畜牧兽医学报 ›› 2024, Vol. 55 ›› Issue (6): 2357-2367.doi: 10.11843/j.issn.0366-6964.2024.06.008
张正洋1(), 宋银娟1,*(
), 储岳峰1,2,3,*(
)
收稿日期:
2023-07-03
出版日期:
2024-06-23
发布日期:
2024-06-28
通讯作者:
宋银娟,储岳峰
E-mail:13591587583@163.com;songyinjuan@caas.cn;chuyuefeng@caas.cn
作者简介:
张正洋(2000-), 女,辽宁鞍山人,硕士生,主要从事牛分枝杆菌致病机制研究,E-mail: 13591587583@163.com
基金资助:
Zhengyang ZHANG1(), Yinjuan SONG1,*(
), Yuefeng CHU1,2,3,*(
)
Received:
2023-07-03
Online:
2024-06-23
Published:
2024-06-28
Contact:
Yinjuan SONG, Yuefeng CHU
E-mail:13591587583@163.com;songyinjuan@caas.cn;chuyuefeng@caas.cn
摘要:
缺氧诱导因子-1α(HIF-1α)是细胞应对缺氧反应的中枢调节因子,稳定的HIF-1α具有多种功能,参与血管生成、代谢调节、细胞自噬及细胞凋亡等多种生物学过程。HIF-1α的稳定性受到多种信号的调节,包括氧气水平、病原体感染以及代谢中间体等。近年来,越来越多的研究表明,HIF-1α在感染性疾病中起着重要作用。因此,本文就HIF-1α稳定性的调节机制及其在病毒、细菌等病原体感染和相关疾病发生发展中的作用进行讨论和总结,旨在为进一步解析HIF-1α在防御多种病原体感染中的作用和其作为靶向治疗的潜在靶点等相关研究提供参考。
中图分类号:
张正洋, 宋银娟, 储岳峰. HIF-1α在病原体感染中的作用研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2357-2367.
Zhengyang ZHANG, Yinjuan SONG, Yuefeng CHU. Research Progress on the Role of HIF-1α in Pathogen Infections[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(6): 2357-2367.
1 |
LEE J W , BAE S H , JEONG J W , et al. Hypoxia-inducible factor (HIF-1)α: its protein stability and biological functions[J]. Exp Mol Med, 2004, 36 (1): 1- 12.
doi: 10.1038/emm.2004.1 |
2 |
WEIDEMANN A , JOHNSON R S . Biology of HIF-1α[J]. Cell Death Differ, 2008, 15 (4): 621- 627.
doi: 10.1038/cdd.2008.12 |
3 |
KE Q D , COSTA M . Hypoxia-inducible factor-1 (HIF-1)[J]. Mol Pharmacol, 2006, 70 (5): 1469- 1480.
doi: 10.1124/mol.106.027029 |
4 |
WERTH N , BEERLAGE C , ROSENBERGER C , et al. Activation of hypoxia inducible factor 1 is a general phenomenon in infections with human pathogens[J]. PLoS One, 2010, 5 (7): e11576.
doi: 10.1371/journal.pone.0011576 |
5 |
SEMENZA G L . HIF-1 and mechanisms of hypoxia sensing[J]. Curr Opin Cell Biol, 2001, 13 (2): 167- 171.
doi: 10.1016/S0955-0674(00)00194-0 |
6 | SEMENZA G L , WANG G L . A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation[J]. Mol Cell Biol, 1992, 12 (12): 5447- 5454. |
7 |
PONTING C P , ARAVIND L . PAS: a multifunctional domain family comes to light[J]. Curr Biol, 1997, 7 (11): R674- R677.
doi: 10.1016/S0960-9822(06)00352-6 |
8 |
YU F , WHITE S B , ZHAO Q , et al. HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation[J]. Proc Natl Acad Sci U S A, 2001, 98 (17): 9630- 9635.
doi: 10.1073/pnas.181341498 |
9 |
KOIVUNEN P , HIRSILÄ M , REMES A M , et al. Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF[J]. J Biol Chem, 2007, 282 (7): 4524- 4532.
doi: 10.1074/jbc.M610415200 |
10 |
LI F , SONVEAUX P , RABBANI Z N , et al. Regulation of HIF-1α stability through S-nitrosylation[J]. Mol Cell, 2007, 26 (1): 63- 74.
doi: 10.1016/j.molcel.2007.02.024 |
11 |
KORBECKI J , SIMIŃSKA D , GĄSSOWSKA-DOBROWOLSKA M , et al. Chronic and cycling hypoxia: drivers of cancer chronic inflammation through HIF-1 and NF-κB activation: a review of the molecular mechanisms[J]. Int J Mol Sci, 2021, 22 (19): 10701.
doi: 10.3390/ijms221910701 |
12 |
ZAREMBER K A , MALECH H L . HIF-1α: a master regulator of innate host defenses?[J]. J Clin Invest, 2005, 115 (7): 1702- 1704.
doi: 10.1172/JCI25740 |
13 |
HARTMANN H , ELTZSCHIG H K , WURZ H , et al. Hypoxia-independent activation of HIF-1 by enterobacteriaceae and their siderophores[J]. Gastroenterology, 2008, 134 (3): 756- 767.e6.
doi: 10.1053/j.gastro.2007.12.008 |
14 |
MAZZON M , PETERS N E , LOENARZ C , et al. A mechanism for induction of a hypoxic response by vaccinia virus[J]. Proc Natl Acad Sci U S A, 2013, 110 (30): 12444- 12449.
doi: 10.1073/pnas.1302140110 |
15 |
FRAKOLAKI E , KAIMOU P , MORAITI M , et al. The role of tissue oxygen tension in dengue virus replication[J]. Cells, 2018, 7 (12): 241.
doi: 10.3390/cells7120241 |
16 |
DESHMANE S L , AMINI S , SEN S , et al. Regulation of the HIV-1 promoter by HIF-1α and Vpr proteins[J]. Virol J, 2011, 8, 477.
doi: 10.1186/1743-422X-8-477 |
17 | DUETTE G , PEREYRA GERBER P , RUBIONE J , et al. Induction of HIF-1α by HIV-1 infection in CD4+ T cells promotes viral replication and drives extracellular vesicle-mediated inflammation[J]. mBio, 2018, 9 (5): e00757- 18. |
18 |
HAN H K , HAN C Y , CHEON E P , et al. Role of hypoxia-inducible factor-α in hepatitis-B-virus X protein-mediated MDR1 activation[J]. Biochem Biophys Res Commun, 2007, 357 (2): 567- 573.
doi: 10.1016/j.bbrc.2007.04.012 |
19 |
FARQUHAR M J , HUMPHREYS I S , RUDGE S A , et al. Autotaxin-lysophosphatidic acid receptor signalling regulates hepatitis C virus replication[J]. J Hepatol, 2017, 66 (5): 919- 929.
doi: 10.1016/j.jhep.2017.01.009 |
20 |
TIAN M F , LIU W Y , LI X , et al. HIF-1α promotes SARS-CoV-2 infection and aggravates inflammatory responses to COVID-19[J]. Signal Transduct Target Ther, 2021, 6 (1): 308.
doi: 10.1038/s41392-021-00726-w |
21 |
ZHAO C Q , CHEN J , CHENG L P , et al. Deficiency of HIF-1α enhances influenza A virus replication by promoting autophagy in alveolar type Ⅱ epithelial cells[J]. Emerg Microbes Infect, 2020, 9 (1): 691- 706.
doi: 10.1080/22221751.2020.1742585 |
22 |
REN L H , ZHANG W J , HAN P , et al. Influenza A virus (H1N1) triggers a hypoxic response by stabilizing hypoxia-inducible factor-1α via inhibition of proteasome[J]. Virology, 2019, 530, 51- 58.
doi: 10.1016/j.virol.2019.02.010 |
23 |
CRAMER T , YAMANISHI Y , CLAUSEN B E , et al. HIF-1α is essential for myeloid cell-mediated inflammation[J]. Cell, 2003, 112 (5): 645- 657.
doi: 10.1016/S0092-8674(03)00154-5 |
24 |
PEYSSONNAUX C , DATTA V , CRAMER T , et al. HIF-1α expression regulates the bactericidal capacity of phagocytes[J]. J Clin Invest, 2005, 115 (7): 1806- 1815.
doi: 10.1172/JCI23865 |
25 |
HUY T X N , NGUYEN T T , REYES A W B , et al. Cobalt (Ⅱ) chloride regulates the invasion and survival of Brucella abortus 544 in RAW 264.7 Cells and B6 Mice[J]. Pathogens, 2022, 11 (5): 596.
doi: 10.3390/pathogens11050596 |
26 |
GOMES M T R , GUIMARÃES E S , MARINHO F V , et al. STING regulates metabolic reprogramming in macrophages via HIF-1α during Brucella infection[J]. PLoS Pathog, 2021, 17 (5): e1009597.
doi: 10.1371/journal.ppat.1009597 |
27 |
BRAVERMAN J , SOGI K M , BENJAMIN D , et al. HIF-1α is an essential mediator of IFN-γ-dependent immunity to Mycobacterium tuberculosis[J]. J Immunol, 2016, 197 (4): 1287- 1297.
doi: 10.4049/jimmunol.1600266 |
28 |
BRAVERMAN J , STANLEY S A . Nitric oxide modulates macrophage responses to Mycobacterium tuberculosis infection through activation of HIF-1α and repression of NF-κB[J]. J Immunol, 2017, 199 (5): 1805- 1816.
doi: 10.4049/jimmunol.1700515 |
29 |
KNIGHT M , BRAVERMAN J , ASFAHA K , et al. Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN-γ/HIF-1α signaling and supports host defense[J]. PLoS Pathog, 2018, 14 (1): e1006874.
doi: 10.1371/journal.ppat.1006874 |
30 |
MISHRA B B , LOVEWELL R R , OLIVE A J , et al. Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis[J]. Nat Microbiol., 2017, 2, 17072.
doi: 10.1038/nmicrobiol.2017.72 |
31 |
MISHRA B B , RATHINAM V A K , MARTENS G W , et al. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β[J]. Nat Immunol, 2013, 14 (1): 52- 60.
doi: 10.1038/ni.2474 |
32 |
WYATT E V , DIAZ K , GRIFFIN A J , et al. Metabolic reprogramming of host cells by virulent Francisella tularensis for optimal replication and modulation of inflammation[J]. J Immunol, 2016, 196 (10): 4227- 4236.
doi: 10.4049/jimmunol.1502456 |
33 | LATGÉ J P , CHAMILOS G . Aspergillus fumigatus and aspergillosis in 2019[J]. Clin Microbiol Rev, 2019, 33 (1): e00140- 18. |
34 |
SHEPARDSON K M , JHINGRAN A , CAFFREY A , et al. Myeloid derived hypoxia inducible factor 1-alpha is required for protection against pulmonary Aspergillus fumigatus infection[J]. PLoS Pathog, 2014, 10 (9): e1004378.
doi: 10.1371/journal.ppat.1004378 |
35 |
FECHER R A , HORWATH M C , FRIEDRICH D , et al. Inverse correlation between IL-10 and HIF-1α in macrophages infected with Histoplasma capsulatum[J]. J Immunol, 2016, 197 (2): 565- 579.
doi: 10.4049/jimmunol.1600342 |
36 |
FAN D , COUGHLIN L A , NEUBAUER M M , et al. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization[J]. Nat Med, 2015, 21 (7): 808- 814.
doi: 10.1038/nm.3871 |
37 | SHI L B , JIANG Q K , BUSHKIN Y , et al. Biphasic dynamics of macrophage immunometabolism during Mycobacterium tuberculosis infection[J]. mBio, 2019, 10 (2): e02550- 18. |
38 | GUIMARÃES E S , GOMES M T R , SANCHES R C O , et al. The endoplasmic reticulum stress sensor IRE1α modulates macrophage metabolic function during Brucella abortus infection[J]. Front Immunol, 2022, 13, 1063221. |
39 |
GE G , JIANG H Q , XIONG J S , et al. Progress of the art of macrophage polarization and different subtypes in mycobacterial infection[J]. Front Immunol, 2021, 12, 752657.
doi: 10.3389/fimmu.2021.752657 |
40 |
GLEESON L E , SHEEDY F J , PALSSON-MCDERMOTT E M , et al. Cutting edge: Mycobacterium tuberculosis induces aerobic glycolysis in human alveolar macrophages that is required for control of intracellular bacillary replication[J]. J Immunol, 2016, 196 (6): 2444- 2449.
doi: 10.4049/jimmunol.1501612 |
41 |
BOWLIN A , ROYS H , WANJALA H , et al. Hypoxia-inducible factor signaling in macrophages promotes lymphangiogenesis in Leishmania major infection[J]. Infect Immun, 2021, 89 (8): e0012421.
doi: 10.1128/IAI.00124-21 |
42 |
GUO Y , MENG X K , MA J M , et al. Human papillomavirus 16 E6 contributes HIF-1α induced Warburg effect by attenuating the VHL-HIF-1α interaction[J]. Int J Mol Sci, 2014, 15 (5): 7974- 7986.
doi: 10.3390/ijms15057974 |
43 |
MAZZON M , CASTRO C , ROBERTS L D , et al. A role for vaccinia virus protein C16 in reprogramming cellular energy metabolism[J]. J Gen Virol, 2015, 96 (2): 395- 407.
doi: 10.1099/vir.0.069591-0 |
44 |
BARRERO C A , DATTA P K , SEN S , et al. HIV-1 Vpr modulates macrophage metabolic pathways: a SILAC-based quantitative analysis[J]. PLoS One, 2013, 8 (7): e68376.
doi: 10.1371/journal.pone.0068376 |
45 |
REN L H , ZHANG W J , ZHANG J , et al. Influenza a virus (H1N1) infection induces glycolysis to facilitate viral replication[J]. Virol Sin, 2021, 36 (6): 1532- 1542.
doi: 10.1007/s12250-021-00433-4 |
46 | MENENDEZ M T , TEYGONG C , WADE K , et al. siRNA screening identifies the host hexokinase 2 (HK2) gene as an important hypoxia-inducible transcription factor 1 (HIF-1) target gene in Toxoplasma gondii-infected cells[J]. mBio, 2015, 6 (3): e00462. |
47 |
SINGH A K , MUKHOPADHYAY C , BISWAS S , et al. Intracellular pathogen Leishmania donovani activates hypoxia inducible factor-1 by dual mechanism for survival advantage within macrophage[J]. PLoS One, 2012, 7 (6): e38489.
doi: 10.1371/journal.pone.0038489 |
48 |
COLE A M , SHI J S , CECCARELLI A , et al. Inhibition of neutrophil elastase prevents cathelicidin activation and impairs clearance of bacteria from wounds[J]. Blood, 2001, 97 (1): 297- 304.
doi: 10.1182/blood.V97.1.297 |
49 |
KELLY C J , GLOVER L E , CAMPBELL E L , et al. Fundamental role for HIF-1α in constitutive expression of human β defensin-1[J]. Mucosal Immunol, 2013, 6 (6): 1110- 1118.
doi: 10.1038/mi.2013.6 |
50 |
LIN A E , BEASLEY F C , OLSON J , et al. Role of hypoxia inducible factor-1α (HIF-1α) in innate defense against uropathogenic Escherichia coli infection[J]. PLoS Pathog, 2015, 11 (4): e1004818.
doi: 10.1371/journal.ppat.1004818 |
51 |
ELKS P M , BRIZEE S , VAN DER VAART M , et al. Hypoxia inducible factor signaling modulates susceptibility to mycobacterial infection via a nitric oxide dependent mechanism[J]. PLoS Pathog, 2013, 9 (12): e1003789.
doi: 10.1371/journal.ppat.1003789 |
52 |
LI Q , XIE Y Y , CUI Z B , et al. Activation of hypoxia-inducible factor 1 (Hif-1) enhanced bactericidal effects of macrophages to Mycobacterium tuberculosis[J]. Tuberculosis (Edinb), 2021, 126, 102044.
doi: 10.1016/j.tube.2020.102044 |
53 |
PEYSSONNAUX C , CEJUDO-MARTIN P , DOEDENS A , et al. Cutting edge: essential role of hypoxia inducible factor-1α in development of lipopolysaccharide-induced sepsis1[J]. J Immunol, 2007, 178 (12): 7516- 7519.
doi: 10.4049/jimmunol.178.12.7516 |
54 |
GRONEBERG M , HOENOW S , MARGGRAFF C , et al. HIF-1α modulates sex-specific Th17/Treg responses during hepatic amoebiasis[J]. J Hepatol, 2022, 76 (1): 160- 173.
doi: 10.1016/j.jhep.2021.09.020 |
55 |
MIZUSHIMA N , KOMATSU M . Autophagy: renovation of cells and tissues[J]. Cell, 2011, 147 (4): 728- 741.
doi: 10.1016/j.cell.2011.10.026 |
56 |
ZHANG H F , BOSCH-MARCE M , SHIMODA L A , et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia[J]. J Biol Chem, 2008, 283 (16): 10892- 10903.
doi: 10.1074/jbc.M800102200 |
57 |
DOWDELL A S , CARTWRIGHT I M , GOLDBERG M S , et al. The HIF target ATG9A is essential for epithelial barrier function and tight junction biogenesis[J]. Mol Biol Cell, 2020, 31 (20): 2249- 2258.
doi: 10.1091/mbc.E20-05-0291 |
58 |
DOWDELL A S , CARTWRIGHT I M , KITZENBERG D A , et al. Essential role for epithelial HIF-mediated xenophagy in control of Salmonella infection and dissemination[J]. Cell Rep, 2022, 40 (13): 111409.
doi: 10.1016/j.celrep.2022.111409 |
59 |
MIMOUNA S , BAZIN M , MOGRABI B , et al. HIF1A regulates xenophagic degradation of adherent and invasive Escherichia coli (AIEC)[J]. Autophagy, 2014, 10 (12): 2333- 2345.
doi: 10.4161/15548627.2014.984275 |
60 | FRIEDRICH D , ZAPF D , LOHSE B , et al. The HIF-1α/LC3-Ⅱ axis impacts fungal immunity in human macrophages[J]. Infect Immun, 2019, 87 (7): e00125- 19. |
61 |
NEUBERT P , WEICHSELBAUM A , REITINGER C , et al. HIF1A and NFAT5 coordinate Na+-boosted antibacterial defense via enhanced autophagy and autolysosomal targeting[J]. Autophagy, 2019, 15 (11): 1899- 1916.
doi: 10.1080/15548627.2019.1596483 |
62 | SOWTER H M , RATCLIFFE P J , WATSON P , et al. HIF-1-dependent regulation of hypoxic induction of the cell death factors BNIP3 and NIX in human tumors[J]. Cancer Res, 2001, 61 (18): 6669- 6673. |
63 |
AN W G , KANEKAL M , SIMON M C , et al. Stabilization of wild-type p53 by hypoxia-inducible factor 1α[J]. Nature, 1998, 392 (6674): 405- 408.
doi: 10.1038/32925 |
64 | PIRET J P , MOTTET D , RAES M , et al. Is HIF-1α a pro- or an anti-apoptotic protein?[J]. Biochem Pharmacol, 2002, 64 (5/6): 889- 892. |
65 |
LIU X H , YU E Z , LI Y Y , et al. HIF-1α has an anti-apoptotic effect in human airway epithelium that is mediated via Mcl-1 gene expression[J]. J Cell Biochem, 2006, 97 (4): 755- 765.
doi: 10.1002/jcb.20683 |
66 |
MÜHLEISEN A , GIAISI M , KÖHLER R , et al. Tax contributes apoptosis resistance to HTLV-1-infected T cells via suppression of Bid and Bim expression[J]. Cell Death Dis, 2014, 5 (12): e1575.
doi: 10.1038/cddis.2014.536 |
67 |
VICTORINO F , BIGLEY T M , PARK E , et al. HIF1α is required for NK cell metabolic adaptation during virus infection[J]. eLife, 2021, 10, e68484.
doi: 10.7554/eLife.68484 |
68 |
RAJALINGAM K , SHARMA M , LOHMANN C , et al. Mcl-1 is a key regulator of apoptosis resistance in Chlamydia trachomatis-infected cells[J]. PLoS One, 2008, 3 (9): e3102.
doi: 10.1371/journal.pone.0003102 |
69 |
HAN J , GOLDSTEIN L A , GASTMAN B R , et al. Disruption of Mcl-1 ·Bim complex in Granzyme B-mediated mitochondrial apoptosis[J]. J Biol Chem, 2005, 280 (16): 16383- 16392.
doi: 10.1074/jbc.M411377200 |
70 |
SHARMA M , MACHUY N , BÖHME L , et al. HIF-1α is involved in mediating apoptosis resistance to Chlamydia trachomatis-infected cells[J]. Cell Microbiol, 2011, 13 (10): 1573- 1585.
doi: 10.1111/j.1462-5822.2011.01642.x |
71 |
MANALO D J , ROWAN A , LAVOIE T , et al. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1[J]. Blood, 2005, 105 (2): 659- 669.
doi: 10.1182/blood-2004-07-2958 |
72 |
SAKAI M , TAKAHASHI N , IKEDA H , et al. Design, synthesis, and target identification of new hypoxia-inducible factor 1 (HIF-1) inhibitors containing 1-alkyl-1H-pyrazole-3-carboxamide moiety[J]. Bioorg Med Chem, 2021, 46, 116375.
doi: 10.1016/j.bmc.2021.116375 |
73 |
CHEN J , LAI L , LIU S , et al. Targeting HIF-1α and VEGF by lentivirus-mediated RNA interference reduces liver tumor cells migration and invasion under hypoxic conditions[J]. Neoplasma, 2016, 63 (6): 934- 940.
doi: 10.4149/neo_2016_612 |
74 |
ELTZSCHIG H K , BRATTON D L , COLGAN S P . Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases[J]. Nat Rev Drug Discov, 2014, 13 (11): 852- 869.
doi: 10.1038/nrd4422 |
75 |
AKINSULIE O C , SHAHZAD S , OGUNLEYE S C , et al. Crosstalk between hypoxic cellular micro-environment and the immune system: a potential therapeutic target for infectious diseases[J]. Front Immunol, 2023, 14, 1224102.
doi: 10.3389/fimmu.2023.1224102 |
[1] | 孙凡媛, 刘怡婷, 郭昕怡, 陈建材, 周华波, 覃一峰, 欧阳康, 韦祖樟, 黄伟坚, 陈樱. 猫上呼吸道疾病的病原、诊断与防治[J]. 畜牧兽医学报, 2024, 55(6): 2345-2356. |
[2] | 季小禹, 王永伟, 邱妍, 张才. 甘草多糖的生理功能及其在畜禽生产中的应用[J]. 畜牧兽医学报, 2024, 55(6): 2379-2387. |
[3] | 龙唐晖, 周江汇, 詹彦波, 张健, 赵向辉, 李艳娇, 欧阳克蕙, 邱清华. 反刍动物瘤胃微生物LuxS/AI-2群体感应研究进展[J]. 畜牧兽医学报, 2024, 55(5): 1893-1903. |
[4] | 张吉贤, 范定坤, 付域泽, 焦帅, 马涛, 毕研亮, 张乃锋. 后生素调控动物肠道健康的作用机制及应用进展[J]. 畜牧兽医学报, 2024, 55(5): 1926-1935. |
[5] | 罗通旺, 吴亚, 王书杰, 宋厚辉, 邵春艳. 镉致肝损伤机制及硒拮抗镉肝毒性的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1456-1466. |
[6] | 杜改梅, 王月, 茅慧华, 雷卫强, 储岳峰, 刘茂军. 绵羊肺炎支原体小鼠感染模型的建立[J]. 畜牧兽医学报, 2024, 55(4): 1728-1737. |
[7] | 周梦婷, 宋银娟, 许健, 李斌, 冉多良, 储岳峰. 基于碳水化合物的佐剂作用机制研究进展[J]. 畜牧兽医学报, 2024, 55(2): 491-501. |
[8] | 刘元杰, 徐璐, 朱元源, 徐嫄, 张乾义, 李翠, 李明, 夏应菊, 王琴, 刘业兵, 赵启祖, 邹兴启. 猪瘟病毒C株表位突变毒株的构建及拯救[J]. 畜牧兽医学报, 2024, 55(2): 698-705. |
[9] | 史泽风, 李翎旭, 郭译文, 廖云, 孙昭宇, 王来荣, 杨德吉, 姚大伟. 基于高分辨率熔解曲线检测MD肿瘤微卫星不稳定性[J]. 畜牧兽医学报, 2024, 55(2): 759-769. |
[10] | 刘元红, 胡玉欢, 张莉, 杨萍瑞, 胡卫东, 马琪, 毕师诚. 白术-肉苁蓉治疗便秘的网络药理学分析及试验验证[J]. 畜牧兽医学报, 2024, 55(2): 834-845. |
[11] | 于秀菊, 张敏爱, 胡燕姣, 朱芷葳, 王海东, 杨丽华, 范阔海. 枯草芽孢杆菌细菌素的分离、表达及稳定性分析[J]. 畜牧兽医学报, 2024, 55(1): 323-333. |
[12] | 王思盈, 邹宏, 宋振辉. Na+/H+交换体家族第三个亚型在感染性腹泻中的作用及活性调控机制[J]. 畜牧兽医学报, 2023, 54(8): 3230-3241. |
[13] | 冯永智, 龚婷, 吴东东, 高琦, 郑晓宇, 张桂红, 孙彦阔. 影响非洲猪瘟病毒对培养细胞感染性的因素分析[J]. 畜牧兽医学报, 2023, 54(8): 3406-3414. |
[14] | 张倩文, 刘玉梅, 石丽辉, 梁文军, 李梦云, 王玉琴, 张自强. 生产母兔沙门菌感染的病理学变化及其药物敏感性分析[J]. 畜牧兽医学报, 2023, 54(8): 3510-3518. |
[15] | 张旭梅, 魏玉荣, 许丞惠, 杨彤, 史慧君, 付强, 杨莉. 基于网络药理学和试验验证分析小檗碱治疗鸡沙门菌感染的作用机制[J]. 畜牧兽医学报, 2023, 54(8): 3557-3570. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||