025, 56(4): 1779-1790. |
| [4] | 高志苗, 倪海花, 王彦平, 赵雪艳, 李菁璇, 王继英, 张勤. 代谢组学应用于猪重要经济性状遗传解析[J]. 畜牧兽医学报, 2025, 56(10): 4787-4795. |
| [5] | 翁梓媛, 岑婷, 马也, 郑恩沛, 吴璇, 冷军, 王祖忠, 王媛媛, 叶子颖, 李敏虹, 胡长敏. 一款猫泌尿道处方罐功效评价及其尿液代谢组学分析[J]. 畜牧兽医学报, 2025, 56(10): 5289-5301. |
| [6] | 王中波, 刘爽, 贺丽霞, 冯雪, 杨梦丽, 汪书哲, 刘源, 冯兰, 丁晓玲, 冀国尚, 杨润军, 张路培, 马云. 固原黄牛不同部位肌肉组织代谢组学分析[J]. 畜牧兽医学报, 2024, 55(4): 1565-1578. |
| [7] | 徐俊杰, 张璐通, 王津洁, 陈晓晨, 何伟先, 蔡传江, 褚瑰燕, 杨公社. 基于多组学与网络药理学探究淫羊藿对后备母猪发情的作用[J]. 畜牧兽医学报, 2024, 55(4): 1615-1628. |
| [8] | 张兆博, 侯黎明, 李平华, 杜陶然, 王中宇, 吴承武, 黄瑞华. 基于血浆代谢组学筛选日粮纤维影响二花脸猪肉质性状的候选代谢物[J]. 畜牧兽医学报, 2023, 54(9): 3758-3769. |
| [9] | 王芮杰, 洪志楷, 董英娇, 陈瑶, 王晋宇, 王冠华. 基于UPLC-Q-TOF-MS/MS代谢组学研究土霉素和穿心莲内酯对鸡代谢的影响[J]. 畜牧兽医学报, 2023, 54(7): 3078-3090. |
| [10] | 曾成容, 王娜, 毕文文, 梅世慧, 何广霞, 张峻杰, 陈泽, 文明, 周碧君. A型产气荚膜梭菌感染鸭回肠代谢组学分析[J]. 畜牧兽医学报, 2023, 54(6): 2555-2569. |
| [11] | 郭灵君, 朱瑞, 罗怡茜, 张芝金, 张余蓬, 张德志, 李前勇. 山羊慢性酒糟中毒血液代谢物分析及乙醇中毒通路关键基因mRNA转录水平变化[J]. 畜牧兽医学报, 2023, 54(4): 1751-1765. |
| [12] | 刘旺景, 唐德富, 敖长金. 沙葱及其提取物对舍饲肉羊肾周脂肪膻味物质代谢组特征的影响[J]. 畜牧兽医学报, 2022, 53(9): 3029-3041. |
| [13] | 孙娜, 曹志刚, 张华, 王弘, 孙盼盼, 孙耀贵, 范阔海, 尹伟, 李宏全. 苦参碱对昆明小鼠粪便及血浆代谢物的影响[J]. 畜牧兽医学报, 2022, 53(7): 2364-2379. |
| [14] | 王影, 文亮, 母童, 冯小芳, 刘佳敏, 张娟, 温万, 顾亚玲. 荷斯坦牛高、低乳脂率牛乳代谢组分析[J]. 畜牧兽医学报, 2022, 53(5): 1396-1408. |
| [15] | 魏睿元, 赵一萍, 白东义, 韩海格, 王希生, 阿娜尔, 乌英嘎, 芒来, 李旭东. 蒙古马不同耐力运动水平的血浆代谢组特征研究[J]. 畜牧兽医学报, 2022, 53(5): 1442-1454. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||