

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (12): 5972-5986.doi: 10.11843/j.issn.0366-6964.2025.12.004
张小芳1,4, 祝媛媛1, 黄雯卉1, 甘霖生1, 刘杰2,3,4, 魏立民2,3,4, 柒启恩1*
收稿日期:2025-04-18
发布日期:2025-12-24
通讯作者:
柒启恩,主要从事动物生理生化与分子营养、饲料加工工艺研究,E-mail:qiqien@fosu.edu.cn
作者简介:张小芳(1996-),女,贵州德江人,硕士生,主要从事动物营养与饲料的研究,E-mail:2819831857@qq.com
基金资助:ZHANG Xiaofang1,4, ZHU Yuanyuan1, HUANG Wenhui1, GAN Linsheng1, LIU Jie2,3,4, WEI Limin2,3,4, QI Qien1*
Received:2025-04-18
Published:2025-12-24
摘要: 细胞外囊泡(extracellular vesicles,EVs)属于细胞分泌衍生的膜结构,是细胞间信息物质传递的载体,在动物生殖过程中发挥着关键作用。哺乳动物繁殖是一个较为复杂的过程,受多种因素调控。随着对EVs在动物繁殖中研究的不断深入,其在猪繁殖中的应用也逐渐展现出巨大潜力。EVs主要通过参与多种生理功能来实现生殖过程中的平衡,确保猪繁殖过程中配子发生、受精、囊胚植入、胚胎着床及分娩等环节的顺利进行。本文对EVs的生物学特征及其在猪繁殖各阶段的作用进行了综述,旨在为EVs在猪繁殖中的研究应用提供一定的理论参考。
中图分类号:
张小芳, 祝媛媛, 黄雯卉, 甘霖生, 刘杰, 魏立民, 柒启恩. 细胞外囊泡在猪繁殖中的研究进展[J]. 畜牧兽医学报, 2025, 56(12): 5972-5986.
ZHANG Xiaofang, ZHU Yuanyuan, HUANG Wenhui, GAN Linsheng, LIU Jie, WEI Limin, QI Qien. Research Progress of Extracellular Vesicles in Porcine Reproduction[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(12): 5972-5986.
| [1] AIELLO A,GIANNESSI F,PERCARIO Z A, et al. An emerging interplay between extracellular vesicles and cytokines[J]. Cytokine Growth Factor Rev, 2020,51: 49-60. [2] HANAYAMA R. Emerging roles of extracellular vesicles in physiology and disease[J]. J Biochem, 2021, 169(2): 135-138. [3] GODAKUMARA K, DISSANAYAKE K, HASAN M M, et al. Role of extracellular vesicles in intercellular communication during reproduction[J]. Reprod Domest Anim, 2022, 57: 14-21. [4] SKOTLAND T, SAGINI K, SANDVIG K, et al. An emerging focus on lipids in extracellular vesicles[J]. Adv Drug Deliv Rev, 2020, 159: 308-321. [5] 李莎莎,余 飞,刘万卉.细胞外囊泡表征检测方法的对比[J]. 中国生物化学与分子生物学报,2024,40(8):1093-1101. LI S S, YU F, LIU W H. Comparative of extracellular vesicle characterization methods [J]. Chinese Journal of Biochemistry and Molecular Biology,2024,40(8):1093-1101. (in Chinese) [6] JEPPESEN D K, ZHANG Q, FRANKLIN J L, et al. Extracellular vesicles and nanoparticles: emerging complexities[J]. Trends Cell Biol, 2023, 33(8): 667-681. [7] GYORGY B, SZABO T G, PASZTOI M, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles[J]. Cell Mol Life Sci, 2011, 68(16): 2667-2688. [8] COLOMBO M, RAPOSO G, THERY C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles[J]. Annu Rev Cell Dev Biol, 2014, 30(1):255-289. [9] MUNOZ E L, FUENTES F B, FELMER R N, et al. Extracellular vesicles in mammalian reproduction: a review[J]. Zygote, 2022, 30(4): 440-463. [10] YANEZ-MO M, SILJANDER P R, ANDREU Z, et al. Biological properties of extracellular vesicles and their physiological functions[J]. J Extracell Vesicles, 2015, 4(1):27066. [11] LU M, SHAO W, XING H, et al. Extracellular vesicle-based nucleic acid delivery[J]. Int Med, 2023, 1(2): e20220007. [12] VAN NIEL G, D'ANGELO G, RAPOSO G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228. [13] ZHANG Y, LIU Y, LIU H, et al. Exosomes: biogenesis, biologic function and clinical potential[J]. Cell Biosci, 2019, 9(1): 19. [14] DOYLE L M, WANG M Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis[J]. Cells, 2019, 8(7):727. [15] 刘 铃,王丹丹,崔 凯,等.猪繁殖与呼吸综合征抗病育种研究进展[J]. 畜牧兽医学报,2023,54(2):434-442. LIU L, WANG D D, CUI K, et al. Advances of disease-resistant breeding on porcine reproductive and respiratory syndrome [J]. Acta Veterinaria et Zootechnica Sinica, 2023,54(2):434-442. (in Chinese) [16] 张懿坤,孙巍巍.猪繁殖障碍性传染病现状及防控对策[J]. 中兽医学杂志,2021,(8):15-17. ZHANG Y K, SUN W W. Current status and prevention strategies of reproductive diseases in swine [J]. Chinese Journal of Traditional Veterinary Science, 2021,(8):15-17. (in Chinese) [17] 由广勇.繁殖母猪常见病综合防治技术措施[J]. 吉林畜牧兽医,2023,44(12):27-28. YOU G Y. Comprehensive prevention and control measures for common diseases in breeding sows [J]. J Anim Husb Vet Med, 2023,44(12):27-28. (in Chinese) [18] 李连敏,裴爱民.引起猪繁殖障碍的因素及防治对策[J]. 黑龙江动物繁殖,2009,17(2):28-30. LI L M, PEI A M. Factors causing reproductive disorders in pigs and their prevention strategies [J]. Heilongjiang Journal of Animal Reproduction, 2009,17(2):28-30. (in Chinese) [19] 范 毅.种公猪繁殖障碍的防治措施[J]. 中国动物保健,2023,25(2):83-84. FAN Y. Prevention and control measures for breeding obstacles in boars [J]. Chinese Animal Health, 2023,25(2):83-84. (in Chinese) [20] 刘 莹.浅谈影响种公猪繁殖性能的因素[J]. 现代畜牧兽医,2023,(4):86-89. LIU Y. A brief discussion on factors affecting breeding performance of breeding boars [J]. Modern Journal of Animal Husbandry and Veterianry Medicine, 2023,(4):86-89. (in Chinese) [21] BURKARD C, OPRIESSNIG T, MILEHAM A J, et al. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection[J]. J Virol, 2018, 92(16):e00415-18. [22] 李 春.生猪养殖中引起种猪繁殖障碍主要疾病的防治措施分析[J]. 河北农业,2024,(1):93-94. LI C. Analysis of prevention and control measures for major diseases causing reproductive disorders in breeding pigs in pig farming [J]. Hebei Agriculture, 2024, (1):93-94. (in Chinese) [23] 肖兴玉,刘世博,张莹辉,等. 猪布鲁氏菌病研究进展[J]. 动物医学进展, 2024,45(6):95-99. XIAO X Y, LIU S B, ZHANG Y H, et al. Advances in swine brucellosis[J]. Progress in Veterinary Medicine, 2024,45(6):95-99. (in Chinese) [24] 吴易兵,王洪亮,杨 青.伪狂犬病毒对猪卵巢及早期胚胎发育的研究进展[J]. 江西畜牧兽医杂志,2025,(2):4-6. WU Y B, WANG H L, YANG Q. Research progress on pseudorabies virus in pig ovary and early embryo development [J]. Jiangxi Journal of Animal Husbandry Veterinary Medicine, 2025,(2):4-6. (in Chinese) [25] XU Z, ZHANG K, YANG Y, et al. The role of reproductive tract extracellular vesicles on boar sperm function[J]. Theriogenology, 2024, 230:278-284. [26] KOWALCZYK A, WRZECINSKA M, CZERNIAWSKA-PIATKOWSKA E, et al. Exosomes-spectacular role in reproduction[J]. Biomed Pharmacother, 2022, 148:112752. [27] GURUNATHAN S, KANG M, SONG H, et al. The role of extracellular vesicles in animal reproduction and diseases[J]. J Anim Sci Biotechnol, 2022, 13(1): 62. [28] MACHTINGER R, LAURENT L C, BACCARELLI A A. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation[J]. Hum Reprod Update, 2016, 22(2): 182-193. [29] 高 威,周 臣,洪林君.哺乳动物子宫腔胞外囊泡的组分及功能研究进展[J]. 现代畜牧兽医,2019,(6):53-59. GAO W, ZHOU C, HONG L J.Progress in the composition and function of extracellular vesiclesin mammalian uterine luminal fluid[J]. Modern Journal of Animal Husbandry Veterinary Medicine, 2019,(6):53-59. (in Chinese) [30] FRANCA L R, AVELAR G F, ALMEIDA F F L. Spermatogenesis and sperm transit through the epididymis in mammals with emphasis on pigs[J]. Theriogenology, 2005, 63(2): 300-318. [31] BARRANCO I, SPINACI M, NESCI S, et al. Seminal extracellular vesicles alter porcine in vitro fertilization outcome by modulating sperm metabolism[J]. Theriogenology, 2024, 219:167-179. [32] ALVAREZ-RODRIGUEZ M, LJUNGGREN S A, KARLSSON H, et al. Exosomes in specific fractions of the boar ejaculate contain CD44: a marker for epididymosomes?[J]. Theriogenology, 2019, 140:143-152. [33] RODRIGUEZ-MARTINEZ H, MARTINEZ E A, CALVETE J J, et al. Seminal plasma: relevant for fertility?[J]. Int J Mol Sci, 2021, 22(9):4368. [34] PIEHL L L, FISCHMAN M L, HELLMAN U, et al. Boar seminal plasma exosomes: effect on sperm function and protein identification by sequencing[J]. Theriogenology, 2013, 79(7): 1071-1082. [35] PARK K, KIM B, KANG J, et al. Ca2+ signaling tools acquired from prostasomes are required for progesterone-induced sperm motility[J]. Sci Signal, 2011, 4(173): ra31. [36] ZHAO Y, QIN J, SUN J, et al. Motility-related micrornas identified in pig seminal plasma exosomes by high-throughput small RNA sequencing[J]. Theriogenology, 2024, 215:351-360. [37] DU J, SHEN J, WANG Y, et al. Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane[J]. Oncotarget, 2016, 7(37): 58832-58847. [38] XU Z, XIE Y, WU C, et al. The effects of boar seminal plasma extracellular vesicles on sperm fertility[J]. Theriogenology, 2024, 213:79-89. [39] 徐志谦, 谢言射, 蔡更元,等.精浆胞外囊泡对精子功能的作用研究进展[J]. 中国畜牧杂志,2022,58(5):101-106. XU Z Q, XIE Y S, CAI G Y, et al.Research progress on the effect of seminal plasma extracellular vesicles on sperm function[J]. Chinese Journal of Animal Science, 2022,58(5):101-106. (in Chinese) [40] 徐志谦.猪精浆胞外囊泡对精子受精功能的影响及其机制研究[D]. 广州: 华南农业大学,2021. XU Z Q. Effects of boar seminal plasma extracellular vesicles on sperm fertilization and its mechanism[D]. Guangzhou: South China Agricultural University, 2021. (in Chinese) [41] 王语晴, 高丰鑫, 张小宁.哺乳动物精浆胞外囊泡及各组分的功能[J]. 中国生物化学与分子生物学报, 2018, 34(2):162-169. WANG Y Q, GAO F X, ZHANG X N. Functions of the seminal extracellular vesicles and its components in mammals[J].Chinese Journal of Biochemistry and Molecular Biology, 2018,34(2):162-169.(in Chinese) [42] 陈 璇.公猪精浆外泌体在17 ℃液相保存中维持精子功能的作用研究[D]. 延吉: 延边大学,2022. CHEN X. Study on the maintenance of sperm function by exosomes from boar seminal seminal fluid in 17 ℃ liquid phase preservation [D]. Yanji: Yanbian University, 2022. (in Chinese) [43] LEAHY T, GADELLA B M. Sperm surface changes and physiological consequences induced by sperm handling and storage[J]. Reproduction, 2011, 142(6): 759-778. [44] PEDROSA A C, ANDRADE TORRES M, VILELA ALKMIN D, et al. Spermatozoa and seminal plasma small extracellular vesicles mirnas as biomarkers of boar semen cryotolerance[J]. Theriogenology, 2021, 174:60-72. [45] SAADELDIN I M, KHALIL W A, ALHARBI M G, et al. The current trends in using nanoparticles, liposomes, and exosomes for semen cryopreservation[J]. Animals (Basel), 2020, 10(12):2281. [46] KOWALCZYK A, KORDAN W. Evaluation of the effectiveness of the use of exosomes in the regulation of the mitochondrial membrane potential of frozen/thawed spermatozoa[J]. PLoS One, 2024, 19(7): e303479. [47] RODRIGUEZ-MARTINEZ H, ROCA J. Extracellular vesicles in seminal plasma: a safe and relevant tool to improve fertility in livestock?[J]. Anim Reprod Sci, 2022, 244:107051. [48] ANDRADE A F C, KNOX R V, TORRES M A, et al. What is the relevance of seminal plasma from a functional and preservation perspective?[J]. Anim Reprod Sci, 2022, 246:106946. [49] GUO H, CHANG Z, ZHANG Z, et al. Extracellular ATPs produced in seminal plasma exosomes regulate boar sperm motility and mitochondrial metabolism[J]. Theriogenology, 2019, 139:113-120. [50] BASKARAN S, PANNER SELVAM M K, AGARWAL A. Exosomes of male reproduction[J]. Adv Clin Chem, 2020, 95:149-163. [51] ALI W, DENG K, BIAN Y, et al. Spectacular role of epididymis and bio-active cargo of nano-scale exosome in sperm maturation: A review[J]. Biomed Pharmacother, 2023, 164:114889. [52] SULLIVAN R, SAEZ F, GIROUARD J, et al. Role of exosomes in sperm maturation during the transit along the male reproductive tract[J]. Blood Cells Mol Dis, 2005, 35(1): 1-10. [53] SICILIANO L, MARCIANO V, CARPINO A. Prostasome-like vesicles stimulate acrosome reaction of pig spermatozoa[J]. Reprod Biol Endocrinol, 2008, 6(1):5. [54] WANG Y, LIU Q, SUN Q, et al. Exosomes from porcine serum as endogenous additive maintain function of boar sperm during liquid preservation at 17 degrees C in vitro[J]. Theriogenology, 2024, 219:147-156. [55] MATSUNO Y, ONUMA A, FUJIOKA Y A, et al. Effects of exosome-like vesicles on cumulus expansion in pigs in vitro[J]. J Reprod Dev, 2017, 63(1): 51-58. [56] EPPIG J J. Oocyte control of ovarian follicular development and function in mammals[J]. Reproduction, 2001, 122(6): 829-838. [57] MATSUNO Y, KANKE T, MARUYAMA N, et al. Characterization of mrna profiles of the exosome-like vesicles in porcine follicular fluid[J]. PLoS One, 2019, 14(6): e217760. [58] TESFAYE D, HAILAY T, SALILEW-WONDIM D, et al. Extracellular vesicle mediated molecular signaling in ovarian follicle: implication for oocyte developmental competence[J]. Theriogenology, 2020, 150:70-74. [59] 王鹏旭,阮 鑫,董晓英. 细胞外囊泡在卵泡发育中的交互作用及其应用前景[J]. 医学研究杂志, 2023, 52(11): 188-191. WANG P X, RUAN X, DONG X Y. The interactions of extracellular vesicles in follicle development and their application prospects [J]. Journal of Medicine Research, 2023,52(11):188-191.(in Chinese) [60] GRZESIAK M, POPIOLEK K, KNAPCZYK-STWORA K. Extracellular vesicles in follicular fluid of sexually mature gilts' ovarian antral follicles-identification and proteomic analysis[J]. J Physiol Pharmacol, 2020, 71(1):10.26402. [61] LIU J, YAO W, YAO Y, et al. Mir-92a inhibits porcine ovarian granulosa cell apoptosis by targeting smad7 gene[J]. FEBS Letters, 2014, 588(23): 4497-4503. [62] 沈曹美惠. 卵泡液外泌体LncRNA LOC102163816促进猪卵泡颗粒细胞增殖的机制研究[D]. 长春: 吉林大学, 2024. SHEN C M H. Mechanism of lncrna LOC102163816 from follicular fluid exosomes promoting proliferation of porcine granulosa cell[D]. Changchun: Jilin University, 2024. (in Chinese) [63] YUAN C, CHEN X, SHEN C, et al. Follicular fluid exosomes regulate oxidative stress resistance, proliferation, and steroid synthesis in porcine theca cells[J]. Theriogenology, 2022, 194:75-82. [64] YUAN C, CAO M, CHEN L, et al. Follicular fluid exosomes inhibit BDNF expression and promote the secretion of chemokines in granulosa cells by delivering mir-10b-5p[J]. Theriogenology, 2023, 199:86-94. [65] 袁晨丰. 卵泡液外泌体对猪卵泡细胞增殖、类固醇合成、抗氧化应激和趋化因子分泌的影响[D]. 长春: 吉林大学, 2023. YUAN C F. Effects of follicular fluid exosomes on proliferation, steroid synthesis,oxidantive stress resistance and chemokines secretion in porcine follicular cells[D]. Changchun: Jilin University, 2023. (in Chinese) [66] 李 峥. 猪卵泡液外泌体对颗粒细胞增殖及孕酮合成的影响[D]. 长春: 吉林大学, 2020. LI Z. Effects of porcine follicular fluid exosomes on proliferation and progesterone synthesis in procine granulosa cells[D]. Changchun: Jilin University, 2020. (in Chinese) [67] 韩 政. 猪卵泡液外泌体分离鉴定及其对颗粒细胞增殖影响的研究[D]. 合肥: 安徽农业大学, 2023. HAN Z.Isolation and identification of exosomes from porcine follicular fluid and their effect on granulosa cell proliferation[D]. Hefei: Anhui Agricultural University, 2023. (in Chinese) [68] LI Q, DU X, LIU L, et al. Upregulation of mir-146b promotes porcine ovarian granulosa cell apoptosis by attenuating CYP19A1[J]. Domest Anim Endocrinol, 2021, 74:106509. [69] HAN Y, ZHANG J, LIANG W, et al. Follicular fluid exosome-derived mir-339-5p enhances in vitro maturation of porcine oocytes via targeting SFPQ, a regulator of the ERK1/2 pathway[J]. Theriogenology, 2024, 225:107-118. [70] HAN Y, LU P, YU Y, et al. Mirna-125a regulates porcine oocyte maturation in vitro by targeting ADAR[J]. Theriogenology, 2025, 235:184-193. [71] REN J, DING Y, SHI J, et al. Porcine granulosa-cell-derived exosomes enhance oocyte development: an in vitro study[J]. Antioxidants (Basel), 2024, 13(3):348. [72] FU T, WANG S, LIN T, et al. The exploration of mirnas from porcine fallopian tube stem cells on porcine oocytes[J]. Front Vet Sci, 2022, 9:869217. [73] MATEO-OTERO Y, YESTE M, ROCA J, et al. Seminal extracellular vesicles subsets modulate gene expression in cumulus cells of porcine in vitro matured oocytes[J]. Sci Rep, 2022, 12(1): 19096. [74] HE Z, XIE M, LI Q Q, et al. Research progress on the microregulatory mechanisms of fertilization: a review[J]. In Vivo, 2022, 36(5): 2002-2013. [75] GEORGADAKI K, KHOURY N, SPANDIDOS D A, et al. The molecular basis of fertilization (Review)[J]. Int J Mol Med, 2016, 38(4): 979-986. [76] BOGACKI M, JALALI B M, WIECKOWSKA A, et al. Prolonged effect of seminal plasma on global gene expression in porcine endometrium[J]. Genes (Basel), 2020, 11(11). [77] SAINT-DIZIER M, SCHOEN J, CHEN S, et al. Composing the early embryonic microenvironment: physiology and regulation of oviductal secretions[J]. Int J Mol Sci, 2019, 21(1): 223. [78] PADILLA L, BARRANCO I, MARTINEZ-HERNANDEZ J, et al. Extracellular vesicles would be involved in the release and delivery of seminal TGF-beta isoforms in pigs[J]. Front Vet Sci, 2023, 10:1102049. [79] ALCANTARA-NETO A S, FERNANDEZ-RUFETE M, CORBIN E, et al. Oviduct fluid extracellular vesicles regulate polyspermy during porcine in vitro fertilisation[J]. Reprod Fertil Dev, 2020, 32(4): 409-418. [80] DE ALCNTARA-NETO A S, CUELLO C, UZBEKOV R, et al. Oviductal extracellular vesicles enhance porcine in vitro embryo development by modulating the embryonic transcriptome[J]. Biomolecules, 2022, 12(9): 1300. [81] MOEIN-VAZIRI N, PHILLIPS I, SMITH S, et al. Heat-shock protein A8 restores sperm membrane integrity by increasing plasma membrane fluidity[J]. Reproduction, 2014, 147(5): 719-732. [82] BAI R, LATIFI Z, KUSAMA K, et al. Induction of immune-related gene expression by seminal exosomes in the porcine endometrium[J]. Biochem Biophys Res Commun, 2018, 495(1): 1094-1101. [83] BARRAUD-LANGE V, NAUD-BARRIANT N, BOMSEL M, et al. Transfer of oocyte membrane fragments to fertilizing spermatozoa[J]. FASEB J, 2007, 21(13): 3446-3449. [84] CAMPANELLA C, CARUSO BAVISOTTO C, LOGOZZI M, et al. On the choice of the extracellular vesicles for therapeutic purposes[J]. Int J Mol Sci, 2019, 20(2):236. [85] UMEDA R, SATOUH Y, TAKEMOTO M, et al. Structural insights into tetraspanin CD9 function[J]. Nat Commun, 2020, 11(1): 1606. [86] RUNGE K E, EVANS J E, HE Z, et al. Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution[J]. Dev Biol, 2007, 304(1): 317-325. [87] BIDARIMATH M, KHALAJ K, KRIDLI R T, et al. Extracellular vesicle mediated intercellular communication at the porcine maternal-fetal interface: a new paradigm for conceptus-endometrial cross-talk[J]. Sci Rep, 2017, 7(1):40476. [88] ECKERT J J, FLEMING T P. Tight junction biogenesis during early development[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2008, 1778(3): 717-728. [89] HU Q, ZANG X, DING Y, et al. Porcine uterine luminal fluid-derived extracellular vesicles improve conceptus-endometrial interaction during implantation[J]. Theriogenology, 2022, 178:8-17. [90] KRAWCZYNSKI K, NAJMULA J, BAUERSACHS S, et al. Micrornaome of porcine conceptuses and trophoblasts: expression profile of micrornas and their potential to regulate genes crucial for establishment of pregnancy[J]. Biol Rep, 2015, 92(1): 21. [91] GUZEWSKA M M, WITEK K J, KARNAS E, et al. Mir-125b-5p impacts extracellular vesicle biogenesis, trafficking, and EV subpopulation release in the porcine trophoblast by regulating ESCRT-dependent pathway[J]. FASEB J, 2023, 37(8): e23054. [92] CAPRA E, LANGE-CONSIGLIO A. The biological function of extracellular vesicles during fertilization, early embryo-maternal crosstalk and their involvement in reproduction: review and overview[J]. Biomolecules, 2020, 10(11):1510. [93] 张宝玉,刘润来,李欣雨,等.外泌体在胚胎发育及妊娠疾病中的应用[J]. 中国兽医学报, 2024, 44(11): 2502-2506. ZHANG B Y, LIU R L, LI X Y, et al.Application prospect of exosomes in pregnancy and pregnancy diseases of special economic animals[J].Chinese Journal of Veterinary Medicine, 2024,44(11):2502-2506. (in Chinese) [94] BANG S, QAMAR A Y, FANG X, et al. Effects of extracellular vesicles derived from steroids-primed oviductal epithelial cells on porcine in vitro embryonic development[J]. Theriogenology, 2023, 209:213-223. [95] FANG X, BANG S, TANGA B M, et al. Oviduct epithelial cell-derived extracellular vesicles promote the developmental competence of IVF porcine embryos[J]. Mol Med Rep, 2023, 27(6):122. [96] FANG X, TANGA B M, BANG S, et al. Oviduct epithelial cells-derived extracellular vesicles improve preimplantation developmental competence of in vitro produced porcine parthenogenetic and cloned embryos[J]. Mol Reprod Dev, 2022, 89(1): 54-65. [97] ALMINANA C, BAUERSACHS S. Extracellular vesicles: multi-signal messengers in the gametes/embryo-oviduct cross-talk[J]. Theriogenology, 2020, 150:59-69. [98] FANG X, TANGA B M, BANG S, et al. Oviduct epithelial cell-derived extracellular vesicles improve porcine trophoblast outgrowth[J]. Vet Sci, 2022, 9(11):609. [99] SAADELDIN I M, KIM S J, CHOI Y B, et al. Improvement of cloned embryos development by co-culturing with parthenotes: a possible role of exosomes/microvesicles for embryos paracrine communication[J]. Cell Reprogram, 2014, 16(3): 223-234. [100] MIURA S, KANG H, BANG S, et al. Effects of extracellular vesicles (EVs) from uterine fluid during estrus and diestrus on porcine embryonic development[J]. J Anim Rep Biot, 2024, 39(2): 131-137. [101] HUA R, LIU Q, LIAN W, et al. Transcriptome regulation of extracellular vesicles derived from porcine uterine flushing fluids during peri-implantation on endometrial epithelial cells and embryonic trophoblast cells[J]. Gene, 2022, 822:146337. [102] DING Y, HU Q, GAN J, et al. Effect of mir-143-3p from extracellular vesicles of porcine uterine luminal fluid on porcine trophoblast Cells[J]. Animals (Basel), 2022, 12(23):3402. [103] HUA R, WANG Y, LIAN W, et al. Small rea-seq analysis of extracellular vesicles from porcine uterine flushing fluids during peri-implantation[J]. Gene, 2021, 766:145117. [104] HONG L, ZANG X, HU Q, et al. Uterine luminal-derived extracellular vesicles: potential nanomaterials to improve embryo implantation[J]. J Nanobiotechnol, 2023, 21(1): 79. [105] 匡婧靖,贺艳娟,胡 群,等. 猪子宫腔液外泌体来源的TIMP2蛋白对胚胎附植的影响[J]. 畜牧兽医学报, 2022, 53(4): 1122-1132. KUANG J J, HE Y J, HU Q, et al. Effect of TIMP2 protein derived from porcine uterine fluid exosomes on embryo implantation during early pregnancy[J]. Acta Veterinaria et Zootechnica Sinica, 2022,53(4):1122-1132. (in Chinese) [106] TAN Q, SHI S, LIANG J, et al. Endometrial cell-derived small extracellular vesicle mir-100-5p promotes functions of trophoblast during embryo implantation[J]. Molecular Therapy-Nucleic Acids, 2021, 23: 217-231. [107] 施 爽. 胎盘滋养层细胞外泌体miRNA-1290靶向LHX6调控子宫内膜容受态的机制[D].杭州: 浙江大学, 2021. SHI S. Placental trophoblast cells-derived exosomal microRNA-1290 regulate the endometrial receptivity by targeting LHX6[D]. Hangzhou: Zhejiang University, 2021. (in Chinese) [108] GUZEWSKA M M, MYSZCZYNSKI K, HEIFETZ Y, et al. Embryonic signals mediate extracellular vesicle biogenesis and trafficking at the embryo-maternal interface[J]. Cell Commun Signal, 2023, 21(1): 210. [109] ZHOU C, CAI G, MENG F, et al. Deep-sequencing identification of microrna biomarkers in serum exosomes for early pig pregnancy[J]. Front Genet, 2020, 11:536. [110] 周 臣. 母猪血清外泌体miRNAs作为妊娠早期诊断标志物的研究[D]. 广州: 华南农业大学, 2020. ZHOU C.Study on serum exosomal mirnas as a diagnostic marker for early pregnancy in sows[D]. Guangzhou: South China Agricultural University, 2020. (in Chinese) [111] KIM J, SHIM J, KO N, et al. Effect of porcine oviductal fluid-derived extracellular vesicle supplementation on in vitro embryonic developmental competence and the production efficiency of cloned pigs[J]. Theriogenology, 2025, 242:117442. [112] SZUSZKIEWICZ J, NITKIEWICZ A, DRZEWIECKA K, et al. MiR-26a-5p and mir-125b-5p affect trophoblast genes and cell functions important during early pregnancydagger[J]. Biol Reprod, 2022, 107(2): 590-604. [113] CHEN W, XIE Y, XU Z, et al. Identification and functional analysis of mirnas in extracellular vesicles of semen plasma from high-and low-fertility boars[J]. Animals, 2024, 15(1): 40. [114] CHEN X, JIN Y, LV Y, et al. Extracellular vesicles in porcine seminal plasma maintain sperm function by reducing lyso-pc[J].Livest Sci, 2023, 276:105298. [115] ZHANG Y, DING N, XIE S, et al. Identification of important extracellular vesicle rna molecules related to sperm motility and prostate cancer[J]. Extracell Vesicles Circ Nucleic Acids, 2021, 2(2): 104. [116] HAN Y, QU X, CHEN X, et al. Effects of follicular fluid exosomes on in vitro maturation of porcine oocytes[J]. Anim Biotechnol, 2023, 34(7): 2757-2765. [117] FRANZONI G, MECOCCI S, DE CIUCIS C G, et al. Goat milk extracellular vesicles: immuno-modulation effects on porcine monocyte-derived macrophages in vitro[J]. Front Immunol, 2023, 14:1209898. [118] ZENG B, WANG H, LUO J, et al. Porcine milk-derived small extracellular vesicles promote intestinal immunoglobulin production through pIgr[J]. Animals (Basel), 2021, 11(6):1522. [119] LIANG J Q, XIE M, HOU L, et al. MiRNAs derived from milk small extracellular vesicles inhibit porcine epidemic diarrhea virus infection[J]. Antiviral Res, 2023, 212:105579. [120] TESFAYE D, MENJIVAR N, GEBREMEDHN S. Current knowledge and the future potential of extracellular vesicles in mammalian reproduction[J]. Reprod Fertil Dev, 2021, 34(2): 174-189. [121] BURNOUF T, AGRAHARI V, AGRAHARI V. Extracellular vesicles as nanomedicine: hopes and hurdles in clinical translation[J]. Int J Nanomedicine, 2019, 14:8847-8859. [122] WITWER K W, BUZAS E I, BEMIS L T, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research[J]. J Extracell Vesicles, 2013, 2(1):2036. [123] LI P, KASLAN M, LEE S H, et al. Progress in exosome isolation techniques[J]. Theranostics, 2017, 7(3): 789-804. [124] DE CIUCIS C G, FRUSCIONE F, DE PAOLIS L, et al. Toll-like receptors and cytokine modulation by goat milk extracellular vesicles in a model of intestinal inflammation[J]. Int J Mol Sci, 2023, 24(13): 11096. |
| [1] | 田姣, 龙菊烟, 陈霞, 岑晓丽, 牛熙, 黄世会, 王嘉福, 冉雪琴. 香猪ENTPD1基因3'UTR的SINE插入下调其基因表达[J]. 畜牧兽医学报, 2025, 56(9): 4303-4314. |
| [2] | 覃阳, 夏嗣廷, 何流琴, 王天丽, 刘宇炎, 姜肖翰, 刘智豪, 刘思危, 李铁军, 印遇龙. 慢性氧化应激对断奶仔猪器官组织微量元素含量的影响[J]. 畜牧兽医学报, 2025, 56(9): 4452-4460. |
| [3] | 茹敏, 蒋小丰, 罗国升, 武永厚. 饲粮添加枯草芽孢杆菌对大肠杆菌攻毒仔猪生长性能、血清免疫及抗氧化功能、肠道形态和微生物的影响[J]. 畜牧兽医学报, 2025, 56(9): 4461-4471. |
| [4] | 桂若虹, 曹洪战, 刘松瓒, 刘吉祥, 赵嘉龙, 芦春莲. 饲粮不同代谢能和SID赖氨酸水平对高产哺乳深县母猪相关性能的影响[J]. 畜牧兽医学报, 2025, 56(9): 4472-4490. |
| [5] | 邱话龙传, 金芊芊, 许潇涵, 周静, 蔡承志, 李龙. 基于纳米孔测序的十种猪病原检测方法的建立[J]. 畜牧兽医学报, 2025, 56(9): 4546-4558. |
| [6] | 刘君君, 郭东辉, 刘缓缓, 宋润泽, 赵赛娅, 杨钧尧, 魏战勇, 项玉强, 陈丽颖. 基于免疫磁珠的智能手机辅助比色传感平台用于PDCoV/TGEV IgG抗体的快速检测[J]. 畜牧兽医学报, 2025, 56(9): 4559-4571. |
| [7] | 李慧敏, 雷铭楷, 阮胜男, 李盼盼, 李文涛, 何启盖. 猪流行性腹泻病毒荧光微球免疫层析抗原检测方法的建立[J]. 畜牧兽医学报, 2025, 56(9): 4572-4580. |
| [8] | 国桂海, 马茹梦, 尹方洁, 刘芯孜, 王梓, 孟伟静, 李佳璇, 崔文, 姜艳平, 唐丽杰, 赵海渊, 王晓娜. 表达猪流行性腹泻病毒S1基因重组罗伊氏黏液乳杆菌诱导仔猪特异性免疫应答的研究[J]. 畜牧兽医学报, 2025, 56(9): 4581-4592. |
| [9] | 陶丽寒, 林翠, 吴诚诚, 康昭风, 黄建珍. 猪丁型冠状病毒编码蛋白结构与功能研究进展[J]. 畜牧兽医学报, 2025, 56(8): 3678-3689. |
| [10] | 胡金玲, 钟奇祺, 黄程, 雷明刚. AKR1B1介导AMPK/mTOR/S6通路调控猪骨骼肌卫星细胞增殖和分化[J]. 畜牧兽医学报, 2025, 56(8): 3722-3733. |
| [11] | 迟顺顺, 吴丹, 王楠, 王婉洁, 聂雨欣, 牟玉莲, 刘志国, 朱振东, 李奎. 基于RPA-CRISPR/Cas12a的MSTN基因编辑猪检测方法的建立及应用[J]. 畜牧兽医学报, 2025, 56(8): 3734-3748. |
| [12] | 刘莎, 杨彩春, 张晓雨, 陈琼, 刘雄, 陈洪波, 周焕焕, 史良玉. 基于80K SNP芯片的梅花星猪群体遗传结构解析及全基因组连续纯合片段特征研究[J]. 畜牧兽医学报, 2025, 56(8): 3749-3760. |
| [13] | 李伉, 陈思颍, 孙雅雯, 冷璇, 王栋, 崔凯, 庞云渭. 甜菜碱对猪孤雌激活胚胎体外发育的影响[J]. 畜牧兽医学报, 2025, 56(8): 3826-3836. |
| [14] | 曹宁, 张虎, 王俊丽, 萨仁娜, 赵峰, 解竞静, 高理想, 赵江涛, 董莹, 王钰明. 干燥方式对仿生法测定猪饲料氨基酸消化率的影响[J]. 畜牧兽医学报, 2025, 56(8): 3893-3907. |
| [15] | 孟亚轩, 刘彦, 王晶, 陈国顺, 冯涛. 氨基葡萄糖对断奶仔猪血清抗氧化、炎症指标以及肠道微生物的影响[J]. 畜牧兽医学报, 2025, 56(8): 3908-3921. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||