[1] 鲍加荣. 赤狐和银黑狐毛色差异分析、色素基因克隆及TYRP1功能初步研究[D]. 北京:中国农业科学院, 2015. BAO J R. Analyzing coat color differences between red and silver fox (Vulpes vulpes), pigment genes cloning and tentative functional investigation of TYRP1[D]. Beijing: Chinese Academy of Agriculture Sciences, 2015. (in Chinese) [2] 孙佳钰, 李佳鹏, 刘 庆, 等. 银黑狐和北美赤狐毛绒品质的差异分析[J/OL]. 经济动物学报, 2025: 1-7.[2025-05-08]. http://kns.cnki.net/kcms/detail/22.1258.S.20250415.1448.004.html. SUN J Y, LI J P, LIU Q, et al. Analysis of differences in fur quality between silver fox and red fox[J/OL]. Journal of economic animal, 2025: 1-7.[2025-05-08]. http://kns.cnki.net/kcms/detail/22.1258.S.20250415.1448.004.html. (in Chinese) [3] KLUNGLAND H, VAGE D I. Pigmentary switches in domestic animal species[J]. Ann N Y Acad Sci, 2003, 994(1): 331-338. [4] MICHAEL H, TORSTEN S. The genetic and evolutionary basis of colour variation in vertebrates[J]. Cell Mol Life Sci, 2010, 67(15): 2591-2603. [5] BRADBURY M W, FABRICANT J D. Changes in melanin granules in the fox due to coat color mutations[J]. J Hered, 1988, 79(2): 133-136. [6] ZHANG Y, WU H, YU L. Progress on coat color regulation mechanism and its association with the adaptive evolution in mammals[J]. Yi Chuan, 2021, 43(2): 118-133. [7] RENLEI J, YAXIONG T. Melanocortin-1 receptor mutations and pigmentation: insights from large animals[J]. Prog Mol Biol Transl Sci, 2022, 189(1): 179-213. [8] 侯佳妮. 蓝狐KIT、KITLG及EDNRB基因的克隆及与显性白毛色突变的相关性分析[D]. 长春:吉林大学, 2014. HOU J N. Cloning of genes KIT, KITLG, EDNRB and their correlationto the dominant white coat color in blue fox[D]. Changchun: Jilin University, 2014. (in Chinese) [9] 洪支林. 北极白狐毛色季节性变化候选基因WNT5A的功能验证[D]. 秦皇岛:河北科技师范学院, 2024. HONG Z L. Functional verification of the candidategene WNT5A for seasonal changes of coatcolor in arctic white fox (Vulpes lagopus)[D]. Qinghuangdao: Hebei Normal University of Science & Technology, 2024. (in Chinese) [10] 王瑞宁. 北极狐Wnt3a基因在黑色素形成过程中的作用及机制研究[D]. 秦皇岛:河北科技师范学院, 2020. WANG R N. The role and mechanism of arctic fox Wnt3a gene in the process of melanin formation[D]. Qinghuangdao: Hebei Normal University of Science & Technology, 2020. (in Chinese) [11] 鲁 秀, 张名爱, 孔 敏, 等. 基于转录组和蛋白质组分析筛选五龙鹅产蛋相关候选基因[J]. 畜牧兽医学报, 2025, 56(1): 232-245. LU X, ZHANG M A, KONG M, et al. Screening for candidate genes related to egg production in wulong geese based on transcriptome and proteome analyses[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 232-245. (in Chinese) [12] 蒋 婷, 李文东, 李兴起, 等. 转录组和蛋白组筛选就巢鸡卵巢发育候选基因及其调控网络构建[J]. 畜牧兽医学报, 2024, 55(11): 4950-4967. JIANG T, LI E D, LI X Q, et al. Screening candidate genes for ovarian development and constructing regulatory network in nesting chickens by transcriptome and proteome[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55(11): 4950-4967. (in Chinese) [13] LIAO R J, YOU P, WENG K, et al. TMT labeling under acidic ph overcomes detrimental overlabeling and improves peptide identification rates[J]. Anal Chem, 2023, 95(28): 10595-10602. [14] ZHAO X Y, JIA W L, WANG J Y, et al. Identification of a candidate gene regulating intramuscular fat content in pigs through the integrative analysis of transcriptomics and proteomics data[J]. J Agric Food Chem, 2023, 71(48): 19154-19164. [15] QIN P, PAN Z H, ZHANG W, et al. Integrative proteomic and transcriptomic analysis in the female goat ovary to explore the onset of puberty[J]. J Proteomics, 2024, 1(301): 105183-105195. [16] 焦丽媛. 长毛兔毛色变化的色度分析[D]. 泰安:山东农业大学, 2024. JIAO L Y. Chromatism analysis of coat color variation in angora rabbits[D]. Taian: Shandong Agricultural University, 2024. (in Chinese) [17] 陈 旭, 董依萌, 邢秀梅, 等. 梅花鹿SCF基因参与色素合成的作用研究[J]. 中国畜牧兽医, 2023, 50(9): 3663-3670. CHEN X, DONG Y M, XING X M, et al. Study on the role of SCF gene in pigment synthesis in sika deer[J]. China Animal Husbandry and Veterinary Medicine, 2023, 50(9): 3663-3670. (in Chinese) [18] 陈灿灿, 蒋 婧, 孙晓燕, 等. AGRP基因在山羊组织表达及其对黑色素生成的作用机制[J]. 畜牧兽医学报, 2023, 54(4): 1441-1451. CHEN C C, JIANG J, SUN X Y, et al. Expression of AGRP gene in goat tissue and its action mechanism on melanin production[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54(4): 1441-1451. (in Chinese) [19] HONG Z L, WANG D X, QIAO X, et al. Wnt5a negatively regulates melanogenesis in primary arctic fox epidermal melanocytes[J]. Gene, 2025, 934(1): 149045-149055. [20] LIANG X Y, LAN J, XU M N, et al. Impact of KIT editing on coat pigmentation and fresh meat color in yorkshire pigs[J]. Crispr J, 2022, 5(6): 825-842. [21] 耿晓文, 徐硕辉, 张志远, 等. 鸡miR-203a的生物信息学分析及其对黑色素沉积作用[J]. 河南农业大学学报, 2025, 59(3): 434-443. GENG X W, XU S H, ZHANG Z Y, et al. Bioinformatics and analysis of melanin deposition of chicken miR-203a[J]. Journal of Henan Agricultural University, 2025, 59(3): 434-443. (in Chinese) [22] YAO L D, BAO S X, HONG W J, et al. Transcriptome profiling analysis reveals key genes of different coat color in sheep skin[J]. Peer J, 2019, 7(5): e8077. [23] KUMARI S, TIEN GUAN THUN S, KUMAR VERMA N, et al. Melanogenes is inhibitors[J]. Acta Derm Venereol, 2018, 98(10): 924-931. [24] GODING C R, ARNHEITER H. MITF-the first 25 years[J]. Genes Dev, 2019, 33(15-16): 983-1007. [25] LI J P, CHEN W, WU S F, et al. Differential expression of MC1R gene in liaoning cashmere goats with different coat colors[J]. Anim Biotechnol, 2019, 30(3): 273-278. [26] KURAMOTO T, KITADA K, INUI T, et al. Attractin/mahogany/zitter plays a critical role in myelination of the central nervous system[J]. Proc Natl Acad Sci U S A, 2001, 98(2): 559-564. [27] 陈灿灿, 蒋 婧, 孙晓燕, 等. 酉州乌羊五个组织的权重基因共表达网络分析[J]. 农业生物技术学报, 2023, 31(7): 1450-1463. CHEN C C, JIANG J, SUN X Y, et al. Weighted gene co-expression network analysis of five tissues in youzhou dark goat(capra hircus)[J]. Journal of Agricultural Biotechnology, 2023, 31(7): 1450-1463. (in Chinese) [28] JEONG H S, CHOI H R, YUN H Y, et al. Ceramide PC102 inhibits melanin synthesis via proteasomal degradation of microphthalmia-associated transcription factor and tyrosinase[J]. Mol Cell Biochem, 2013, 375(1-2): 81-87. [29] CHO B R, JUN H J, THACH T T, et al. Betaine reduces cellular melanin content via suppression of microphthalmia-associated transcription factor in B16-F1 murine melanocytes[J]. Food Sci Biotechnol, 2017, 26(5): 1391-1397. [30] AOKI H, MOTOHASHI T, YOSHIMURA N, et al. Cooperative and indispensable roles of endothelin 3 and KIT signalings in melanocyte development[J]. Dev Dyn, 2005, 233(2): 407-417. [31] 耿建军, 白俊明, 范瑞文, 等. 内皮素-3对羊驼黑色素细胞特征及细胞内毛色基因表达的影响[J]. 畜牧兽医学报, 2013, 44(7): 1070-1077. GENG J J, BAI J M, FAN R W, et al. The effects of endothelin-3 on the melanocyte characteristic and expression of hair color genes in melanocytes from alpaca(lama pacos)in vitro[J]. Acta Veterinaria et Zootechnica Sinica, 2013, 44(7): 1070-1077. (in Chinese) [32] BUAC K, XU M, CRONIN J, et al. NRG1/ERBB3 signaling in melanocyte development and melanoma: inhibition of differentiation and promotion of proliferation[J]. Pigment Cell Melanoma Res, 2009, 22(6): 773-784. [33] KAELIN C B, XU X, HONG L Z, et al. Specifying and sustaining pigmentation patterns in domestic and wild cats[J]. Science, 2012, 337(6101): 1536-1541. [34] 韩敏振. 牦牛毛色候选基因的筛选及其多态性研究[D]. 西宁:青海大学, 2022. HAN M Z. Study on screening of candidate coat color genes andpolymorphisms in yaks[D]. Xining: Qinghai University, 2022. (in Chinese) [35] 于凤姣, 刘开东, 宋伟杰, 等. miR-137靶向MITF调控山羊黑色素细胞生成黑色素的机制研究[J]. 畜牧兽医学报, 2025, 56(1): 189-200. YU F J, LIU K D, SONG W J, et al. Mechanism of mir-137 targeting mitf regulating melanogenesis in goat melanocytes[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 189-200. (in Chinese) [36] LAI X L, WICHERS HARRY J, MONTSERRAT S, et al. Structure and function of human tyrosinase and tyrosinase-related proteins[J]. Chemistry, 2018, 24(1): 47-55. [37] LI J Y, BERTRAND B, SYLVAIN M, et al. A missense mutation in TYRP1 causes the chocolate plumage color in chicken and alters melanosome structure[J]. Pigment Cell Melanoma Res, 2019, 32(3): 381-390. [38] WANG L D, ZHOU S Z, LIU G S, et al. The mechanisms of fur development and color formation in american mink revealed using comparative transcriptomics[J]. Animals (Basel), 2022, 12(22): 3088-3097. [39] EISFELD A K, SCHWIND S, HOAG K W, et al. NRAS isoforms differentially affect downstream pathways, cell growth, and cell transformation[J]. Proc Natl Acad Sci U S A, 2014, 111(11): 4179-4184. [40] KWONG L N, COSTELLO J C, LIU H, et al. Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma[J]. Nat Med, 2012, 18(10): 1503-1510. [41] BAI S C, HU S S, DAI Y Y, et al. NRAS promotes the proliferation of melanocytes to increase melanin deposition in rex rabbits[J]. Genome, 2023, 66(1): 1-10. |