

畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (12): 5972-5986.doi: 10.11843/j.issn.0366-6964.2025.12.004
张小芳1,4(
), 祝媛媛1, 黄雯卉1, 甘霖生1, 刘杰2,3,4, 魏立民2,3,4, 柒启恩1,*(
)
收稿日期:2025-04-18
出版日期:2025-12-23
发布日期:2025-12-24
通讯作者:
柒启恩
E-mail:2819831857@qq.com;qiqien@fosu.edu.cn
作者简介:张小芳(1996-),女,贵州德江人,硕士生,主要从事动物营养与饲料的研究,E-mail: 2819831857@qq.com
基金资助:
ZHANG Xiaofang1,4(
), ZHU Yuanyuan1, HUANG Wenhui1, GAN Linsheng1, LIU Jie2,3,4, WEI Limin2,3,4, QI Qien1,*(
)
Received:2025-04-18
Online:2025-12-23
Published:2025-12-24
Contact:
QI Qien
E-mail:2819831857@qq.com;qiqien@fosu.edu.cn
摘要:
细胞外囊泡(extracellular vesicles,EVs)属于细胞分泌衍生的膜结构,是细胞间信息物质传递的载体,在动物生殖过程中发挥着关键作用。哺乳动物繁殖是一个较为复杂的过程,受多种因素调控。随着对EVs在动物繁殖中研究的不断深入,其在猪繁殖中的应用也逐渐展现出巨大潜力。EVs主要通过参与多种生理功能来实现生殖过程中的平衡,确保猪繁殖过程中配子发生、受精、囊胚植入、胚胎着床及分娩等环节的顺利进行。本文对EVs的生物学特征及其在猪繁殖各阶段的作用进行了综述,旨在为EVs在猪繁殖中的研究应用提供一定的理论参考。
中图分类号:
张小芳, 祝媛媛, 黄雯卉, 甘霖生, 刘杰, 魏立民, 柒启恩. 细胞外囊泡在猪繁殖中的研究进展[J]. 畜牧兽医学报, 2025, 56(12): 5972-5986.
ZHANG Xiaofang, ZHU Yuanyuan, HUANG Wenhui, GAN Linsheng, LIU Jie, WEI Limin, QI Qien. Research Progress of Extracellular Vesicles in Porcine Reproduction[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(12): 5972-5986.
表 1
细胞外囊泡亚型的特征比较"
| EVs亚型 EVs subtype | 外泌体(EXO) Exosome | 微泡(MV) Microvesicle | 凋亡小体(AB) Aapoptotic body | 参考文献 Reference |
| 直径Diameter | 30~100 nm | 100~1 000 nm | 1~5 μm | [ |
| 密度梯度 Density gradient | 1.13~1.19 g·mL-1 | 1.25~1.30 g·mL-1 | 1.16~1.28 g·mL-1 | [ |
| 检测方法 Detection method | TEM、FC、蛋白质印迹、质谱 | FC、基于捕获的检测、TEM | FC、TEM | [ |
| 内容Content | 蛋白质、脂质、核酸、酶 | 蛋白质、脂质、核酸 | 完整的细胞器、染色质、少量糖基化蛋白 | [ |
| 功能Function | 具有特异性免疫反应、抗原呈递、免疫激活、免疫抑制 | 具有促凝活性和调节自身免疫性疾病的作用 | 免疫抑制 | [ |
| 分泌Secretion | 细胞多泡体胞吐作用 | 通过质膜的出芽/起泡 | 凋亡细胞的气泡中释放 | [ |
| 标志物Biomarker | CD63、CD81、CD9、LAMP1和TSG101 | 组织因子和细胞特异性标志物、整合素 | DNA含量、组蛋白 | [ |
| 位置Position | 所有细胞类型 | 红细胞、血小板、淋巴细胞、内皮细胞 | 将凋亡小体释放到细胞外间隙的垂死细胞 | [ |
表 2
细胞外囊泡对精子的作用"
| EVs来源 Source of EVs | 作用 Function | 参考文献 Reference |
| 精浆EVs Seminal plasma EVs | 保护精子的细胞质膜、DNA完整性、运动性,提高精子的存活力和存活率。 | [ |
| 提高精子存活率、功能、保护精子免受免疫排斥反应。 | [ | |
| 提高精子活力、改善精子质膜完整性、缓解氧化应激、抑制精子早衰、降低丙二醛含量。 | [ | |
| 增加精子中细胞内ATP、以及精子活力和降低凋亡率。 | [ | |
| 附睾上皮细胞EVs Epididymal epithelial cell EVs | 刺激精子活力、调节精子运动和防止氧化应激。 | [ |
| EVs(附睾小体)参与精子活力,防止过早获能和顶体反应。 | [ | |
| 调节精子运动、影响精子成熟。 | [ | |
| 前列腺体EVs Prostate gland EVs | 保护精子、调节活力、诱导顶体反应、向精子发送信号Ca2+、抗氧化活性、胆固醇获能、顶体反应。 | [ |
| 血清EVs Serum EVs | 改善解冻后精子的运动性、活力、获能、结构完整性、抗氧化能力、线粒体活性和膜完整性。 | [ |
| 1 |
AIELLO A , GIANNESSI F , PERCARIO Z A , et al. An emerging interplay between extracellular vesicles and cytokines[J]. Cytokine Growth Factor Rev, 2020, 51, 49- 60.
doi: 10.1016/j.cytogfr.2019.12.003 |
| 2 |
HANAYAMA R . Emerging roles of extracellular vesicles in physiology and disease[J]. J Biochem, 2021, 169 (2): 135- 138.
doi: 10.1093/jb/mvaa138 |
| 3 |
GODAKUMARA K , DISSANAYAKE K , HASAN M M , et al. Role of extracellular vesicles in intercellular communication during reproduction[J]. Reprod Domest Anim, 2022, 57, 14- 21.
doi: 10.1111/rda.14205 |
| 4 |
SKOTLAND T , SAGINI K , SANDVIG K , et al. An emerging focus on lipids in extracellular vesicles[J]. Adv Drug Deliv Rev, 2020, 159, 308- 321.
doi: 10.1016/j.addr.2020.03.002 |
| 5 | 李莎莎, 余飞, 刘万卉. 细胞外囊泡表征检测方法的对比[J]. 中国生物化学与分子生物学报, 2024, 40 (8): 1093- 1101. |
| LI S S , YU F , LIU W H . Comparative of extracellular vesicle characterization methods[J]. Chinese Journal of Biochemistry and Molecular Biology, 2024, 40 (8): 1093- 1101. | |
| 6 |
JEPPESEN D K , ZHANG Q , FRANKLIN J L , et al. Extracellular vesicles and nanoparticles: emerging complexities[J]. Trends Cell Biol, 2023, 33 (8): 667- 681.
doi: 10.1016/j.tcb.2023.01.002 |
| 7 |
GYORGY B , SZABO T G , PASZTOI M , et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles[J]. Cell Mol Life Sci, 2011, 68 (16): 2667- 2688.
doi: 10.1007/s00018-011-0689-3 |
| 8 |
COLOMBO M , RAPOSO G , THERY C . Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles[J]. Annu Rev Cell Dev Biol, 2014, 30 (1): 255- 289.
doi: 10.1146/annurev-cellbio-101512-122326 |
| 9 |
MUNOZ E L , FUENTES F B , FELMER R N , et al. Extracellular vesicles in mammalian reproduction: a review[J]. Zygote, 2022, 30 (4): 440- 463.
doi: 10.1017/S0967199422000090 |
| 10 |
YANEZ-MO M , SILJANDER P R , ANDREU Z , et al. Biological properties of extracellular vesicles and their physiological functions[J]. J Extracell Vesicles, 2015, 4 (1): 27066.
doi: 10.3402/jev.v4.27066 |
| 11 | LU M , SHAO W , XING H , et al. Extracellular vesicle-based nucleic acid delivery[J]. Int Med, 2023, 1 (2): e20220007. |
| 12 |
VAN NIEL G , D'ANGELO G , RAPOSO G . Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19 (4): 213- 228.
doi: 10.1038/nrm.2017.125 |
| 13 |
ZHANG Y , LIU Y , LIU H , et al. Exosomes: biogenesis, biologic function and clinical potential[J]. Cell Biosci, 2019, 9 (1): 19.
doi: 10.1186/s13578-019-0282-2 |
| 14 |
DOYLE L M , WANG M Z . Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis[J]. Cells, 2019, 8 (7): 727.
doi: 10.3390/cells8070727 |
| 15 |
刘铃, 王丹丹, 崔凯, 等. 猪繁殖与呼吸综合征抗病育种研究进展[J]. 畜牧兽医学报, 2023, 54 (2): 434- 442.
doi: 10.11843/j.issn.0366-6964.2023.02.002 |
|
LIU L , WANG D D , CUI K , et al. Advances of disease-resistant breeding on porcine reproductive and respiratory syndrome[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (2): 434- 442.
doi: 10.11843/j.issn.0366-6964.2023.02.002 |
|
| 16 | 张懿坤, 孙巍巍. 猪繁殖障碍性传染病现状及防控对策[J]. 中兽医学杂志, 2021 (8): 15- 17. |
| ZHANG Y K , SUN W W . Current status and prevention strategies of reproductive diseases in swine[J]. Chinese Journal of Traditional Veterinary Science, 2021 (8): 15- 17. | |
| 17 | 由广勇. 繁殖母猪常见病综合防治技术措施[J]. 吉林畜牧兽医, 2023, 44 (12): 27- 28. |
| YOU G Y . Comprehensive prevention and control measures for common diseases in breeding sows[J]. J Anim Husb Vet Med, 2023, 44 (12): 27- 28. | |
| 18 | 李连敏, 裴爱民. 引起猪繁殖障碍的因素及防治对策[J]. 黑龙江动物繁殖, 2009, 17 (2): 28- 30. |
| LI L M , PEI A M . Factors causing reproductive disorders in pigs and their prevention strategies[J]. Heilongjiang Journal of Animal Reproduction, 2009, 17 (2): 28- 30. | |
| 19 | 范毅. 种公猪繁殖障碍的防治措施[J]. 中国动物保健, 2023, 25 (2): 83- 84. |
| FAN Y . Prevention and control measures for breeding obstacles in boars[J]. Chinese Animal Health, 2023, 25 (2): 83- 84. | |
| 20 | 刘莹. 浅谈影响种公猪繁殖性能的因素[J]. 现代畜牧兽医, 2023 (4): 86- 89. |
| LIU Y . A brief discussion on factors affecting breeding performance of breeding boars[J]. Modern Journal of Animal Husbandry and Veterianry Medicine, 2023 (4): 86- 89. | |
| 21 | BURKARD C , OPRIESSNIG T , MILEHAM A J , et al. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection[J]. J Virol, 2018, 92 (16): e00415- 18. |
| 22 | 李春. 生猪养殖中引起种猪繁殖障碍主要疾病的防治措施分析[J]. 河北农业, 2024 (1): 93- 94. |
| LI C . Analysis of prevention and control measures for major diseases causing reproductive disorders in breeding pigs in pig farming[J]. Hebei Agriculture, 2024 (1): 93- 94. | |
| 23 | 肖兴玉, 刘世博, 张莹辉, 等. 猪布鲁氏菌病研究进展[J]. 动物医学进展, 2024, 45 (6): 95- 99. |
| XIAO X Y , LIU S B , ZHANG Y H , et al. Advances in swine brucellosis[J]. Progress in Veterinary Medicine, 2024, 45 (6): 95- 99. | |
| 24 | 吴易兵, 王洪亮, 杨青. 伪狂犬病毒对猪卵巢及早期胚胎发育的研究进展[J]. 江西畜牧兽医杂志, 2025 (2): 4- 6. |
| WU Y B , WANG H L , YANG Q . Research progress on pseudorabies virus in pig ovary and early embryo development[J]. Jiangxi Journal of Animal Husbandry Veterinary Medicine, 2025 (2): 4- 6. | |
| 25 |
XU Z , ZHANG K , YANG Y , et al. The role of reproductive tract extracellular vesicles on boar sperm function[J]. Theriogenology, 2024, 230, 278- 284.
doi: 10.1016/j.theriogenology.2024.09.029 |
| 26 |
KOWALCZYK A , WRZECINSKA M , CZERNIAWSKA-PIATKOWSKA E , et al. Exosomes-spectacular role in reproduction[J]. Biomed Pharmacother, 2022, 148, 112752.
doi: 10.1016/j.biopha.2022.112752 |
| 27 |
GURUNATHAN S , KANG M , SONG H , et al. The role of extracellular vesicles in animal reproduction and diseases[J]. J Anim Sci Biotechnol, 2022, 13 (1): 62.
doi: 10.1186/s40104-022-00715-1 |
| 28 | MACHTINGER R , LAURENT L C , BACCARELLI A A . Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation[J]. Hum Reprod Update, 2016, 22 (2): 182- 193. |
| 29 | 高威, 周臣, 洪林君. 哺乳动物子宫腔胞外囊泡的组分及功能研究进展[J]. 现代畜牧兽医, 2019 (6): 53- 59. |
| GAO W , ZHOU C , HONG L J . Progress in the composition and function of extracellular vesiclesin mammalian uterine luminal fluid[J]. Modern Journal of Animal Husbandry Veterinary Medicine, 2019 (6): 53- 59. | |
| 30 |
FRANCA L R , AVELAR G F , ALMEIDA F F L . Spermatogenesis and sperm transit through the epididymis in mammals with emphasis on pigs[J]. Theriogenology, 2005, 63 (2): 300- 318.
doi: 10.1016/j.theriogenology.2004.09.014 |
| 31 |
BARRANCO I , SPINACI M , NESCI S , et al. Seminal extracellular vesicles alter porcine in vitro fertilization outcome by modulating sperm metabolism[J]. Theriogenology, 2024, 219, 167- 179.
doi: 10.1016/j.theriogenology.2024.02.024 |
| 32 |
ALVAREZ-RODRIGUEZ M , LJUNGGREN S A , KARLSSON H , et al. Exosomes in specific fractions of the boar ejaculate contain CD44: a marker for epididymosomes?[J]. Theriogenology, 2019, 140, 143- 152.
doi: 10.1016/j.theriogenology.2019.08.023 |
| 33 |
RODRIGUEZ-MARTINEZ H , MARTINEZ E A , CALVETE J J , et al. Seminal plasma: relevant for fertility?[J]. Int J Mol Sci, 2021, 22 (9): 4368.
doi: 10.3390/ijms22094368 |
| 34 |
PIEHL L L , FISCHMAN M L , HELLMAN U , et al. Boar seminal plasma exosomes: effect on sperm function and protein identification by sequencing[J]. Theriogenology, 2013, 79 (7): 1071- 1082.
doi: 10.1016/j.theriogenology.2013.01.028 |
| 35 | PARK K , KIM B , KANG J , et al. Ca2+ signaling tools acquired from prostasomes are required for progesterone-induced sperm motility[J]. Sci Signal, 2011, 4 (173): ra31. |
| 36 |
ZHAO Y , QIN J , SUN J , et al. Motility-related micrornas identified in pig seminal plasma exosomes by high-throughput small RNA sequencing[J]. Theriogenology, 2024, 215, 351- 360.
doi: 10.1016/j.theriogenology.2023.11.028 |
| 37 |
DU J , SHEN J , WANG Y , et al. Boar seminal plasma exosomes maintain sperm function by infiltrating into the sperm membrane[J]. Oncotarget, 2016, 7 (37): 58832- 58847.
doi: 10.18632/oncotarget.11315 |
| 38 |
XU Z , XIE Y , WU C , et al. The effects of boar seminal plasma extracellular vesicles on sperm fertility[J]. Theriogenology, 2024, 213, 79- 89.
doi: 10.1016/j.theriogenology.2023.09.026 |
| 39 | 徐志谦, 谢言射, 蔡更元, 等. 精浆胞外囊泡对精子功能的作用研究进展[J]. 中国畜牧杂志, 2022, 58 (5): 101- 106. |
| XU Z Q , XIE Y S , CAI G Y , et al. Research progress on the effect of seminal plasma extracellular vesicles on sperm function[J]. Chinese Journal of Animal Science, 2022, 58 (5): 101- 106. | |
| 40 | 徐志谦. 猪精浆胞外囊泡对精子受精功能的影响及其机制研究[D]. 广州: 华南农业大学, 2021. |
| XU Z Q. Effects of boar seminal plasma extracellular vesicles on sperm fertilization and its mechanism[D]. Guangzhou: South China Agricultural University, 2021. (in Chinese) | |
| 41 | 王语晴, 高丰鑫, 张小宁. 哺乳动物精浆胞外囊泡及各组分的功能[J]. 中国生物化学与分子生物学报, 2018, 34 (2): 162- 169. |
| WANG Y Q , GAO F X , ZHANG X N . Functions of the seminal extracellular vesicles and its components in mammals[J]. Chinese Journal of Biochemistry and Molecular Biology, 2018, 34 (2): 162- 169. | |
| 42 | 陈璇. 公猪精浆外泌体在17 ℃液相保存中维持精子功能的作用研究[D]. 延吉: 延边大学, 2022. |
| CHEN X. Study on the maintenance of sperm function by exosomes from boar seminal seminal fluid in 17 ℃ liquid phase preservation[D]. Yanji: Yanbian University, 2022. (in Chinese) | |
| 43 |
LEAHY T , GADELLA B M . Sperm surface changes and physiological consequences induced by sperm handling and storage[J]. Reproduction, 2011, 142 (6): 759- 778.
doi: 10.1530/REP-11-0310 |
| 44 |
PEDROSA A C , ANDRADE TORRES M , VILELA ALKMIN D , et al. Spermatozoa and seminal plasma small extracellular vesicles mirnas as biomarkers of boar semen cryotolerance[J]. Theriogenology, 2021, 174, 60- 72.
doi: 10.1016/j.theriogenology.2021.07.022 |
| 45 | SAADELDIN I M , KHALIL W A , ALHARBI M G , et al. The current trends in using nanoparticles, liposomes, and exosomes for semen cryopreservation[J]. Animals (Basel), 2020, 10 (12): 2281. |
| 46 | KOWALCZYK A , KORDAN W . Evaluation of the effectiveness of the use of exosomes in the regulation of the mitochondrial membrane potential of frozen/thawed spermatozoa[J]. PLoS One, 2024, 19 (7): e303479. |
| 47 |
RODRIGUEZ-MARTINEZ H , ROCA J . Extracellular vesicles in seminal plasma: a safe and relevant tool to improve fertility in livestock?[J]. Anim Reprod Sci, 2022, 244, 107051.
doi: 10.1016/j.anireprosci.2022.107051 |
| 48 |
ANDRADE A F C , KNOX R V , TORRES M A , et al. What is the relevance of seminal plasma from a functional and preservation perspective?[J]. Anim Reprod Sci, 2022, 246, 106946.
doi: 10.1016/j.anireprosci.2022.106946 |
| 49 |
GUO H , CHANG Z , ZHANG Z , et al. Extracellular ATPs produced in seminal plasma exosomes regulate boar sperm motility and mitochondrial metabolism[J]. Theriogenology, 2019, 139, 113- 120.
doi: 10.1016/j.theriogenology.2019.08.003 |
| 50 | BASKARAN S , PANNER SELVAM M K , AGARWAL A . Exosomes of male reproduction[J]. Adv Clin Chem, 2020, 95, 149- 163. |
| 51 |
ALI W , DENG K , BIAN Y , et al. Spectacular role of epididymis and bio-active cargo of nano-scale exosome in sperm maturation: A review[J]. Biomed Pharmacother, 2023, 164, 114889.
doi: 10.1016/j.biopha.2023.114889 |
| 52 |
SULLIVAN R , SAEZ F , GIROUARD J , et al. Role of exosomes in sperm maturation during the transit along the male reproductive tract[J]. Blood Cells Mol Dis, 2005, 35 (1): 1- 10.
doi: 10.1016/j.bcmd.2005.03.005 |
| 53 |
SICILIANO L , MARCIANO V , CARPINO A . Prostasome-like vesicles stimulate acrosome reaction of pig spermatozoa[J]. Reprod Biol Endocrinol, 2008, 6 (1): 5.
doi: 10.1186/1477-7827-6-5 |
| 54 |
WANG Y , LIU Q , SUN Q , et al. Exosomes from porcine serum as endogenous additive maintain function of boar sperm during liquid preservation at 17 degrees C in vitro[J]. Theriogenology, 2024, 219, 147- 156.
doi: 10.1016/j.theriogenology.2024.02.015 |
| 55 |
MATSUNO Y , ONUMA A , FUJIOKA Y A , et al. Effects of exosome-like vesicles on cumulus expansion in pigs in vitro[J]. J Reprod Dev, 2017, 63 (1): 51- 58.
doi: 10.1262/jrd.2016-124 |
| 56 |
EPPIG J J . Oocyte control of ovarian follicular development and function in mammals[J]. Reproduction, 2001, 122 (6): 829- 838.
doi: 10.1530/rep.0.1220829 |
| 57 | MATSUNO Y , KANKE T , MARUYAMA N , et al. Characterization of mrna profiles of the exosome-like vesicles in porcine follicular fluid[J]. PLoS One, 2019, 14 (6): e217760. |
| 58 |
TESFAYE D , HAILAY T , SALILEW-WONDIM D , et al. Extracellular vesicle mediated molecular signaling in ovarian follicle: implication for oocyte developmental competence[J]. Theriogenology, 2020, 150, 70- 74.
doi: 10.1016/j.theriogenology.2020.01.075 |
| 59 | 王鹏旭, 阮鑫, 董晓英. 细胞外囊泡在卵泡发育中的交互作用及其应用前景[J]. 医学研究杂志, 2023, 52 (11): 188- 191. |
| WANG P X , RUAN X , DONG X Y . The interactions of extracellular vesicles in follicle development and their application prospects[J]. Journal of Medicine Research, 2023, 52 (11): 188- 191. | |
| 60 | GRZESIAK M , POPIOLEK K , KNAPCZYK-STWORA K . Extracellular vesicles in follicular fluid of sexually mature gilts' ovarian antral follicles-identification and proteomic analysis[J]. J Physiol Pharmacol, 2020, 71 (1): 10. |
| 61 |
LIU J , YAO W , YAO Y , et al. Mir-92a inhibits porcine ovarian granulosa cell apoptosis by targeting smad7 gene[J]. FEBS Letters, 2014, 588 (23): 4497- 4503.
doi: 10.1016/j.febslet.2014.10.021 |
| 62 | 沈曹美惠. 卵泡液外泌体LncRNA LOC102163816促进猪卵泡颗粒细胞增殖的机制研究[D]. 长春: 吉林大学, 2024. |
| SHEN C M H. Mechanism of lncrna LOC102163816 from follicular fluid exosomes promoting proliferation of porcine granulosa cell[D]. Changchun: Jilin University, 2024. (in Chinese) | |
| 63 |
YUAN C , CHEN X , SHEN C , et al. Follicular fluid exosomes regulate oxidative stress resistance, proliferation, and steroid synthesis in porcine theca cells[J]. Theriogenology, 2022, 194, 75- 82.
doi: 10.1016/j.theriogenology.2022.09.024 |
| 64 |
YUAN C , CAO M , CHEN L , et al. Follicular fluid exosomes inhibit BDNF expression and promote the secretion of chemokines in granulosa cells by delivering mir-10b-5p[J]. Theriogenology, 2023, 199, 86- 94.
doi: 10.1016/j.theriogenology.2023.01.013 |
| 65 | 袁晨丰. 卵泡液外泌体对猪卵泡细胞增殖、类固醇合成、抗氧化应激和趋化因子分泌的影响[D]. 长春: 吉林大学, 2023. |
| YUAN C F. Effects of follicular fluid exosomes on proliferation, steroid synthesis, oxidantive stress resistance and chemokines secretion in porcine follicular cells[D]. Changchun: Jilin University, 2023. (in Chinese) | |
| 66 | 李峥. 猪卵泡液外泌体对颗粒细胞增殖及孕酮合成的影响[D]. 长春: 吉林大学, 2020. |
| LI Z. Effects of porcine follicular fluid exosomes on proliferation and progesterone synthesis in procine granulosa cells[D]. Changchun: Jilin University, 2020. (in Chinese) | |
| 67 | 韩政. 猪卵泡液外泌体分离鉴定及其对颗粒细胞增殖影响的研究[D]. 合肥: 安徽农业大学, 2023. |
| HAN Z. Isolation and identification of exosomes from porcine follicular fluid and their effect on granulosa cell proliferation[D]. Hefei: Anhui Agricultural University, 2023. (in Chinese) | |
| 68 |
LI Q , DU X , LIU L , et al. Upregulation of mir-146b promotes porcine ovarian granulosa cell apoptosis by attenuating CYP19A1[J]. Domest Anim Endocrinol, 2021, 74, 106509.
doi: 10.1016/j.domaniend.2020.106509 |
| 69 |
HAN Y , ZHANG J , LIANG W , et al. Follicular fluid exosome-derived mir-339-5p enhances in vitro maturation of porcine oocytes via targeting SFPQ, a regulator of the ERK1/2 pathway[J]. Theriogenology, 2024, 225, 107- 118.
doi: 10.1016/j.theriogenology.2024.04.022 |
| 70 |
HAN Y , LU P , YU Y , et al. Mirna-125a regulates porcine oocyte maturation in vitro by targeting ADAR[J]. Theriogenology, 2025, 235, 184- 193.
doi: 10.1016/j.theriogenology.2025.01.011 |
| 71 |
REN J , DING Y , SHI J , et al. Porcine granulosa-cell-derived exosomes enhance oocyte development: an in vitro study[J]. Antioxidants (Basel), 2024, 13 (3): 348.
doi: 10.3390/antiox13030348 |
| 72 |
FU T , WANG S , LIN T , et al. The exploration of mirnas from porcine fallopian tube stem cells on porcine oocytes[J]. Front Vet Sci, 2022, 9, 869217.
doi: 10.3389/fvets.2022.869217 |
| 73 |
MATEO-OTERO Y , YESTE M , ROCA J , et al. Seminal extracellular vesicles subsets modulate gene expression in cumulus cells of porcine in vitro matured oocytes[J]. Sci Rep, 2022, 12 (1): 19096.
doi: 10.1038/s41598-022-22004-7 |
| 74 |
HE Z , XIE M , LI Q Q , et al. Research progress on the microregulatory mechanisms of fertilization: a review[J]. In Vivo, 2022, 36 (5): 2002- 2013.
doi: 10.21873/invivo.12926 |
| 75 |
GEORGADAKI K , KHOURY N , SPANDIDOS D A , et al. The molecular basis of fertilization (Review)[J]. Int J Mol Med, 2016, 38 (4): 979- 986.
doi: 10.3892/ijmm.2016.2723 |
| 76 | BOGACKI M , JALALI B M , WIECKOWSKA A , et al. Prolonged effect of seminal plasma on global gene expression in porcine endometrium[J]. Genes (Basel), 2020, 11 (11) |
| 77 |
SAINT-DIZIER M , SCHOEN J , CHEN S , et al. Composing the early embryonic microenvironment: physiology and regulation of oviductal secretions[J]. Int J Mol Sci, 2019, 21 (1): 223.
doi: 10.3390/ijms21010223 |
| 78 |
PADILLA L , BARRANCO I , MARTINEZ-HERNANDEZ J , et al. Extracellular vesicles would be involved in the release and delivery of seminal TGF-beta isoforms in pigs[J]. Front Vet Sci, 2023, 10, 1102049.
doi: 10.3389/fvets.2023.1102049 |
| 79 |
ALCANTARA-NETO A S , FERNANDEZ-RUFETE M , CORBIN E , et al. Oviduct fluid extracellular vesicles regulate polyspermy during porcine in vitro fertilisation[J]. Reprod Fertil Dev, 2020, 32 (4): 409- 418.
doi: 10.1071/RD19058 |
| 80 |
DE ALCÂNTARA-NETO A S , CUELLO C , UZBEKOV R , et al. Oviductal extracellular vesicles enhance porcine in vitro embryo development by modulating the embryonic transcriptome[J]. Biomolecules, 2022, 12 (9): 1300.
doi: 10.3390/biom12091300 |
| 81 |
MOEIN-VAZIRI N , PHILLIPS I , SMITH S , et al. Heat-shock protein A8 restores sperm membrane integrity by increasing plasma membrane fluidity[J]. Reproduction, 2014, 147 (5): 719- 732.
doi: 10.1530/REP-13-0631 |
| 82 |
BAI R , LATIFI Z , KUSAMA K , et al. Induction of immune-related gene expression by seminal exosomes in the porcine endometrium[J]. Biochem Biophys Res Commun, 2018, 495 (1): 1094- 1101.
doi: 10.1016/j.bbrc.2017.11.100 |
| 83 |
BARRAUD-LANGE V , NAUD-BARRIANT N , BOMSEL M , et al. Transfer of oocyte membrane fragments to fertilizing spermatozoa[J]. FASEB J, 2007, 21 (13): 3446- 3449.
doi: 10.1096/fj.06-8035hyp |
| 84 |
CAMPANELLA C , CARUSO BAVISOTTO C , LOGOZZI M , et al. On the choice of the extracellular vesicles for therapeutic purposes[J]. Int J Mol Sci, 2019, 20 (2): 236.
doi: 10.3390/ijms20020236 |
| 85 |
UMEDA R , SATOUH Y , TAKEMOTO M , et al. Structural insights into tetraspanin CD9 function[J]. Nat Commun, 2020, 11 (1): 1606.
doi: 10.1038/s41467-020-15459-7 |
| 86 |
RUNGE K E , EVANS J E , HE Z , et al. Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution[J]. Dev Biol, 2007, 304 (1): 317- 325.
doi: 10.1016/j.ydbio.2006.12.041 |
| 87 |
BIDARIMATH M , KHALAJ K , KRIDLI R T , et al. Extracellular vesicle mediated intercellular communication at the porcine maternal-fetal interface: a new paradigm for conceptus-endometrial cross-talk[J]. Sci Rep, 2017, 7 (1): 40476.
doi: 10.1038/srep40476 |
| 88 |
ECKERT J J , FLEMING T P . Tight junction biogenesis during early development[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2008, 1778 (3): 717- 728.
doi: 10.1016/j.bbamem.2007.09.031 |
| 89 |
HU Q , ZANG X , DING Y , et al. Porcine uterine luminal fluid-derived extracellular vesicles improve conceptus-endometrial interaction during implantation[J]. Theriogenology, 2022, 178, 8- 17.
doi: 10.1016/j.theriogenology.2021.10.021 |
| 90 | KRAWCZYNSKI K , NAJMULA J , BAUERSACHS S , et al. Micrornaome of porcine conceptuses and trophoblasts: expression profile of micrornas and their potential to regulate genes crucial for establishment of pregnancy[J]. Biol Rep, 2015, 92 (1): 21. |
| 91 |
GUZEWSKA M M , WITEK K J , KARNAS E , et al. Mir-125b-5p impacts extracellular vesicle biogenesis, trafficking, and EV subpopulation release in the porcine trophoblast by regulating ESCRT-dependent pathway[J]. FASEB J, 2023, 37 (8): e23054.
doi: 10.1096/fj.202300710R |
| 92 |
CAPRA E , LANGE-CONSIGLIO A . The biological function of extracellular vesicles during fertilization, early embryo-maternal crosstalk and their involvement in reproduction: review and overview[J]. Biomolecules, 2020, 10 (11): 1510.
doi: 10.3390/biom10111510 |
| 93 | 张宝玉, 刘润来, 李欣雨, 等. 外泌体在胚胎发育及妊娠疾病中的应用[J]. 中国兽医学报, 2024, 44 (11): 2502- 2506. |
| ZHANG B Y , LIU R L , LI X Y , et al. Application prospect of exosomes in pregnancy and pregnancy diseases of special economic animals[J]. Chinese Journal of Veterinary Medicine, 2024, 44 (11): 2502- 2506. | |
| 94 |
BANG S , QAMAR A Y , FANG X , et al. Effects of extracellular vesicles derived from steroids-primed oviductal epithelial cells on porcine in vitro embryonic development[J]. Theriogenology, 2023, 209, 213- 223.
doi: 10.1016/j.theriogenology.2023.07.006 |
| 95 |
FANG X , BANG S , TANGA B M , et al. Oviduct epithelial cell-derived extracellular vesicles promote the developmental competence of IVF porcine embryos[J]. Mol Med Rep, 2023, 27 (6): 122.
doi: 10.3892/mmr.2023.13009 |
| 96 |
FANG X , TANGA B M , BANG S , et al. Oviduct epithelial cells-derived extracellular vesicles improve preimplantation developmental competence of in vitro produced porcine parthenogenetic and cloned embryos[J]. Mol Reprod Dev, 2022, 89 (1): 54- 65.
doi: 10.1002/mrd.23550 |
| 97 |
ALMINANA C , BAUERSACHS S . Extracellular vesicles: multi-signal messengers in the gametes/embryo-oviduct cross-talk[J]. Theriogenology, 2020, 150, 59- 69.
doi: 10.1016/j.theriogenology.2020.01.077 |
| 98 | FANG X , TANGA B M , BANG S , et al. Oviduct epithelial cell-derived extracellular vesicles improve porcine trophoblast outgrowth[J]. Vet Sci, 2022, 9 (11): 609. |
| 99 |
SAADELDIN I M , KIM S J , CHOI Y B , et al. Improvement of cloned embryos development by co-culturing with parthenotes: a possible role of exosomes/microvesicles for embryos paracrine communication[J]. Cell Reprogram, 2014, 16 (3): 223- 234.
doi: 10.1089/cell.2014.0003 |
| 100 |
MIURA S , KANG H , BANG S , et al. Effects of extracellular vesicles (EVs) from uterine fluid during estrus and diestrus on porcine embryonic development[J]. J Anim Rep Biot, 2024, 39 (2): 131- 137.
doi: 10.12750/JARB.39.2.131 |
| 101 |
HUA R , LIU Q , LIAN W , et al. Transcriptome regulation of extracellular vesicles derived from porcine uterine flushing fluids during peri-implantation on endometrial epithelial cells and embryonic trophoblast cells[J]. Gene, 2022, 822, 146337.
doi: 10.1016/j.gene.2022.146337 |
| 102 | DING Y , HU Q , GAN J , et al. Effect of mir-143-3p from extracellular vesicles of porcine uterine luminal fluid on porcine trophoblast Cells[J]. Animals (Basel), 2022, 12 (23): 3402. |
| 103 |
HUA R , WANG Y , LIAN W , et al. Small rea-seq analysis of extracellular vesicles from porcine uterine flushing fluids during peri-implantation[J]. Gene, 2021, 766, 145117.
doi: 10.1016/j.gene.2020.145117 |
| 104 |
HONG L , ZANG X , HU Q , et al. Uterine luminal-derived extracellular vesicles: potential nanomaterials to improve embryo implantation[J]. J Nanobiotechnol, 2023, 21 (1): 79.
doi: 10.1186/s12951-023-01834-1 |
| 105 |
匡婧靖, 贺艳娟, 胡群, 等. 猪子宫腔液外泌体来源的TIMP2蛋白对胚胎附植的影响[J]. 畜牧兽医学报, 2022, 53 (4): 1122- 1132.
doi: 10.11843/j.issn.0366-6964.2022.04.012 |
|
KUANG J J , HE Y J , HU Q , et al. Effect of TIMP2 protein derived from porcine uterine fluid exosomes on embryo implantation during early pregnancy[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (4): 1122- 1132.
doi: 10.11843/j.issn.0366-6964.2022.04.012 |
|
| 106 |
TAN Q , SHI S , LIANG J , et al. Endometrial cell-derived small extracellular vesicle mir-100-5p promotes functions of trophoblast during embryo implantation[J]. Molecular Therapy-Nucleic Acids, 2021, 23, 217- 231.
doi: 10.1016/j.omtn.2020.10.043 |
| 107 | 施爽. 胎盘滋养层细胞外泌体miRNA-1290靶向LHX6调控子宫内膜容受态的机制[D]. 杭州: 浙江大学, 2021. |
| SHI S. Placental trophoblast cells-derived exosomal microRNA-1290 regulate the endometrial receptivity by targeting LHX6[D]. Hangzhou: Zhejiang University, 2021. (in Chinese) | |
| 108 |
GUZEWSKA M M , MYSZCZYNSKI K , HEIFETZ Y , et al. Embryonic signals mediate extracellular vesicle biogenesis and trafficking at the embryo-maternal interface[J]. Cell Commun Signal, 2023, 21 (1): 210.
doi: 10.1186/s12964-023-01221-1 |
| 109 |
ZHOU C , CAI G , MENG F , et al. Deep-sequencing identification of microrna biomarkers in serum exosomes for early pig pregnancy[J]. Front Genet, 2020, 11, 536.
doi: 10.3389/fgene.2020.00536 |
| 110 | 周臣. 母猪血清外泌体miRNAs作为妊娠早期诊断标志物的研究[D]. 广州: 华南农业大学, 2020. |
| ZHOU C. Study on serum exosomal mirnas as a diagnostic marker for early pregnancy in sows[D]. Guangzhou: South China Agricultural University, 2020. (in Chinese) | |
| 111 |
KIM J , SHIM J , KO N , et al. Effect of porcine oviductal fluid-derived extracellular vesicle supplementation on in vitro embryonic developmental competence and the production efficiency of cloned pigs[J]. Theriogenology, 2025, 242, 117442.
doi: 10.1016/j.theriogenology.2025.117442 |
| 112 |
SZUSZKIEWICZ J , NITKIEWICZ A , DRZEWIECKA K , et al. MiR-26a-5p and mir-125b-5p affect trophoblast genes and cell functions important during early pregnancydagger[J]. Biol Reprod, 2022, 107 (2): 590- 604.
doi: 10.1093/biolre/ioac071 |
| 113 |
CHEN W , XIE Y , XU Z , et al. Identification and functional analysis of mirnas in extracellular vesicles of semen plasma from high-and low-fertility boars[J]. Animals, 2024, 15 (1): 40.
doi: 10.3390/ani15010040 |
| 114 |
CHEN X , JIN Y , LV Y , et al. Extracellular vesicles in porcine seminal plasma maintain sperm function by reducing lyso-pc[J]. Livest Sci, 2023, 276, 105298.
doi: 10.1016/j.livsci.2023.105298 |
| 115 | ZHANG Y , DING N , XIE S , et al. Identification of important extracellular vesicle rna molecules related to sperm motility and prostate cancer[J]. Extracell Vesicles Circ Nucleic Acids, 2021, 2 (2): 104. |
| 116 |
HAN Y , QU X , CHEN X , et al. Effects of follicular fluid exosomes on in vitro maturation of porcine oocytes[J]. Anim Biotechnol, 2023, 34 (7): 2757- 2765.
doi: 10.1080/10495398.2022.2114084 |
| 117 |
FRANZONI G , MECOCCI S , DE CIUCIS C G , et al. Goat milk extracellular vesicles: immuno-modulation effects on porcine monocyte-derived macrophages in vitro[J]. Front Immunol, 2023, 14, 1209898.
doi: 10.3389/fimmu.2023.1209898 |
| 118 | ZENG B , WANG H , LUO J , et al. Porcine milk-derived small extracellular vesicles promote intestinal immunoglobulin production through pIgr[J]. Animals (Basel), 2021, 11 (6): 1522. |
| 119 |
LIANG J Q , XIE M , HOU L , et al. MiRNAs derived from milk small extracellular vesicles inhibit porcine epidemic diarrhea virus infection[J]. Antiviral Res, 2023, 212, 105579.
doi: 10.1016/j.antiviral.2023.105579 |
| 120 |
TESFAYE D , MENJIVAR N , GEBREMEDHN S . Current knowledge and the future potential of extracellular vesicles in mammalian reproduction[J]. Reprod Fertil Dev, 2021, 34 (2): 174- 189.
doi: 10.1071/RD21277 |
| 121 |
BURNOUF T , AGRAHARI V , AGRAHARI V . Extracellular vesicles as nanomedicine: hopes and hurdles in clinical translation[J]. Int J Nanomedicine, 2019, 14, 8847- 8859.
doi: 10.2147/IJN.S225453 |
| 122 | WITWER K W , BUZAS E I , BEMIS L T , et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research[J]. J Extracell Vesicles, 2013, 2 (1): 2036. |
| 123 |
LI P , KASLAN M , LEE S H , et al. Progress in exosome isolation techniques[J]. Theranostics, 2017, 7 (3): 789- 804.
doi: 10.7150/thno.18133 |
| 124 |
DE CIUCIS C G , FRUSCIONE F , DE PAOLIS L , et al. Toll-like receptors and cytokine modulation by goat milk extracellular vesicles in a model of intestinal inflammation[J]. Int J Mol Sci, 2023, 24 (13): 11096.
doi: 10.3390/ijms241311096 |
| [1] | 刘晨龙, 邓晓, 林克团, 万明春, 杨文清, 彭富贵, 周泉勇, 郑小明, 谭美芳, 季华员. 玉山黑猪及其不同杂交组合生产性能、肉质性状和血清生化指标的比较研究[J]. 畜牧兽医学报, 2026, 57(1): 120-135. |
| [2] | 许黎明, 张聪, 温墩, 饶肇玺, 郝韵, 刘俊逸, 杜陶然, 王文强, 李强, 李平华, 黄瑞华. 影响苏淮猪粗纤维表观消化率的宿主基因挖掘[J]. 畜牧兽医学报, 2026, 57(1): 136-145. |
| [3] | 王言, 顾以韧, 张进威, 杨雪梅, 梁艳, 刘锐, 陶璇, 杨跃奎, 安瑞, 杨坤, 张兴, 陈晓晖, 龚建军. 川乡黑猪、巴克夏猪、杜洛克猪肠道微生物多样性差异分析[J]. 畜牧兽医学报, 2026, 57(1): 146-154. |
| [4] | 郭震楠, 吕世政, 萧宗贤, 吴启吉, 包雨加, 李清, 李齐发, 李琦琦, 杜星. KLF5抑制氧化应激状态下猪卵泡颗粒细胞中miR-370与miR-219a的转录[J]. 畜牧兽医学报, 2026, 57(1): 234-245. |
| [5] | 王伏羲, 马翠, 黄康, 李蕊彤, 赵青余, 张军民, 闫益波, 司玮. 18β-甘草次酸可缓解D-半乳糖诱导断奶仔猪氧化应激肺损伤[J]. 畜牧兽医学报, 2026, 57(1): 305-316. |
| [6] | 顾小玉, 贾雪寅, 刘小惠, 于学祥, 李文涛, 何启盖. 猪伪狂犬病病毒gE蛋白单链抗体的制备及鉴定[J]. 畜牧兽医学报, 2026, 57(1): 317-326. |
| [7] | 罗润波, 吴丹, 李可欣, 钟亚男, 索朗斯珠, 商鹏. 藏猪源产气荚膜梭菌的分离与耐药状况分析[J]. 畜牧兽医学报, 2026, 57(1): 392-400. |
| [8] | 赵琳, 邬昆富, 车思艳, 卢宇, 王梓, 吴苗苗. 三七茎叶提取物对脂多糖攻毒下仔猪生长性能、腹泻指数及肠道健康的影响[J]. 畜牧兽医学报, 2026, 57(1): 540-552. |
| [9] | 胡章玉, 张永青, 陈忆廉, 许发芝, 常馨月, 方富贵, 李亮, 孙裴, 刘雪兰. 基于多酶恒温快速扩增检测猪链球菌及其3种主要血清型方法的建立及应用[J]. 畜牧兽医学报, 2026, 57(1): 564-568. |
| [10] | 田姣, 龙菊烟, 陈霞, 岑晓丽, 牛熙, 黄世会, 王嘉福, 冉雪琴. 香猪ENTPD1基因3'UTR的SINE插入下调其基因表达[J]. 畜牧兽医学报, 2025, 56(9): 4303-4314. |
| [11] | 覃阳, 夏嗣廷, 何流琴, 王天丽, 刘宇炎, 姜肖翰, 刘智豪, 刘思危, 李铁军, 印遇龙. 慢性氧化应激对断奶仔猪器官组织微量元素含量的影响[J]. 畜牧兽医学报, 2025, 56(9): 4452-4460. |
| [12] | 茹敏, 蒋小丰, 罗国升, 武永厚. 饲粮添加枯草芽孢杆菌对大肠杆菌攻毒仔猪生长性能、血清免疫及抗氧化功能、肠道形态和微生物的影响[J]. 畜牧兽医学报, 2025, 56(9): 4461-4471. |
| [13] | 桂若虹, 曹洪战, 刘松瓒, 刘吉祥, 赵嘉龙, 芦春莲. 饲粮不同代谢能和SID赖氨酸水平对高产哺乳深县母猪相关性能的影响[J]. 畜牧兽医学报, 2025, 56(9): 4472-4490. |
| [14] | 邱话龙传, 金芊芊, 许潇涵, 周静, 蔡承志, 李龙. 基于纳米孔测序的十种猪病原检测方法的建立[J]. 畜牧兽医学报, 2025, 56(9): 4546-4558. |
| [15] | 刘君君, 郭东辉, 刘缓缓, 宋润泽, 赵赛娅, 杨钧尧, 魏战勇, 项玉强, 陈丽颖. 基于免疫磁珠的智能手机辅助比色传感平台用于PDCoV/TGEV IgG抗体的快速检测[J]. 畜牧兽医学报, 2025, 56(9): 4559-4571. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||