[1] SUN Y Y, LI Y L, ZONG Y H, et al. Poultry genetic heritage cryopreservation and reconstruction: advancement and future challenges[J]. J Anim Sci Biotechnol, 2022, 13(1):115. [2] 韩广富, 黄文汇. 习近平关于新时代种业振兴重要论述的形成逻辑、主要内容及时代价值[J]. 江苏大学学报(社会科学版), 2024, 26(4):1-13. HAN G F, HUANG W H. The formation logic, main content and contemporary value of Xi Jinping’s important discourse on the revitalization of the seed industry in the new era[J]. Journal of Jiangsu University (Social Sciences Edition), 2024, 26(4):1-13.(in Chinese) [3] 习近平主持召开中央全面深化改革委员会第二十次会议强调统筹指导构建新发展格局推进种业振兴推动青藏高原生态环境保护和可持续发展[J]. 中国建设信息化, 2021, (15):2-3. XI Jinping presided over the 20th meeting of the Central Committee for Comprehensively Deepening Reform, emphasizing the need to coordinate and guide the construction of a new development pattern, promote the revitalization of the seed industry, and advance the ecological environment protection and sustainable development of the Qinghai-Tibet Plateau[J]. China Construction Informatization, 2021, (15):2-3.(in Chinese) [4] 李相柏. 我国畜禽遗传资源普查与保护工作探讨[J]. 甘肃畜牧兽医, 2022, 52(10):22-24. LI X B. Discussion on the census and protection of livestock and poultry genetic resources in China[J]. Gansu Animal Husbandry and Veterinary Medicine, 2022, 52(10):22-24.(in Chinese) [5] 刘占发, 马月辉. 关于畜禽遗传资源认识与保护的思考[J]. 中国畜牧业, 2017, (9):31-34. LIU Z F, MA Y H. Thoughts on the understanding and protection of livestock and poultry genetic resources[J]. China Animal Husbandry, 2017, (9):31-34.(in Chinese) [6] POMEROY K O, COMIZZOLI P, RUSHING J S, et al. The ART of cryopreservation and its changing landscape[J]. Fert Ster, 2022, 117(3):469-476. [7] LIU Y, BLACKBURN H, TAYLOR S S, et al. Development of germplasm repositories to assist conservation of endangered fishes: Examples from small-bodied livebearing fishes[J]. Theriogenology, 2019, (135):138-151. [8] MUJITABA M A, TOKÁR A, BALOGH E E, et al. In vitro gene conservation status and the quality of the genetic resources of Native Hungarian sheep breeds[J]. Vet Sci, 2024, 11(8):337. [9] JUDYCKA S, DIETRICH M A, NYNCA J, et al. Preservation of fish male germplasm in Poland[J]. Front Marine Sci, 2024, (11):1407895. [10] SRIKANTH K, JAAFAR M A, NEUPANE M, et al. Assessment of genetic diversity, inbreeding, and collection completeness of Jersey bulls in the US National Animal Germplasm Program[J]. J Dairy Sci, 2024, 107(12):11283-11300. [11] ZHANG L M, SUN Y X, JIANG C Y, et al. Damage to mitochondria during the cryopreservation, causing ROS leakage, leading to oxidative stress and decreased quality of ram sperm[J]. Reprod Domestic Anim, 2024, 59(10):e14737. [12] DE AQUINO L V C, OLINDO S L, SILVA Y, et al. Cryopreservation and passaging optimization for Galea spixii (Wagler, 1831) adult skin fibroblast lines: A step forward in species management and genetic studies[J]. Acta Histochemica, 2024, 126(5-7):152185. [13] BORATE G M, MESHRAM A. Cryopreservation of Sperm: A Review[J]. Cureus, 2022, 14(11):e31402. [14] AGARWAL A, MAJZOUB A. Role of antioxidants in assisted reproductive techniques[J]. World J Mens Health, 2017, 35(2):77-93. [15] MANUCHEHRABADI N, GAO Z, ZHANG J, et al. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles[J]. Sci Transl Med, 2017, 9(379):eaah4586. [16] ZANDIYEH S, KALANTARI H, FAKHRI A, et al. A review of recent developments in the application of nanostructures for sperm cryopreservation[J]. Cryobiology, 2024, 115:104890. [17] HUNT N, KESTENS V, RASMUSSEN K, et al. Regulatory preparedness for multicomponent nanomaterials: Current state, gaps and challenges of REACH[J]. NanoImpact, 2024, 37:100538. [18] TÜRK G, KOCA R H, GVNGÖR I H, et al. Effect of hydrated C60 fullerene on lipid, vitamin and amino acid composition in frozen-thawed ram semen[J]. Anim Reprod Sci, 2022, 238:106939. [19] LIU Q, LIU A J, LIU Y C, et al. Hydroxyapatite nanoparticle improves ovine oocyte developmental capacity by alleviating oxidative stress in response to vitrification stimuli[J]. Theriogenology, 2024, 229:88-99. [20] ABEDIN S N, BARUAH A, BARUAH K K, et al. In vitro and in vivo studies on the efficacy of zinc-oxide and selenium nanoparticle in cryopreserved goat (Capra hircus) spermatozoa[J]. Biol Trace Elem Res, 2023, 201(10):4726-4745. [21] MIRKHALILI S M, RAMAZANI S A A, NAZEMIDASHTARJANDI S. Mathematical study of probe arrangement and nanoparticle injection effects on heat transfer during cryosurgery[J]. Comp Biol Med, 2015, 66:113-119. [22] RATHER I A, KOH W Y, PAEK W K, et al. The sources of chemical contaminants in food and their health implications[J]. Front Pharmacol, 2017, 8:830. [23] ALFEI S, MARENGO B, ZUCCARI G. Nanotechnology application in food packaging: A plethora of opportunities versus pending risks assessment and public concerns[J]. Food Res Int, 2020, 137:109664. [24] SUO B, LI H R, WANG Y X, et al. Effects of ZnO nanoparticle-coated packaging film on pork meat quality during cold storage[J]. J Sci Food Agric, 2017, 97(7):2023-2029. [25] BRUUN T U J, ANDERSSON A C, DRAPER S J, et al. Engineering a rugged nanoscaffold to enhance plug-and-display vaccination[J]. ACS Nano, 2018, 12(9):8855-8866. [26] HOU Y, SUN Z, RAO W, et al. Nanoparticle-mediated cryosurgery for tumor therapy[J]. Nanomedicine, 2018, 14(2):493-506. [27] TARZE A, DAUPLAIS M, GRIGORAS I, et al. Extracellular production of hydrogen selenide accounts for thiol-assisted toxicity of selenite against Saccharomyces cerevisiae[J]. J Biol Chem, 2007, 282(12):8759-8767. [28] CHEN N, YAO P, ZHANG W, et al. Selenium nanoparticles: Enhanced nutrition and beyond[J]. Crit Rev Food Sci Nutr, 2023, 63(33):12360-12371. [29] ESIN B, KAYA C, AKAR M, et al. Investigation of the protective effects of different forms of selenium in freezing dog semen: Comparison of nanoparticle selenium and sodium selenite[J]. Reprod Domest Anim, 2024, 59(6):e14652. [30] IFTIKHAR M, NOUREEN A, UZAIR M, et al. Perspectives of nanoparticles in male infertility: Evidence for induced abnormalities in sperm production[J]. Int J Environ Res Public Health, 2021, 18(4):1758. [31] SILVA M I, BARBOSA A I, COSTA LIMA S A, et al. Freeze-dried Softisan® 649-based lipid nanoparticles for enhanced skin delivery of cyclosporine A.[J]. Nanomaterials (Basel), 2020, 10(5):986. [32] HABAS K, DEMIR E, GUO C, et al. Toxicity mechanisms of nanoparticles in the male reproductive system[J]. Drug Metab Rev, 2021, 53(4):604-617. [33] HAN J W, JEONG J K, GURUNATHAN S, et al. Male- and female-derived somatic and germ cell-specific toxicity of silver nanoparticles in mouse[J]. Nanotoxicology, 2016, 10(3):361-373. [34] ZHANG X F, CHOI Y J, HAN J W, et al. Differential nanoreprotoxicity of silver nanoparticles in male somatic cells and spermatogonial stem cells[J]. Int J Nanomedicine, 2015, 10:1335-1357. [35] LUO M, WANG H, WANG Z, et al. A STING-activating nanovaccine for cancer immunotherapy[J]. Nat Nanotechnol, 2017, 12(7):648-654. [36] SEO E J, JANG I H, DO E K, et al. Efficient production of retroviruses using PLGA/bPEI-DNA nanoparticles and application for reprogramming somatic cells.[J]. PLoS One, 2013, 8(9):e76875. [37] BIAZAR E, HEIDARI KESHEL S, TAVIRANI M R, et al. Bone reconstruction in rat calvarial defects by chitosan/hydroxyapatite nanoparticles scaffold loaded with unrestricted somatic stem cells[J]. Artif Cells Nanomed Biotechnol, 2015, 43(2):112-116. [38] BAKHSHANDEH B, SOLEIMANI M, GHAEMI N, et al. Effective combination of aligned nanocomposite nanofibers and human unrestricted somatic stem cells for bone tissue engineering[J]. Acta Pharmacol Sin, 2011, 32(5):626-636. [39] TAYLOR U, BARCHANSKI A, GARRELS W, et al. Toxicity of gold nanoparticles on somatic and reproductive cells[J]. Adv Exp Med Biol, 2012, 733:125-133. [40] PIRI M, MAHDAVI A H, HAJIAN M, et al. Effects of nano-berberine and berberine loaded on green synthesized selenium nanoparticles on cryopreservation and in vitro fertilization of goat sperm[J]. Sci Rep, 2024, 14(1):24171. [41] KARIMI-SABET M J, KHODAEI-MOTLAGH M, MASOUDI R, et al. Zinc oxide nanoparticles preserve the quality and fertility potential of rooster sperm during the cryopreservation process[J]. Reprod Domestic Anim, 2024, 59(4):e14568. [42] KHALIL W A, EL-HARAIRY M A, ZEIDAN A E B, et al. Impact of selenium nano-particles in semen extender on bull sperm quality after cryopreservation[J]. Theriogenology, 2019, 126:121-127. [43] AKHTARSHENAS B, KOWSAR R, HAJIAN M, et al. ρ-coumaric acid-zinc oxide nanoparticles improve post-thaw quality of goat spermatozoa and developmental competence of fertilized oocytes in vitro[J]. Sci Rep, 2024, 14(1):31971. [44] MOUSAVI S M, TOWHIDI A, ZHANDI M, et al. A soy lecithin nanoparticles-based extender effectively cryopreserves Holstein bull sperm[J]. Anim Reprod Sci, 2023, 257:107326. [45] MUKHERJEE A G, GOPALAKRISHNAN A V, MUKHERJEE A. The application of nanomaterials in designing promising diagnostic, preservation, and therapeutic strategies in combating male infertility: A review[J]. J Drug Del Sci Technol, 2024, 92:105356. [46] UNIYAL A, KUMBA K, DHIMAN G, et al. Advanced SPR sensor for human sperm analysis: Leveraging silver and nanomaterials for enhanced performance[J]. Plasmonics, 2025,20(6):3939-3950. [47] TEMERARIO L, MARTINO N A, BENNINK M, et al. Effects of cryoprotectant concentration and exposure time during vitrification of immature pre-pubertal lamb cumulus-oocyte complexes on nuclear and cytoplasmic maturation[J]. Animals, 2024, 14(16):2351. [48] LIN H L H, MERMILLOD P, GRASSEAU I, et al. Is glycerol a good cryoprotectant for sperm cells? New exploration of its toxicity using avian model[J]. Anim Reprod Sci, 2023, 258:107330. [49] HASSAN M A E, SHEHABELDIN A M, OMAR M E A, et al. Effect of spirulina nanoparticles or selenium-coated spirulina nanoparticles supplemented to freezing extender on bull sperm freezability[J]. Pak Vet J, 2023, 43(4):739-747. [50] XU S J, LI P, HAN F, et al. Myofibrillar protein interacting with trehalose elevated the quality of frozen meat[J]. Foods, 2022, 11(7):1041. [51] ZHONG Y, MARUF A, QU K, et al. Nanogels with covalently bound and releasable trehalose for autophagy stimulation in atherosclerosis[J]. J Nanobiotechnol, 2023, 21(1):472. [52] LEE P-C, STEWART S, AMELKINA O, et al. Trehalose delivered by cold-responsive nanoparticles improves tolerance of cumulus-oocyte complexes to microwave drying[J]. J Ass Reprod Genet, 2023, 40(8):1817-1828. [53] ABBASI Y, HAJIAGHALOU S, BANIASADI F, et al. Fe3O4 magnetic nanoparticles improve the vitrification of mouse immature oocytes and modulate the pluripotent genes expression in derived pronuclear-stage embryos[J]. Cryobiology, 2021, 100:81-89. [54] LEE S, KIM H J, CHO H B, et al. Melatonin loaded PLGA nanoparticles effectively ameliorate the in vitro maturation of deteriorated oocytes and the cryoprotective abilities during vitrification process.[J]. Biomaters Sci, 2023, 11(8):2912-2923. [55] JAHANBIN R, YAZDANSHENAS P, RAHIMI M, et al. In vivo and in vitro evaluation of bull semen processed with zinc (Zn) nanoparticles[J]. Biol Trace Elem Res, 2021, 199(1):126-135. [56] SADEGHI S, RAHAIE M, OSTAD-HASANZADEH B. Nanostructures in non-invasive prenatal genetic screening[J]. Biomed Eng Lett, 2022, 12(1):3-18. [57] LI J, DENG T, CHU X, et al. Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms[J]. Anal Chem, 2010, 82(7):2811-2816. [58] LIN H Y, YEN S C, KANG C H, et al. How to evaluate the potential toxicity of therapeutic carbon nanomaterials? A comprehensive study of carbonized nanogels with multiple animal toxicity test models.[J]. J Hazardous Mater, 2022, 429:128337. [59] NERI G, IARIA C, CAPPARUCCI F, et al. In vivo tracking and biosafety of fluorescent graphene-cyclodextrin nanomaterials on zebrafish embryos[J]. Flatchem, 2022, 35:100411. [60] GATTO M S, NAJAHI-MISSAOUI W. Lyophilization of nanoparticles, does it really work? Overview of the current status and challenges[J]. Int J Mol Sci, 2023, 24(18):14041. [61] REHMAN N, JABEEN F, ASAD M, et al. Exposure to zinc oxide nanoparticles induced reproductive toxicities in male Sprague Dawley rats[J]. J Trace Elements Med Biol, 2024, 83:127411. [62] KOEDRITH P, RAHMAN M M, JANG Y J, et al. Nanoparticles: Weighing the pros and cons from an eco-genotoxicological perspective[J]. J Cancer Pre, 2021, 26(2):83-97. |