1 |
周雪, 汪显耀, 何志旭. E3泛素连接酶Trim21在肿瘤中的研究进展[J]. 遵义医科大学学报, 2024, 47 (9): 916-925, 934.
|
|
ZHOU X , WANG X Y , HE Z X . Research progress of E3 ubiquitin ligase Trim21 in tumor[J]. Journal of Zunyi Medical University, 2024, 47 (9): 916-925, 934.
|
2 |
侯雪阳, 宋丹丹, 徐晓珍, 等. TRIM28蛋白结构和功能及其在肿瘤中的研究进展[J]. 现代肿瘤医学, 2024, 32 (18): 3589- 3596.
doi: 10.3969/j.issn.1672-4992.2024.18.030
|
|
HOU X Y , SONG D D , XU X Z , et al. The structure and function of TRIM28 protein and its research progress in tumor[J]. Modern Oncology, 2024, 32 (18): 3589- 3596.
doi: 10.3969/j.issn.1672-4992.2024.18.030
|
3 |
REYMOND A , MERONI G , FANTOZZI A , et al. The tripartite motif family identifies cell compartments[J]. EMBO J, 2001, 20 (9): 2140- 2151.
doi: 10.1093/emboj/20.9.2140
|
4 |
杨东亮, 毕冬琳, 杨晓莉, 等. TRIM家族蛋白在病毒感染中作用的研究进展[J]. 微生物学报, 2023, 63 (4): 1356- 1364.
|
|
YANG D L , BI D L , YANG X L , et al. Role of TRIM family proteins in viral infection[J]. Acta Microbiologica Sinica, 2023, 63 (4): 1356- 1364.
|
5 |
刘艳美, 孙萌, 马瑞瑞. TRIM家族蛋白结构和功能研究进展[J]. 黑龙江畜牧兽医, 2022, (15): 29- 36.
|
|
LIU Y M , SUN M , MA R R . Advances in the structure and function of TRIM family protein[J]. Heilongjiang Animal Science and Veterinary Medicine, 2022, (15): 29- 36.
|
6 |
贾玉生, 廖明, 代曼曼. 鸡主要组织相容性复合体分子结构与抗病性关系研究进展[J]. 中国畜牧兽医, 2024, 51 (1): 242- 254.
|
|
JIA Y S , LIAO M , DAI M M . Research progress on the relationship between the molecular structure of chicken MHC and disease resistance[J]. China Animal Husbandry & Veterinary Medicine, 2024, 51 (1): 242- 254.
|
7 |
ZUREK B , SCHOULTZ I , NEERINCX A , et al. TRIM27 negatively regulates NOD2 by ubiquitination and proteasomal degradation[J]. PLoS One, 2012, 7 (7): e41255.
doi: 10.1371/journal.pone.0041255
|
8 |
CAGLIANI R , RIVA S , POZZOLI U , et al. Balancing selection is common in the extended MHC region but most alleles with opposite risk profile for autoimmune diseases are neutrally evolving[J]. BMC Evol Biol, 2011, 11 (1): 171.
doi: 10.1186/1471-2148-11-171
|
9 |
CREE B A C , RIOUX J D , MCCAULEY J L , et al. A major histocompatibility class i locus contributes to multiple sclerosis susceptibility independently from HLA-DRB1 *15:01[J]. PLoS One, 2010, 5 (6): e11296.
doi: 10.1371/journal.pone.0011296
|
10 |
LANATA C M , NITITHAM J , TAYLOR K E , et al. Genetic contributions to lupus nephritis in a multi-ethnic cohort of systemic lupus erythematous patients[J]. PLoS One, 2018, 13 (6): e0199003.
doi: 10.1371/journal.pone.0199003
|
11 |
ZHAO W , WANG L J , ZHANG M , et al. Tripartite motif-containing protein 38 negatively regulates TLR3/4-and RIG-I-mediated IFN-β production and antiviral response by targeting NAP1[J]. J Immunol, 2012, 188 (11): 5311- 5318.
doi: 10.4049/jimmunol.1103506
|
12 |
ZHAO W , WANG L J , ZHANG M , et al. E3 ubiquitin ligase tripartite motif 38 negatively regulates TLR-mediated immune responses by proteasomal degradation of TNF receptor-associated factor 6 in macrophages[J]. J Immunol, 2012, 188 (6): 2567- 2574.
doi: 10.4049/jimmunol.1103255
|
13 |
XUE Q H , ZHOU Z , LEI X B , et al. TRIM38 negatively regulates TLR3-mediated IFN-β signaling by targeting TRIF for degradation[J]. PLoS One, 2012, 7 (10): e46825.
doi: 10.1371/journal.pone.0046825
|
14 |
SUZUKI M , WATANABE M , NAKAMARU Y , et al. TRIM39 negatively regulates the NFκB-mediated signaling pathway through stabilization of Cactin[J]. Cell Mol Life Sci, 2016, 73 (5): 1085- 1101.
doi: 10.1007/s00018-015-2040-x
|
15 |
KURATA R , TAJIMA A , YONEZAWA T , et al. TRIM39R, but not TRIM39B, regulates type Ⅰ interferon response[J]. Biochem Biophys Res Commun, 2013, 436 (1): 90- 95.
doi: 10.1016/j.bbrc.2013.05.064
|
16 |
刘妮妮, 张靓, 伍冰倩, 等. 新型免疫分子TRIM39及其缺失体参与抗禽白血病病毒作用[J]. 江苏农业科学, 2019, 47 (16): 63- 66.
|
|
LIU N N , ZHANG L , WU B Q , et al. A new immune molecule TRIM39 and its deletants participate in immune response of chicken against avian leukemia virus[J]. Jiangsu Agricultural Sciences, 2019, 47 (16): 63- 66.
|
17 |
陈世豪, 潘诗雨, 赵睿涵, 等. 鸡SAMD9L基因真核表达载体构建及其对ALV-J病毒复制的影响[J]. 扬州大学学报: 农业与生命科学版, 2021, 42 (6): 54- 59.
|
|
CHEN S H , PAN S Y , ZHAO R H , et al. Construction of eukaryotic expression vector of chicken SAMD9L gene and its effect on ALV-J replication[J]. Journal of Yangzhou University: Agricultural and Life Science Edition, 2021, 42 (6): 54- 59.
|
18 |
连玲. 鸡主要组织相容性复合体(MHC)研究进展[J]. 中国家禽, 2022, 44 (1): 1- 10.
|
|
LIAN L . Research progresses on chicken major histocompatibility complex[J]. China Poultry, 2022, 44 (1): 1- 10.
|
19 |
SHIINA T , BRILES W E , GOTO R M , et al. Extended gene map reveals tripartite motif, C-type lectin, and Ig superfamily type genes within a subregion of the chicken MHC-B affecting infectious disease[J]. Extended gene map reveals tripartite motif, C-type lectin, and Ig superfamily type genes within a subregion of the chicken MHC-B affecting infectious disease[J]. J Immunol, 2007, 178 (11): 7162- 7172.
doi: 10.4049/jimmunol.178.11.7162
|
20 |
LIU X X , WANG B L , LI Y Y , et al. Powerful anticolon tumor effect of targeted gene immunotherapy using folate-modified nanoparticle delivery of CCL19 to activate the immune system[J]. ACS Cent Sci, 2019, 5 (2): 277- 289.
doi: 10.1021/acscentsci.8b00688
|
21 |
GARRIDO D , ALBER A , KUT E , et al. The role of type Ⅰ interferons (IFNs) in the regulation of chicken macrophage inflammatory response to bacterial challenge[J]. Dev Comp Immunol, 2018, 86, 156- 170.
doi: 10.1016/j.dci.2018.04.025
|
22 |
CHEN D W , JI Q L , LIU J , et al. MicroRNAs in the regulation of RIG-I-like receptor signaling pathway: possible strategy for viral infection and cancer[J]. Biomolecules, 2023, 13 (9): 1344.
doi: 10.3390/biom13091344
|
23 |
WU S F , XIA L , SHI X D , et al. RIG-I regulates myeloid differentiation by promoting TRIM25-mediated ISGylation[J]. Proc Natl Acad Sci U S A, 2020, 117 (25): 14395- 14404.
doi: 10.1073/pnas.1918596117
|
24 |
马克姣, 蔡清清, 王佳兴, 等. 鸡TET2及截短体真核表达载体的构建及其对先天免疫反应的影响[J]. 农业生物技术学报, 2024, 32 (10): 2371- 2380.
doi: 10.3969/j.issn.1674-7968.2024.10.015
|
|
MA K J , CAI Q Q , WANG J X , et al. Construction of chicken (Gallus gallus) TET2 and truncated eukaryotic expression vector and its effects on innate immune response[J]. Journal of Agricultural Biotechnology, 2024, 32 (10): 2371- 2380.
doi: 10.3969/j.issn.1674-7968.2024.10.015
|
25 |
YANG E , HUANG S , JAMI-ALAHMADI Y , et al. Elucidation of TRIM25 ubiquitination targets involved in diverse cellular and antiviral processes[J]. PLoS Pathog, 2022, 18 (9): e1010743.
doi: 10.1371/journal.ppat.1010743
|
26 |
HE T S , XIE T , LI J , et al. THO complex subunit 7 homolog negatively regulates cellular antiviral response against RNA viruses by targeting TBK1[J]. Viruses, 2019, 11 (2): 158.
doi: 10.3390/v11020158
|
27 |
WAN Q Y , YANG C R , RAO Y L , et al. MDA5 induces a stronger interferon response than RIG-I to GCRV infection through a mechanism involving the phosphorylation and dimerization of IRF3 and IRF7 in CIK cells[J]. Front Immunol, 2017, 8, 189.
|