畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (8): 3640-3649.doi: 10.11843/j.issn.0366-6964.2025.08.008
收稿日期:
2024-09-03
出版日期:
2025-08-23
发布日期:
2025-08-28
通讯作者:
张养东
E-mail:lusongcui0108@163.com;zhangyangdong@caas.cn
作者简介:
陆松翠(1999-),女,贵州安顺人,硕士生,主要从事奶牛营养与牛奶质量安全研究,E-mail: lusongcui0108@163.com
基金资助:
LU Songcui(), ZHENG Nan, WANG Jiaqi, ZHANG Yangdong*(
)
Received:
2024-09-03
Online:
2025-08-23
Published:
2025-08-28
Contact:
ZHANG Yangdong
E-mail:lusongcui0108@163.com;zhangyangdong@caas.cn
摘要:
短链脂肪酸(short chain fatty acids,SCFAs)指的是碳链上碳原子数小于6的一类饱和脂肪酸,也称为挥发性脂肪酸。SCFAs不仅可调节脂质代谢、降低肥胖风险,还与乳及乳制品理化性质和营养功能密切相关。本文全面综述了SCFAs分析的前处理技术、仪器检测技术以及常规定量方法,为建立SCFAs的检测方法提供理论参考。
中图分类号:
陆松翠, 郑楠, 王加启, 张养东. 短链脂肪酸检测方法研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3640-3649.
LU Songcui, ZHENG Nan, WANG Jiaqi, ZHANG Yangdong. Research Progress on Short Chain Fatty Acids Detection Methods[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(8): 3640-3649.
表 1
短链脂肪酸的衍生化试剂及反应条件"
样品 Sample | 衍生试剂 Derivatization reagents | 反应条件 Reaction conditions | 检测数量 Number of detections | 类型 Types | 检测仪器 Detection instruments | 定量限 Limits of quantification | 文献 References |
牛奶 Milk | 氢氧化钠甲醇溶液、乙酰氯甲醇 Sodium hydroxide methanol, Acetyl chloride methanol | 50 ℃/30 min皂化 90 ℃/150 min酯化 50℃/30min Saponification 90℃/150min Esterify | C4:0、C5:0、C6:0 | 总SCFAs | GC-MS | 21.7~193.2 μg·L-1 | [ |
血清/脑脊液 Blood serum/cerebrospinal fluid | 三甲基硅烷基(TMS) Trimethylsilyl | 90 ℃/30 min衍生化 90℃/30min derivatization | C3:0、C4:0、isoC4:0 C5:0、isoC5:0、C6:0 | 总SCFAs | GC-MS | 0.06~0.9 μmol·L-1 | [ |
粪便 Feces | 氯甲酸苄酯 Benzyl chloroformate | 离心、涡旋 Centrifugal, vortex | C2:0、C3:0、C4:0、C5:0、C6:0、isoC4:0、iso C5:0、anteisoC5:0、isoC6:0、anteisoC6:0 | 总SCFAs | GC-MS | 0.1~5 pg | [ |
粪便 Feces | 五氟溴苄 Pentafluorobenzyl bromide | 60 ℃/90 min衍生化 60℃/90min derivatization | C2:0、C3:0、C4:0、isoC4:0、C5:0、isoC5:0、C6:0、isoC6:0 | 总SCFAs | GC-MS | 0.244~0.977 μmol·L-1 | [ |
粪便 Feces | 3-硝基苯肼 3-nitrophenylhydrazine | 40 ℃/45 min衍生化 40℃/45min derivatization | C2:0、C3:0、C4:0、isoC4:0、C5:0、isoC5:0、C6:0、isoC6:0 | 总SCFAs | HPLC-UV | < 0.04 mmol·L-1 | [ |
粪便 Feces | 氯甲酸丙酯 Propyl chloroformate | 超声、涡旋 Ultrasonic, vortex | C2:0、C3:0、C4:0、isoC4:0、C5:0、isoC5:0、C6:0 | 游离 SCFAs | GC-MS | 0.444~1.400 μmol·kg-1 | [ |
粪便 Feces | 氯甲酸异丁酯 Isobutyl chloroformate | 涡旋 vortex | C2:0、C3:0、C4:0、isoC4:0、C5:0 | 总SCFAs | GC-MS | / | [ |
牛奶 Milk | 氯甲酸乙酯 Ethyl chloroformate | 涡旋 vortex | C4:0、C6:0 | 游离 SCFAs | GC-MS | 0.02μg·mL-1 | [ |
尿液/血浆 Urine /plasma | 4-乙酰氨基-7-巯基-2, 1, 3-苯并噁二唑 4-acetamido-7-mercapto-2, 1, 3-benzoxadiazole | 室温/5 min衍生化 Room temperature/5min derivatization | C2:0、C3:0、C4:0、C5:0、C6:0、isoC4:0、isoC5:0、anteisoC5:0、isoC6:0、anteisoC6:0 | 总SCFAs | LC-MS | < 25.20 ng·mL-1 | [ |
表 2
脂肪酸定量方法"
方法 Methods | 优点 Advantages | 缺点 Disadvantages | 文献 References |
面积归一化法 Area normalization method | 重复性较好,方法简便准确,进样浓度和进样量的变化对结果的影响小 The reproducibility is good, the method is simple and accurate, and the change of injection concentration and injection volume has little impact on the results | 要求所有组分流出并被检测到; 误差大; 只能计算相对含量; 不宜用于微量物质的检测计算 All components are required to flow out and be detected; Large error; Only relative content can be calculated; It should not be used for the detection and calculation of trace substances | [ |
外标法 External standard method | 操作简单,有标准曲线就能定量,计算时可以直接从标曲上读出含量 The operation is simple, there is a standard curve to quantify, and the content can be read directly from the curl when calculating | 需要每次样品分析的前处理条件和色谱条件相同,因此容易出现较大误差 The pretreatment and chromatographic conditions need to be the same for each sample analysis, so they are prone to large errors | [ |
内标法 Internal standard method | 定量的准确度和精密度较高,一定程度上可以校正试验前处理过程所带来的误差 The accuracy and precision of quantification are high, and the error caused by the pre-test treatment process can be corrected to a certain extent | 对内标物的选择要求严格 The selection of internal standards is strict | [ |
1 |
KOH A , DE VADDER F , KOVATCHEVA-DATCHARY P , et al. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165 (6): 1332- 1345.
doi: 10.1016/j.cell.2016.05.041 |
2 |
STINSON L F , GAY M C L , KOLEVA P T , et al. Human milk from atopic mothers has lower levels of short chain fatty acids[J]. Front Immunol, 2020, 11, 1427.
doi: 10.3389/fimmu.2020.01427 |
3 |
MACFARLANE S , MACFARLANE G T . Regulation of short-chain fatty acid production[J]. Proc Nutr Soc, 2003, 62 (1): 67- 72.
doi: 10.1079/PNS2002207 |
4 |
NICHOLSON J K , HOLMES E , KINROSS J , et al. Host-gut microbiota metabolic interactions[J]. Science, 2012, 336 (6086): 1262- 1267.
doi: 10.1126/science.1223813 |
5 |
SASAKI M , SUAINI N H A , AFGHANI J , et al. Systematic review of the association between short chain fatty acids and allergic diseases[J]. Allergy, 2024, 79 (7): 1789- 1811.
doi: 10.1111/all.16065 |
6 |
RIOS-COVIAN D , GONZÁLEZ S , NOGACKA A M , et al. An overview on fecal branched short-chain fatty acids along human life and as related with body mass index: associated dietary and anthropometric factors[J]. Front Microbiol, 2020, 11, 973.
doi: 10.3389/fmicb.2020.00973 |
7 |
CANI P D , VAN HUL M , LEFORT C , et al. Microbial regulation of organismal energy homeostasis[J]. Nat Metab, 2019, 1 (1): 34- 46.
doi: 10.1038/s42255-018-0017-4 |
8 |
SUN M M , WU W , LIU Z J , et al. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases[J]. J Gastroenterol, 2017, 52 (1): 1- 8.
doi: 10.1007/s00535-016-1242-9 |
9 | HOLMES Z C , SILVERMAN J D , DRESSMAN H K , et al. Short-chain fatty acid production by gut microbiota from children with obesity differs according to prebiotic choice and bacterial community composition[J]. mBio, 2020, 11 (4): e00914- 20. |
10 |
RAHMAN M N , DIANTINI A , FATTAH M , et al. A highly sensitive, simple, and fast gas chromatography-mass spectrometry method for the quantification of serum short-chain fatty acids and their potential features in central obesity[J]. Anal Bioanal Chem, 2021, 413 (27): 6837- 6844.
doi: 10.1007/s00216-021-03639-3 |
11 |
NATARAJAN N , HORI D , FLAVAHAN S , et al. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41[J]. Physiol Genomics, 2016, 48 (11): 826- 834.
doi: 10.1152/physiolgenomics.00089.2016 |
12 |
REMELY M , AUMUELLER E , MEROLD C , et al. Effects of short chain fatty acid producing bacteria on epigenetic regulation of FFAR3 in type 2 diabetes and obesity[J]. Gene, 2014, 537 (1): 85- 92.
doi: 10.1016/j.gene.2013.11.081 |
13 | DE BENI ARRIGONI M , MARTINS C L , FACTORI M A . Lipid metabolism in the rumen[J]. Rumenology, 2016, 103- 126. |
14 |
LIU L L Y , WU P F , GUO A W , et al. Research progress on the regulation of production traits by gastrointestinal microbiota in dairy cows[J]. Front Vet Sci, 2023, 10, 1206346.
doi: 10.3389/fvets.2023.1206346 |
15 |
ASCHENBACH J R , KRISTENSEN N B , DONKIN S S , et al. Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough[J]. IUBMB Life, 2010, 62 (12): 869- 877.
doi: 10.1002/iub.400 |
16 |
SHEN H , XU Z H , SHEN Z M , et al. The regulation of ruminal short-chain fatty acids on the functions of rumen barriers[J]. Front Physiol, 2019, 10, 1305.
doi: 10.3389/fphys.2019.01305 |
17 | 刘振民. 乳脂及乳脂产品科学与技术[M]. 北京: 中国轻工业出版社, 2019. |
LIU Z M . Science and technology of milk fat and milk fat products[M]. Beijing: China Light Industry Press, 2019. | |
18 |
ROHDE J K , FUH M M , EVANGELAKOS I , et al. A gas chromatography mass spectrometry-based method for the quantification of short chain fatty acids[J]. Metabolites, 2022, 12 (2): 170.
doi: 10.3390/metabo12020170 |
19 |
YAO L X , DAVIDSON E A , SHAIKH M W , et al. Quantitative analysis of short-chain fatty acids in human plasma and serum by GC-MS[J]. Anal Bioanal Chem, 2022, 414 (15): 4391- 4399.
doi: 10.1007/s00216-021-03785-8 |
20 |
SMITH M , POLITE L , CHRISTY A , et al. An improved validated method for the determination of short-chain fatty acids in human fecal samples by gas chromatography with flame ionization detection (GC-FID)[J]. Metabolites, 2023, 13 (11): 1106.
doi: 10.3390/metabo13111106 |
21 | DEI CAS M , PARONI R , SACCARDO A , et al. A straightforward LC-MS/MS analysis to study serum profile of short and medium chain fatty acids[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2020, 1154 (1): 121982. |
22 |
LI C , LIU Z Q , BATH C , et al. Optimised method for short-chain fatty acid profiling of bovine milk and serum[J]. Molecules, 2022, 27 (2): 436.
doi: 10.3390/molecules27020436 |
23 |
CAI J , ZHANG J , TIAN Y , et al. Orthogonal comparison of GC-MS and 1H NMR spectroscopy forshort chain fatty acid quantitation[J]. Anal Chem, 2017, 89 (15): 7900- 7906.
doi: 10.1021/acs.analchem.7b00848 |
24 |
JACOBS D M , DELTIMPLE N , VAN VELZEN E , et al. 1H NMR metabolite profiling of feces as a tool to assess the impact of nutrition on the human microbiome[J]. NMR Biomed, 2008, 21 (6): 615- 626.
doi: 10.1002/nbm.1233 |
25 | 食品安全国家标准食品中脂肪酸的测定: GB 5009.168—2016[S]. 北京: 中国标准出版社, 2016. |
National Standards for Food Safety Determination of fatty acids in food[S]. Beijing: China National Standards Press, 2016. (in Chinese) | |
26 |
MULAT D G , FEILBERG A . GC/MS method for determining carbon isotope enrichment and concentration of underivatized short-chain fatty acids by direct aqueous solution injection of biogas digester samples[J]. Talanta, 2015, 143, 56- 63.
doi: 10.1016/j.talanta.2015.04.065 |
27 | RYO K , KEIKO N , NORIHISA W , et al. Butyric acid in saliva of chronic periodontitis patients induces transcription of the EBV lytic switch activator BZLF1: a pilot study[J]. In Vivo (Athens, Greece), 2020, 34 (2): 587- 594. |
28 | 麦子盈, 覃思意, 李莎莎, 等. 生物样品中短链脂肪酸的分析方法研究进展[J]. 化学试剂, 2022, 44 (7): 1020- 1027. |
MAI Z Y , QIN S Y , LI S S , et al. Progress of analytic methods for short-chain fatty acids on biological samples[J]. Chemical Reagents, 2022, 44 (7): 1020- 1027. | |
29 |
SOARES DA SILVA BURATO J , VARGAS MEDINA D A , DE TOFFOLI A L , et al. Recent advances and trends in miniaturized sample preparation techniques[J]. J Sep Sci, 2020, 43 (1): 202- 225.
doi: 10.1002/jssc.201900776 |
30 |
PAUTOVA A K , BURNAKOVA N A , BELOBORODOVA N V , et al. Simultaneous determination of aromatic, short-chain fatty and dicarboxylic acids in blood serum and cerebrospinal fluid by gas chromatography-mass spectrometry[J]. J Anal Chem, 2023, 78, 1942- 1954.
doi: 10.1134/S1061934823140058 |
31 | 贾益群, 叶福媛, 王双, 等. 生物样品中短链脂肪酸的快速提取与分析方法[J]. 实验室研究与探索, 2012, 31 (7): 262- 264. |
JIA Y Q , YE F Y , WANG S , et al. Extraction and determination of short-chain fatty acids in biological samples[J]. Research and Exploration in Laboratory, 2012, 31 (7): 262- 264. | |
32 |
WU X , CHEN M , WANG F , et al. A new isopropyl esterification method for quantitative profiling of short-chain fatty acids in human and cow milk by gas chromatograph-mass spectrometer[J]. J Dairy Sci, 2024, 107 (8): 5366- 5375.
doi: 10.3168/jds.2023-24320 |
33 | DENG G , XIE L , XU S , et al. Fiber nanoarchitectonics for pre-treatments in facile detection of short-chain fatty acids in waste water and faecal samples[J]. Polymers(Basel), 2021, 13 (22): 3906. |
34 |
WANG H Y , WANG C , GUO L X , et al. Simultaneous determination of short-chain fatty acids in human feces by HPLC with ultraviolet detection following chemical derivatization and solid-phase extraction segmental elution[J]. J Sep Sci, 2019, 42 (15): 2500- 2509.
doi: 10.1002/jssc.201900249 |
35 |
FU Z , JIA Q , ZHANG H , et al. Simultaneous quantification of eleven short-chain fatty acids by derivatization and solid phase microextraction-gas chromatography tandem mass spectrometry[J]. J Chromatogr A, 2022, 1661, 462680.
doi: 10.1016/j.chroma.2021.462680 |
36 |
BIANCHI F , DALL'ASTA M , DEL RIO D , et al. Development of a headspace solid-phase microextraction gas chromatography-mass spectrometric method for the determination of short-chain fatty acids from intestinal fermentation[J]. Food Chem, 2011, 129 (1): 200- 205.
doi: 10.1016/j.foodchem.2011.04.022 |
37 |
FIORINI D , PACETTI D , GABBIANELLI R , et al. A salting out system for improving the efficiency of the headspace solid-phase microextraction of short and medium chain free fatty acids[J]. J Chromatogr A, 2015, 1409, 282- 287.
doi: 10.1016/j.chroma.2015.07.051 |
38 |
GONZÁLEZ-CÓRDOVA A F , VALLEJO-CORDOBA B . Quantitative determination of short-chain free fatty acids in milk using solid-phase microextraction and gas chromatography[J]. J Agric Food Chem, 2001, 49 (10): 4603- 4608.
doi: 10.1021/jf010108d |
39 |
TRIVEDI N , ERICKSON H E , BALA V , et al. A concise review of liquid chromatography-mass spectrometry-based quantification methods for short chain fatty acids as endogenous biomarkers[J]. Int J Mol Sci, 2022, 23 (21): 13486.
doi: 10.3390/ijms232113486 |
40 |
CHEN M , WANG F , WU X , et al. Updating the fatty acid profiles of retail bovine milk in China based on an improved GC-MS method: implications for nutrition[J]. Front Nutr, 2023, 10, 1204005.
doi: 10.3389/fnut.2023.1204005 |
41 |
LI M , ZHU R , SONG X , et al. A sensitive method for the quantification of short-chain fatty acids by benzyl chloroformate derivatization combined with GC-MS[J]. Analyst, 2020, 145 (7): 2692- 2700.
doi: 10.1039/D0AN00005A |
42 |
HE L , PRODHAN M A I , YUAN F , et al. Simultaneous quantification of straight-chain and branched-chain short chain fatty acids by gas chromatography mass spectrometry[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2018, 1092, 359- 367.
doi: 10.1016/j.jchromb.2018.06.028 |
43 | ORATA F. Derivatization reactions and reagents for gas chromatography analysis[C]//. In advanced gas chromatography-progress in agricultural, biomedical and industrial applications. 2012: 83-108. |
44 | 张晓伟, 孙鑫, 李秀娟, 等. 衍生化-顶空固相微萃取-气相色谱法测定大鼠粪便中游离短链脂肪酸[J]. 华中农业大学学报, 2021, 40 (5): 160- 168. |
ZHANG X W , SUN X , LI X J , et al. Determination of free short-chain fatty acids in rat feces by derivatization-headspace solid-phase microextraction-gas chromatography[J]. Journal of Huazhong Agricultural University, 2021, 40 (5): 160- 168. | |
45 |
FURUHASHI T , SUGITATE K , NAKAI T , et al. Rapid profiling method for mammalian feces short chain fatty acids by GC-MS[J]. Anal Biochem, 2018, 543, 51- 54.
doi: 10.1016/j.ab.2017.12.001 |
46 |
AMER B , NEBEL C , BERTRAM H C , et al. Novel method for quantification of individual free fatty acids in milk using an in-solution derivatisation approach and gas chromatography-mass spectrometry[J]. Int Dairy J, 2013, 32 (2): 199- 203.
doi: 10.1016/j.idairyj.2013.05.016 |
47 |
JAOCHICO A , SANGARAJU D , SHAHIDI-LATHAM S K . A rapid derivatization based LC-MS/MS method for quantitation of short chain fatty acids in human plasma and urine[J]. Bioanalysis, 2019, 11 (8): 741- 753.
doi: 10.4155/bio-2018-0241 |
48 |
ZHAO G H , NYMAN M , JÖNSSON J A . Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography[J]. Biomed Chromatogr, 2006, 20 (8): 674- 682.
doi: 10.1002/bmc.580 |
49 |
GARCÍA-VILLALBA R , GIMÉNEZ-BASTIDA J A , GARCÍA-CONESA M T , et al. Alternative method for gas chromatography-mass spectrometry analysis of short-chain fatty acids in faecal samples[J]. J Sep Sci, 2012, 35 (15): 1906- 1913.
doi: 10.1002/jssc.201101121 |
50 |
ZHANG C , FAN L , ZHAO H . Rapid detection of short-chain fatty acids in biological samples[J]. Chromatographia, 2020, 83 (2): 305- 310.
doi: 10.1007/s10337-019-03824-8 |
51 |
晏慧莉, 张富新, 李延华, 等. 非衍生化-气相色谱法测定羊奶中短中链游离脂肪酸[J]. 食品科学, 2014, 35 (16): 138- 142.
doi: 10.7506/spkx1002-6630-201416027 |
YAN H L , ZHANG F X , LI Y H , et al. Determination of free fatty acids in goat milk by gas chromatography without derivatization[J]. Food Science, 2014, 35 (16): 138- 142.
doi: 10.7506/spkx1002-6630-201416027 |
|
52 |
ZHENG X , QIU Y , ZHONG W , et al. A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids[J]. Metabolomics, 2013, 9 (4): 818- 827.
doi: 10.1007/s11306-013-0500-6 |
53 |
MICALIZZI G , BUZZANCA C , CHIAIA V , et al. Measurement of short-chain fatty acids in human plasma by means of fast gas chromatography-mass spectrometry[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2024, 1235, 124044.
doi: 10.1016/j.jchromb.2024.124044 |
54 |
SCORTICHINI S , BOARELLI M C , SILVI S , et al. Development and validation of a GC-FID method for the analysis of short chain fatty acids in rat and human faeces and in fermentation fluids[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2020, 1143, 121972.
doi: 10.1016/j.jchromb.2020.121972 |
55 |
LIEBISCH G , ECKER J , ROTH S , et al. Quantification of fecal short chain fatty acids by liquid chromatography tandem mass spectrometry-investigation of pre-analytic stability[J]. Biomolecules, 2019, 9 (4): 121.
doi: 10.3390/biom9040121 |
56 |
CHEN Z , WU Y , SHRESTHA R , et al. Determination of total, free and esterified short-chain fatty acid in human serum by liquid chromatography-mass spectrometry[J]. Ann Clin Biochem, 2019, 56 (2): 190- 197.
doi: 10.1177/0004563218801393 |
57 | SONG H E , LEE H Y , KIM S J , et al. A facile profiling method of short chain fatty acids using liquid chromatography-mass spectrometry[J]. Metabolites, 2019, 9 (9): 193. |
58 |
CALVIGIONI M , BERTOLINI A , CODINI S , et al. HPLC-MS-MS quantification of short-chain fatty acids actively secreted by probiotic strains[J]. Front Microbiol, 2023, 14, 1124144.
doi: 10.3389/fmicb.2023.1124144 |
59 |
HUART J , CIRILLO A , SAINT-REMY A , et al. The faecal abundance of short chain fatty acids is increased in men with a non-dipping blood pressure profile[J]. Acta Cardiol, 2022, 77 (4): 307- 310.
doi: 10.1080/00015385.2021.1901020 |
60 |
HU F , FURIHATA K , KATO Y , et al. Nondestructive quantification of organic compounds in whole milk without pretreatment by two-dimensional NMR spectroscopy[J]. J Agric Food Chem, 2007, 55 (11): 4307- 4311.
doi: 10.1021/jf062803x |
61 |
GÓMEZ-GALLEGO C , MORALES J M , MONLEÓN D , et al. Human breast milk NMR metabolomic profile across specific geographical locations and its association with the milk microbiota[J]. Nutrients, 2018, 10 (10): 1355.
doi: 10.3390/nu10101355 |
62 |
O'CALLAGHAN T F , VÁZQUEZ-FRESNO R , SERRA-CAYUELA A , et al. Pasture feeding changes the bovine rumen and milk metabolome[J]. Metabolites, 2018, 8 (2): 27.
doi: 10.3390/metabo8020027 |
63 |
WIKING L , L∅KKE M M , KIDMOSE U , et al. Comparison between novel and standard methods for analysis of free fatty acids in milk-including relation to rancid flavour[J]. Int Dairy J, 2017, 75, 22- 29.
doi: 10.1016/j.idairyj.2017.07.001 |
64 |
PHAM U , ALVARADO L , SUESS G J , et al. Separation of short and medium-chain fatty acids using capillary electrophoresis with indirect photometric detection: Part Ⅰ: Identification of fatty acids in rat feces[J]. Electrophoresis, 2021, 42 (19): 1914- 1923.
doi: 10.1002/elps.202100100 |
65 |
UKEDA H , FUJITA Y , SAWAMURA M , et al. Determination of short-chain fatty acids in raw milk using a microbial sensor and the relationship with milk quality[J]. Anal Sci, 1994, 10, 683- 685.
doi: 10.2116/analsci.10.683 |
66 | 张亭妍, 王宏雁, 刘钟栋. 中短链脂肪酸结构脂的合成工艺[J]. 食品工业, 2021, 42 (4): 175- 179. |
ZHANG T Y , WANG H Y , LIU Z D . The synthesis process of middle- and short-chain triglycerides[J]. Food Industry, 2021, 42 (4): 175- 179. | |
67 | 卜子晨, 郑诗琪, 王佳, 等. 短链脂肪酸气相色谱-质谱测定方法的建立[J]. 中国食品学报, 2023, 23 (9): 261- 265. |
BU Z C , ZHENG S Q , WANG J , et al. Establishment of gas chromatography-mass spectrometry methodof a short-chain fatty acid[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23 (9): 261- 265. | |
68 |
SAHA S , DAY-WALSH P , SHEHATA E , et al. Development and validation of a LC-MS/MS technique for the analysis of short chain fatty acids in tissues and biological fluids without derivatisation using isotope labelled internal standards[J]. Molecules, 2021, 26 (21): 6444.
doi: 10.3390/molecules26216444 |
[1] | 陈冰冰, 蔡蔚游, 刘玉彤, 王修武, 孙守湖, 贺东生. A群猪轮状病毒微滴式数字PCR检测方法的建立及其应用[J]. 畜牧兽医学报, 2025, 56(8): 4095-4100. |
[2] | 姜艳平, 刘薇, 宫浩阳, 蔡李萌, 李佳璇, 崔文, 周晗, 韩建春, 唐丽杰. IBDV单克隆抗体的制备及双抗体夹心ELISA检测方法的建立[J]. 畜牧兽医学报, 2025, 56(7): 3433-3441. |
[3] | 瑞雪, 张云航, 李杨, 谭晨, 蔡艺菲, 刘园园, 曹宗喜, 张艳, 孙瑞萍, 刘光亮. 猪内源性逆转录病毒检测的三重PCR方法的建立及其在五指山猪组织样品检测中的初步应用[J]. 畜牧兽医学报, 2025, 56(7): 3548-3554. |
[4] | 宋琳, 赵小伟, 齐英杰, 张养东. 短链脂肪酸对奶牛瘤胃微生物菌群的影响研究进展[J]. 畜牧兽医学报, 2025, 56(5): 2082-2092. |
[5] | 廖怡雯, 叶景芬, 武绍碧, 陈世雄, 杨婉, 罗雪, 杨琦. 环介导等温扩增技术的发展及其在耐药基因检测中的应用[J]. 畜牧兽医学报, 2025, 56(4): 1621-1631. |
[6] | 吕岱玥, 陈延飞, 翟天舒, 曹胜波, 薛青红. 新发病毒检测方法与测序技术的研究进展及应用[J]. 畜牧兽医学报, 2024, 55(12): 5398-5411. |
[7] | 贤歌, 刘慧敏, 王加启, 郑楠. 牛奶中A1和A2 β-酪蛋白的结构、功能和检测方法研究进展[J]. 畜牧兽医学报, 2024, 55(12): 5440-5451. |
[8] | 杨恒, 李占鸿, 宋子昂, 高林, 李卓然, 廖德芳, 肖雷, 李华春. 帕利亚姆病毒实时荧光定量RT-PCR检测方法的建立与应用[J]. 畜牧兽医学报, 2024, 55(1): 395-400. |
[9] | 李昭燕, 高江, 郭时惠, 赵茹茜, 马文强. 猫过敏原检测方法与控制措施的研究进展[J]. 畜牧兽医学报, 2023, 54(6): 2272-2279. |
[10] | 武殿阁, 夏苗, 颜安, 江皓天, 樊佳奇, 周思源, 韦旭, 刘树栋, 陈宝江. 香芹酚对肉兔生长性能、养分表观消化率及肠道形态、短链脂肪酸含量和菌群相关指标的影响[J]. 畜牧兽医学报, 2023, 54(10): 4233-4246. |
[11] | 王华健, 张宁, 杨威, 赵志强, 李茜, 陆安, 田勇, 何欣, 赵兴华, 李杰峰. 3种食源性致病菌TaqMan多重荧光定量PCR检测方法的建立[J]. 畜牧兽医学报, 2022, 53(4): 1201-1209. |
[12] | 任曼, 刘欣, 唐玉林, 张瑞雪, 秦俊杰, 朱浩, 郭延生. 归芪益母复方制剂对产后奶牛瘤胃微生物和短链脂肪酸的调节[J]. 畜牧兽医学报, 2022, 53(12): 4461-4469. |
[13] | 刘静, 朱道仙, 卢劲晔, 张一多, 卢炜, 陆江. 犬慢性肾衰竭进程中肠道菌群代谢物短链脂肪酸水平的变化及其对肾功能的影响[J]. 畜牧兽医学报, 2021, 52(8): 2334-2343. |
[14] | 麻园, 石正旺, 罗俊聪, 杨波, 王丽娟, 万颖, 宋锐, 曹丽艳, 周改静, 田宏, 郑海学, 陈轶霞. 猪瘟病毒化学发光抗体检测方法的建立与应用[J]. 畜牧兽医学报, 2021, 52(6): 1744-1752. |
[15] | 梅力, 王英超, 程汝佳, 于国际, 范学政, 高晓龙, 高敏, 秦玉明, 李筱英, 李巧玲, 朱良全, 冯小宇. 1种布鲁氏菌微滴式数字PCR检测方法的建立[J]. 畜牧兽医学报, 2021, 52(6): 1753-1759. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||