1 |
MISHRA G , TOWNSEND K L . The metabolic and functional roles of sensory nerves in adipose tissues[J]. Nat Metab, 2023, 5 (9): 1461- 1474.
doi: 10.1038/s42255-023-00868-x
|
2 |
GHABEN A L , SCHERER P E . Adipogenesis and metabolic health[J]. Nat Rev Mol Cell Biol, 2019, 20 (4): 242- 258.
doi: 10.1038/s41580-018-0093-z
|
3 |
LI H B , LIAO X G , LAN M , et al. Arctigenin modulates adipogenic-osteogenic balance in the bone marrow microenvironment of ovariectomized rats via the MEK1/PPARγ/Wnt/β-catenin pathway[J]. Chem Biol Drug Des, 2024, 104 (3): e14625.
doi: 10.1111/cbdd.14625
|
4 |
LUO Z C , LU Y H , ZHENG S L , et al. Chemically modified PPARγ mRNA unleashes adipogenic potential in 3T3-L1-predipocytes: An approach for accelerated wound healing[J]. Int J Med Sci, 2024, 21 (13): 2480- 2493.
doi: 10.7150/ijms.97885
|
5 |
TAN X Q , ZHU T T , ZHANG L Q , et al. miR-669a-5p promotes adipogenic differentiation and induces browning in preadipocytes[J]. Adipocyte, 2022, 11 (1): 120- 132.
doi: 10.1080/21623945.2022.2030570
|
6 |
YANG Z , BIAN C J , ZHOU H , et al. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1[J]. Stem Cells Dev, 2011, 20 (2): 259- 267.
doi: 10.1089/scd.2010.0072
|
7 |
EL-MAHDY H A , SALLAM A A M , ISMAIL A , et al. miRNAs inspirations in hepatocellular carcinoma: detrimental and favorable aspects of key performers[J]. Pathol Res Pract, 2022, 233, 153886.
doi: 10.1016/j.prp.2022.153886
|
8 |
ELREBEHY M A , AL-SAEED S , GAMAL S , et al. miRNAs as cornerstones in colorectal cancer pathogenesis and resistance to therapy: a spotlight on signaling pathways interplay—a review[J]. Int J Biol Macromol, 2022, 214, 583- 600.
doi: 10.1016/j.ijbiomac.2022.06.134
|
9 |
DOGHISH A S , HASHEM A H , SHEHABELDINE A M , et al. Nanocomposite based on gold nanoparticles and carboxymethyl cellulose: synthesis, characterization, antimicrobial, and anticancer activities[J]. J Drug Deliv Sci Technol, 2022, 77, 103874.
doi: 10.1016/j.jddst.2022.103874
|
10 |
ELKHAWAGA S Y , ISMAIL A , ELSAKKA E G E , et al. miRNAs as cornerstones in adipogenesis and obesity[J]. Life Sci, 2023, 315, 121382.
doi: 10.1016/j.lfs.2023.121382
|
11 |
KURYLOWICZ A . microRNAs in human adipose tissue physiology and dysfunction[J]. Cells, 2021, 10 (12): 3342.
doi: 10.3390/cells10123342
|
12 |
AGBU P , CARTHEW R W . MicroRNA-mediated regulation of glucose and lipid metabolism[J]. Nat Rev Mol Cell Biol, 2021, 22 (6): 425- 438.
doi: 10.1038/s41580-021-00354-w
|
13 |
ZHANG Q , CAI R , TANG G R , et al. MiR-146a-5p targeting SMAD4 and TRAF6 inhibits adipogenensis through TGF-β and AKT/mTORC1 signal pathways in porcine intramuscular preadipocytes[J]. J Anim Sci Biotechnol, 2021, 12 (1): 12.
doi: 10.1186/s40104-020-00525-3
|
14 |
GAN M L , SHEN L Y , FAN Y , et al. ssc-miR-451 regulates porcine primary adipocyte differentiation by targeting ACACA[J]. Animals (Basel), 2020, 10 (10): 1891.
|
15 |
GAO Y , WANG Y Q , CHEN X C , et al. MiR-127 attenuates adipogenesis by targeting MAPK4 and HOXC6 in porcine adipocytes[J]. J Cell Physiol, 2019, 234 (12): 21838- 21850.
doi: 10.1002/jcp.28660
|
16 |
CHENG S H , DI Z H , HIRMAN A R , et al. MiR-375-3p alleviates the severity of inflammation through targeting YAP1/LEKTI pathway in HaCaT cells[J]. Biosci Biotechnol Biochem, 2020, 84 (10): 2005- 2013.
doi: 10.1080/09168451.2020.1783196
|
17 |
CHANG K P , WEI Z X , CAO H . miR-375-3p inhibits the progression of laryngeal squamous cell carcinoma by targeting hepatocyte nuclear factor-1β[J]. Oncol Lett, 2020, 20 (4): 80.
|
18 |
LI Y F , LI X F , WANG L , et al. miR-375-3p contributes to hypoxia-induced apoptosis by targeting forkhead box P1 (FOXP1) and Bcl2 like protein 2 (Bcl2l2) in rat cardiomyocyte h9c2 cells[J]. Biotechnol Lett, 2021, 43 (2): 353- 367.
doi: 10.1007/s10529-020-03013-w
|
19 |
SUN T H , LI C T , XIONG L F , et al. miR-375-3p negatively regulates osteogenesis by targeting and decreasing the expression levels of LRP5 and β-catenin[J]. PLoS One, 2017, 12 (2): e0171281.
doi: 10.1371/journal.pone.0171281
|
20 |
ZHUANG Y , YANG D C , SHI S , et al. MiR-375-3p promotes cardiac fibrosis by regulating the ferroptosis mediated by GPX4[J]. Comput Intell Neurosci, 2022, 2022, 9629158.
|
21 |
SEELIGER C , KRAUSS T , HONECKER J , et al. miR-375 is cold exposure sensitive and drives thermogenesis in visceral adipose tissue derived stem cells[J]. Sci Rep, 2022, 12 (1): 9557.
|
22 |
XU X N , CHEN X X , XU M , et al. miR-375-3p suppresses tumorigenesis and partially reverses chemoresistance by targeting YAP1 and SP1 in colorectal cancer cells[J]. Aging, 2019, 11 (18): 7357- 7385.
|
23 |
ZHANG C , ZHU Z L , GAO J X , et al. Plasma exosomal miR-375-3p regulates mitochondria-dependent keratinocyte apoptosis by targeting XIAP in severe drug-induced skin reactions[J]. Sci Transl Med, 2020, 12 (574): eaaw6142.
|
24 |
卢金喜, 余红梅, 齐孝安, 等. miR-375-3p过表达的甲状腺乳头状癌细胞增殖和侵袭能力变化[J]. 山东医药, 2023, 63 (14): 50- 54.
|
|
LU J X , YU H M , QI X A , et al. Effects of over-expression of miR-375-3p on proliferation and invasion of thyroid papillary carcinoma cells[J]. Shandong Medical Journal, 2023, 63 (14): 50- 54.
|
25 |
LIU S Y , SUN G J , YUAN B , et al. miR-375 negatively regulates porcine preadipocyte differentiation by targeting BMPR2[J]. FEBS Lett, 2016, 590 (10): 1417- 1427.
|
26 |
CHEN S , ZHENG Y F , ZHANG S , et al. Promotion effects of miR-375 on the osteogenic differentiation of human adipose-derived mesenchymal stem cells[J]. Stem Cell Rep, 2017, 8 (3): 773- 786.
|
27 |
GEZGINCI-OKTAYOGLU S , SANCAR S , KARATUG-KACAR A , et al. miR-375 induces adipogenesis through targeting Erk1 in pancreatic duct cells under the influence of sodium palmitate[J]. J Cell Physiol, 2021, 236 (5): 3881- 3895.
|
28 |
LEI L , ZHOU C , YANG X , et al. Down-regulation of microRNA-375 regulates adipokines and inhibits inflammatory cytokines by targeting AdipoR2 in non-alcoholic fatty liver disease[J]. Clin Exp Pharmacol Physiol, 2018, 45 (8): 819- 831.
|
29 |
SAKURAI N , FUJIHARA Y , KOBAYASHI K , et al. CRISPR/Cas9-mediated disruption of lipocalins, Ly6g5b, and Ly6g5c causes male subfertility in mice[J]. Andrology, 2024, 12 (5): 981- 990.
|
30 |
CHEN H L , MA L , YANG W J , et al. POLR3G promotes EMT via PI3K/AKT signaling pathway in bladder cancer[J]. FASEB J, 2023, 37 (12): e23260.
|
31 |
LIU X H , ZHANG W Y , WANG H R , et al. Increased expression of POLR3G predicts poor prognosis in transitional cell carcinoma[J]. PeerJ, 2020, 8, e10281.
|
32 |
LAUTRÉ W , RICHARD E , FEUGEAS J P , et al. The POLR3G subunit of human RNA polymerase Ⅲ regulates tumorigenesis and metastasis in triple-negative breast cancer[J]. Cancers (Basel), 2022, 14 (23): 5732.
|
33 |
YU F Y , ZHAO X Y , LI M T , et al. SLITRK6 promotes the progression of lung adenocarcinoma by regulating PI3K/AKT/mTOR signaling and Warburg effect[J]. Apoptosis, 2023, 28 (7-8): 1216- 1225.
|
34 |
MIR M A , PANDITH A A , MANSOOR S , et al. Differential expression of SLITRK6 gene as a potential therapeutic target for urothelial carcinoma in particular upper tract cancer[J]. Gene, 2023, 878, 147583.
|
35 |
FARRUGIA A J , RODRÍGUEZ J , ORGAZ J L , et al. CDC42EP5/BORG3 modulates SEPT9 to promote actomyosin function, migration, and invasion[J]. J Cell Biol, 2020, 219 (9): e201912159.
|
36 |
LIN W M , CHEN L , MENG W J , et al. C/EBPα promotes porcine pre-adipocyte proliferation and differentiation via mediating MSTRG. 12568.2/FOXO3 trans-activation for STYX[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2022, 1867 (10): 159206.
|
37 |
KIM M S , BAEK J H , LEE J , et al. Deubiquitinase USP1 enhances CCAAT/enhancer-binding protein beta (C/EBPβ) stability and accelerates adipogenesis and lipid accumulation[J]. Cell Death Dis, 2023, 14 (11): 776.
|
38 |
DANG T N , TIONGCO R P , BROWN L M , et al. Expression of the preadipocyte marker ZFP423 is dysregulated between well-differentiated and dedifferentiated liposarcoma[J]. BMC Cancer, 2022, 22 (1): 300.
|
39 |
DANG T N , TAYLOR J L , KILROY G , et al. SIAH2 is expressed in adipocyte precursor cells and interacts with EBF1 and ZFP521 to promote adipogenesis[J]. Obesity (Silver Spring), 2021, 29 (1): 98- 107.
|
40 |
LI B L , LIU S B , HE Z , et al. The role of zinc finger proteins in the fate determination of mesenchymal stem cells during osteogenic and adipogenic differentiation[J]. Int J Biochem Cell Biol, 2024, 167, 106507.
|