畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (2): 643-656.doi: 10.11843/j.issn.0366-6964.2025.02.016
胡瀚文1(), 图格琴1, 任秀娟1, 丁文淇1, 宫文典1, 贾紫洁1, 史琳1, 马木仁2, 宝日格乐3, 芒来1, 白东义1,*(
)
收稿日期:
2024-05-20
出版日期:
2025-02-23
发布日期:
2025-02-26
通讯作者:
白东义
E-mail:havyn0502@qq.com;baidongyi1983@163.com
作者简介:
胡瀚文(2000-),男,山东枣庄人,硕士生,主要从事动物遗传育种研究,E-mail: havyn0502@qq.com
基金资助:
HU Hanwen1(), BAO Tugeqin1, REN Xiujuan1, DING Wenqi1, GONG Wendian1, JIA Zijie1, SHI Lin1, MA Muren2, Baorigele 3, DUGARJAVIIN Manglai1, BAI Dongyi1,*(
)
Received:
2024-05-20
Online:
2025-02-23
Published:
2025-02-26
Contact:
BAI Dongyi
E-mail:havyn0502@qq.com;baidongyi1983@163.com
摘要:
为探究不同类群蒙古马肌肉生长差异,本研究对生长环境差异最大、距离最远的蒙古马类群(巴尔虎马、乌审马)的肌肉表型与肌肉分子层面的差异进行了比较研究。本研究的试验动物分别是3匹生长在陈巴尔虎旗的巴尔虎马和3匹生长在乌审旗的乌审马,均为在野外自由放养采食的健康种公马。每个类群的平均年龄为5岁,同一类群马匹体况相近。其中巴尔虎马宰前活重为(303.10±14.10) kg、胴体重为(148.29±15.43) kg,乌审马宰前活重为(287.90±37.5) kg、胴体重为(140.83±5.04) kg。将试验动物按类群分为2个组,每组3个重复,对所有试验动物进行屠宰并取其臀中肌,将采集的肌肉样本石蜡包埋后进行HE和免疫组化染色,对肌纤维面积以及慢肌纤维占比进行统计;同时对所采集的肌肉样本进行转录组测序,测序结果使用DESeq2软件进行差异基因的筛选,使用David在线软件对差异表达基因进行GO和KEGG富集分析,最后通过qRT-PCR对测序结果进行验证。本试验通过HE染色和免疫组化染色发现,巴尔虎马臀中肌的肌纤维平均面积为(2 592±180.92)μm2,乌审马臀中肌肌纤维面积为(1 997±73.39) μm2, 二者差异显著(P < 0.05);巴尔虎马臀中肌慢肌纤维占比为(10.34±0.59)%,乌审马臀中肌中慢肌纤维占比为(8.14±0.81)%, 二者差异差异不显著(P>0.05)。本研究在巴尔虎马和乌审马的臀中肌中共鉴定出1 103个差异基因,其中有460个上调基因和643个下调基因在乌审马的臀中肌中表达。研究发现,MYH15、MYOZ2、多个谷氨酸受体基因和多个GABAA型受体基因在巴尔虎马臀中肌中高表达;MYH6和FOXO1基因在乌审马臀中肌中高表达。对差异基因进行富集分析发现,GO分析富集到了208个条目,KEGG分析富集到了65个通路,所富集到的条目与通路主要和谷氨酸信号传导、GABA信号传导以及肌肉生长发育有关。本试验对巴尔虎马和乌审马的臀中肌进行研究,发现在二者臀中肌肌肉表型方面,巴尔虎马肌纤维面积显著大于乌审马,但慢肌纤维占比差异不显著;在分子层面二者有较为明显的差异,这些差异集中在了肌纤维类型、肌纤维面积以及肌肉中肌梭神经信号传导等方面。
中图分类号:
胡瀚文, 图格琴, 任秀娟, 丁文淇, 宫文典, 贾紫洁, 史琳, 马木仁, 宝日格乐, 芒来, 白东义. 蒙古马两个类群肌纤维发育表型及基因表达谱比较研究[J]. 畜牧兽医学报, 2025, 56(2): 643-656.
HU Hanwen, BAO Tugeqin, REN Xiujuan, DING Wenqi, GONG Wendian, JIA Zijie, SHI Lin, MA Muren, Baorigele , DUGARJAVIIN Manglai, BAI Dongyi. Comparative Study on Muscle Fiber Development Phenotype and Gene Expression Profile of Two Mongolian Horse Populations[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(2): 643-656.
表 1
骨骼肌相关基因扩增引物序列信息"
基因 Gene | 引物序列(5'→3') Primer sequence |
IVD | F:GGAAGATGGCTGACATGTACA |
R:GCTGAGTAAAGAATCACCCCT | |
PEAR1 | F:TTCACCATAATGCCTACCTCTC |
R:GGATATCTGGCATGACGTACTC | |
MYH6 | F:TACCAGTACATGCTGACAGATC |
R:CAAAGTACTGGATGACACGTTT | |
NYAP2 | F:CTACCCTAAAAGTCACTCGGC |
R:GGTAAAGAGGCTGGTTAGTTCT | |
SYT4 | F:GAGTTCTGAGAAAGACCTTGGA |
R:AAAACTCAAGATCGTGAAGTGC | |
CALML5 | F:CCTTCTCCAGTGTTGACAAGAA |
R:GAACTCTTGGAAGTTGATGACG | |
GAPDH | F:CATCATCCCTGCTTCTACTGG |
R:TCCACGACTGACACGTTAGG |
1 | 杜明, 李蓓, 白东义, 等. 内蒙古农业大学马属动物研究中心科研进展[J]. 内蒙古农业大学学报: 自然科学版, 2022, 43 (5): 1- 15. |
DU M , LI B , BAI D Y , et al. A review of the research work of equine research center of inner Mongolia Agricutural University[J]. Journal of Inner Mongolia Agricultural University: Natural Science Edition, 2022, 43 (5): 1- 15. | |
2 | 梁婷玉, 吴建平, 刘婷, 等. 肌纤维类型分类及转化机理研究进展[J]. 肉类研究, 2018, 32 (9): 55- 61. |
LIANG T Y , WU J P , LIU T , et al. Recent progress in classification and transformation mechanism of muscle fiber types[J]. Meat Research, 2018, 32 (9): 55- 61. | |
3 | 欧秀琼, 李星. 猪肌肉肌纤维生长发育与类型转化及营养调控[J]. 上海农业学报, 2019, 35 (5): 149- 154. |
OU X Q , LI X . Growth, development and type transformation of muscle fiber in pigs and its nutrition regulation[J]. Acta Agriculturae Shanghai, 2019, 35 (5): 149- 154. | |
4 | 侯任达, 张润, 侯欣华, 等. 畜禽肌纤维发育规律及相关基因研究进展[J]. 畜牧兽医学报, 2022, 53 (10): 3279- 3286. |
HOU R D , ZHANG R , HOU X H , et al. Research progress on the pattern of muscle fiber development and related genes in livestock and poultry[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (10): 3279- 3286. | |
5 | 贾紫洁, 图格琴, 丁文淇, 等. 蒙古马全身主要骨骼肌表型谱的构建及比较研究[J]. 畜牧兽医学报, 2023, 54 (2): 596- 607. |
JIA Z J , BAO T , DING W Q , et al. Construction and comparative study of the phenotypic spectrum of the main skeletal muscles throughout the mongolian horse[J]. Acta Veterinaria et Zootechnica Sinica, 2023, 54 (2): 596- 607. | |
6 | 董文芳. A型肉毒毒素注射剂量与骨骼肌形态及收缩力量效关系的动物实验研究[D]. 北京: 北京协和医学院, 2019. |
DONG W F. Experimental study of dose-response relationship between botulinum toxin type A injecting dose and skeletal muscular morphology and strength change[D]. Beijing: Peking Union Medical College, 2019. (in Chinese) | |
7 | ANDERSEN J L , AAGAARD P . Effects of strength training on muscle fiber types and size; consequences for athletes training for high-intensity sport[J]. Scand J Med Sci Sports, 2010, 20 (Suppl 2): 32- 38. |
8 | 王鹏程. 沼泽型水牛与广西本地黄牛背最长肌生理生化指标及差异表达基因研究[D]. 南宁: 广西大学, 2018. |
WANG P C. Physiological biochemical indexes and expression differences of longissimus muscle in swamp buffalo and native cattle[D]. Nanning: Guangxi University, 2018. (in Chinese) | |
9 | 贾紫洁. 蒙古马全身主要骨骼肌表型及相关基因研究[D]. 呼和浩特: 内蒙古农业大学, 2023. |
JIA Z J. Study on the phenotype of major skeletal muscle and related gene in Mongolian horses[D]. Hohhot: Inner Mongolia Agricultural University, 2023. (in Chinese) | |
10 | 图格琴. 蒙古马骨骼肌纤维类型及其耐力训练适应性转化的分子机制研究[D]. 呼和浩特: 内蒙古农业大学, 2023. |
BOU T. Study on the molecular mechanism of muscle fiber type and adaptive transition of endurance training in skeletal muscles of Mongolian horses[D]. Hohhot: Inner Mongolia Agricultural University, 2023. (in Chinese) | |
11 | 钱书蔓. 基于转录组和代谢组学研究伊犁母马不同组织糖原合成分子机制[D]. 乌鲁木齐: 新疆农业大学, 2023. |
QIAN S M. Molecular mechanisms of glycogen synthesis in different tissues of Yili mares based on transcriptome and metabolomics[D]. Urumqi: Xinjiang Agricultural University, 2023. (in Chinese) | |
12 |
DINGBOOM E G , DIJKSTRA G , ENZERINK E , et al. Postnatal muscle fibre composition of the gluteus medius muscle of Dutch Warmblood foals; maturation and the influence of exercise[J]. Equine Vet J Suppl, 1999, 31 (S31): 95- 100.
doi: 10.1111/j.2042-3306.1999.tb05320.x |
13 |
ALEMAN M , NIETO J E . Gene expression of proteolytic systems and growth regulators of skeletal muscle in horses with myopathy associated with pituitary pars intermedia dysfunction[J]. Am J Vet Res, 2010, 71 (6): 664- 670.
doi: 10.2460/ajvr.71.6.664 |
14 |
EIVERS S S , MCGIVNEY B A , GU J , et al. PGC-1α encoded by the PPARGC1A gene regulates oxidative energy metabolism in equine skeletal muscle during exercise[J]. Anim Genet, 2012, 43 (2): 153- 162.
doi: 10.1111/j.1365-2052.2011.02238.x |
15 |
BAO T , HAN H , LI B , et al. The distinct transcriptomes of fast-twitch and slow-twitch muscles in Mongolian horses[J]. Comp Biochem Physiol Part D: Genomics Proteomics, 2020, 33, 100649.
doi: 10.1016/j.cbd.2019.100649 |
16 | 杨蕊. 内蒙古主要饲草产品的品质比较分析[D]. 呼和浩特: 内蒙古农业大学, 2023. |
YANG R. Comparative analysis on the quality of main forage products in Inner Mongolia[D]. Hohhot: Inner Mongolia Agricultural University, 2023. (in Chinese) | |
17 | 马丹阳. 草场流转与草原畜牧业适度规模经营研究——以内蒙古四个牧业旗县为例[D]. 呼和浩特: 内蒙古大学, 2023. |
MA D Y. Research on grassland rental and moderate scale management of grassland animal husbandry: a case study of four animal husbandry counties in Inner Mongolia[D]. Hohhot: Inner Mongolia University, 2023. (in Chinese) | |
18 | 赵雷云. 饲粮营养水平对萨湖F1代羔羊生产性能和肌纤维特性及肌肉发育相关基因表达的影响[D]. 杨凌: 西北农林科技大学, 2021. |
ZHAO L Y. Effects of dietary nutrition levels on the production performance, muscle fiber characteristics and muscle development related gene expression of suffolk x Hu F1 lambs[D]. Yangling: Northwest A&F University, 2021. (in Chinese) | |
19 | 曹妍. 伊犁鹅早期生长发育规律及腿肌mRNA表达谱的研究[D]. 乌鲁木齐: 新疆农业大学, 2022. |
CAO Y. Study on early growth and development and mRNA expression profile of leg muscle of Yili geese[D]. Urumqi: Xinjiang Agricultural University, 2022. (in Chinese) | |
20 | 苏强强. 绵羊MYOZ2和MYOZ3基因的克隆及在凉山半细毛羊组织的时空表达[D]. 雅安: 四川农业大学, 2011. |
SU Q Q. Cloning of MYOZ2、MYOZ3 gene in Ovine and tissues with time expression in Liangshan semi-fine wool sheep[D]. Yaan: Sichuan Agricultural University, 2011. (in Chinese) | |
21 | 王孜, 陈楚雯, 侯绍云, 等. 泸宁鸡MYOZ2基因的分子特征及其在不同日龄腿肌中的表达[J]. 西南民族大学学报: 自然科学版, 2024, 50 (3): 276- 282. |
WANG Z , CHEN C W , HOU S Y , et al. Molecular characteristics of MYOZ2 gene and its expression in leg muscles of Luning chickens at different ages[J]. Journal of Southwest Minzu University: Natural Science Edition, 2024, 50 (3): 276- 282. | |
22 | 严丹, 吴义景, 王志秀, 等. MYOZ2调控鸭肌肉生长的功能研究[J]. 中国家禽, 2022, 44 (5): 19- 24. |
YAN D , WU Y J , WANG Z X , et al. Function study of MYOZ2 in regulating muscle growth in duck[J]. China Poultry, 2022, 44 (5): 19- 24. | |
23 | 丁文淇, 图格琴, 任秀娟, 等. 胎儿期与成年期蒙古马骨骼肌肌纤维类型转化研究[J]. 畜牧兽医学报, 2022, 53 (1): 88- 99. |
DING W Q , BAO T , REN X J , et al. Study on muscle fiber type transformation of Mongolian horse during fetal and adult period[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53 (1): 88- 99. | |
24 |
HSU C P , MOGHADASZADEH B , HARTWIG J H , et al. Sarcomeric and nonmuscle α-actinin isoforms exhibit differential dynamics at skeletal muscle Z-lines[J]. Cytoskeleton, 2018, 75 (5): 213- 228.
doi: 10.1002/cm.21442 |
25 |
KOSMAS K , MICHAEL Z , PAPATHANASIOU A E , et al. Skeletal muscle dysfunction in experimental pulmonary hypertension[J]. Int J Mol Sci, 2022, 23 (18): 10912.
doi: 10.3390/ijms231810912 |
26 | HITACHI K , KIYOFUJI Y , YAMAGUCHI H , et al. Simultaneous loss of skeletal muscle myosin heavy chain Ⅱx and Ⅱb causes severe skeletal muscle hypoplasia in postnatal mice[J]. FASEB J, 2023, 37 (1): e22692. |
27 |
CALISSI G , LAM E W F , LINK W . Therapeutic strategies targeting FOXO transcription factors[J]. Nat Rev Drug Discov, 2021, 20 (1): 21- 38.
doi: 10.1038/s41573-020-0088-2 |
28 | JI L L , YEO D . Mitochondrial dysregulation and muscle disuse atrophy[J]. F1000Res, 2019, 8, F1000 Faculty Rev-1621. |
29 |
OKAMURA T , HASHIMOTO Y , OSAKA T , et al. The sodium-glucose cotransporter 2 inhibitor luseogliflozin can suppress muscle atrophy in Db/Db mice by suppressing the expression of foxo1[J]. J Clin Biochem Nutr, 2019, 65 (1): 23- 28.
doi: 10.3164/jcbn.18-114 |
30 |
SCHIAFFINO S , REGGIANI C . Fiber types in mammalian skeletal muscles[J]. Physiol Rev, 2011, 91 (4): 1447- 1531.
doi: 10.1152/physrev.00031.2010 |
31 | EBARB S M , PHELPS K J , DROUILLARD J S , et al. Effects of anabolic implants and ractopamine-HCl on muscle fiber morphometrics, collagen solubility, and tenderness of beef longissimus lumborum steaks[J]. J Anim Sci, 2017, 95 (3): 1219- 1231. |
32 | SCHEFFLER T L , LEITNER M B , WRIGHT S A . Technical note: protocol for electrophoretic separation of bovine myosin heavy chain isoforms and comparison to immunohistochemistry analysis[J]. J Anim Sci, 2018, 96 (10): 4306- 4312. |
33 | 穆琳, 王文洲, 赵博昊, 等. 福建黄兔肌纤维性状及Myh6基因表达水平分析[J]. 浙江大学学报: 农业与生命科学版, 2017, 43 (3): 365- 370. |
MU L , WANG W Z , ZHAO B H , et al. Analysis of muscle fiber traits and Myh6 gene expression level in Fujian yellow rabbit[J]. Journal of Zhejiang University: Agriculture & Life Sciences, 2017, 43 (3): 365- 370. | |
34 | 胡帅帅, 王文洲, 闫晓荣, 等. 新西兰白兔中Myh6基因的表达及与肌纤维性状的相关性[J]. 华南农业大学学报, 2017, 38 (2): 12- 17. |
HU S S , WANG W Z , YAN X R , et al. Myh6 gene expression and its correlation with muscle fiber traits of New Zealand white rabbits[J]. Journal of South China Agricultural University, 2017, 38 (2): 12- 17. | |
35 | 李海峰, 李冰冰, 石硕硕, 等. γ-氨基丁酸在食品中的应用研究进展[J]. 河南工业大学学报: 自然科学版, 2023, 44 (1): 117- 125. |
LI H F , LI B B , SHI S S , et al. Research progress on the application of γ-aminobutyric acid in food[J]. Journal of Henan University of Technology: Natural Science Edition, 2023, 44 (1): 117- 125. | |
36 | SAKASHITA M , NAKAMURA U , HORIE N , et al. Oral supplementation using gamma-aminobutyric acid and whey protein improves whole body fat-free mass in men after resistance training[J]. J Clin Med Res, 2019, 11 (6): 428- 434. |
37 | ATHAPATHTHU A M G K , MOLAGODA I M N , JAYASOORIYA R G P T , et al. Gamma-aminobutyric acid (GABA) promotes growth in zebrafish larvae by Inducing IGF-1 expression via GABAA and GABAB receptors[J]. Int J Mol Sci, 2021, 22 (20): 11254. |
38 | LIANG R , SHEN X P , WANG F , et al. H19X-encoded miR-322(424)/miR-503 regulates muscle mass by targeting translation initiation factors[J]. J Cachexia Sarcopenia Muscle, 2021, 12 (6): 2174- 2186. |
39 | 王语涵. γ-氨基丁酸对肌肉生长发育的调控作用和机制研究[D]. 重庆: 西南大学, 2023. |
WANG Y H. Regulation and mechanism of gamma-aminobutyric acid on muscle growth and development[D]. Chongqing: Southwest University, 2023. (in Chinese) | |
40 | MALEKZADEH P , KHARA J , HEYDARI R . Alleviating effects of exogenous Gamma-aminobutiric acid on tomato seedling under chilling stress[J]. Physiol Mol Biol Plants, 2014, 20 (1): 133- 137. |
41 | YANG R Q , FENG L , WANG S F , et al. Accumulation of γ-aminobutyric acid in soybean by hypoxia germination and freeze-thawing incubation[J]. J Sci Food Agric, 2016, 96 (6): 2090- 2096. |
42 | ZHU X J , LIAO J R , XIA X L , et al. Physiological and iTRAQ-based proteomic analyses reveal the function of exogenous γ-aminobutyric acid (GABA) in improving tea plant (Camellia sinensis L.) tolerance at cold temperature[J]. BMC Plant Biol, 2019, 19 (1): 43. |
43 | TOUBIANA D , SADE N , LIU L F , et al. Correlation-based network analysis combined with machine learning techniques highlight the role of the GABA shunt in Brachypodium sylvaticum freezing tolerance[J]. Sci Rep, 2020, 10 (1): 4489. |
44 | ZHANG Z R , DU H R , YANG C W , et al. Comparative transcriptome analysis reveals regulators mediating breast muscle growth and development in three chicken breeds[J]. Anim Biotechnol, 2019, 30 (3): 233- 241. |
45 | ROSSI A C , MAMMUCARI C , ARGENTINI C , et al. Two novel/ancient myosins in mammalian skeletal muscles: MYH14/7b and MYH15 are expressed in extraocular muscles and muscle spindles[J]. J Physiol, 2010, 588 (Pt 2): 353- 364. |
46 | LIU J X , ERIKSSON P O , THORNELL L E , et al. Fiber content and myosin heavy chain composition of muscle spindles in aged human biceps brachii[J]. J Histochem Cytochem, 2005, 53 (4): 445- 454. |
47 | NICHOLS T R , COPE T C . Cross-bridge mechanisms underlying the history-dependent properties of muscle spindles and stretch reflexes[J]. Can J Physiol Pharmacol, 2004, 82 (8-9): 569- 576. |
48 | 连文玺, 饶家声, 郝柳芳, 等. 肌梭形态研究进展[J]. 生理学报, 2022, 74 (6): 1039- 1047. |
LIAN W X , RAO J S , HAO L F , et al. Research progress on muscle spindle morphology[J]. Acta Physiologica Sinica, 2022, 74 (6): 1039- 1047. | |
49 | REINER A , LEVITZ J . Glutamatergic signaling in the central nervous system: ionotropic and metabotropic receptors in concert[J]. Neuron, 2018, 98 (6): 1080- 1098. |
50 | 洪剑, 连苡涵, 王海利. 肌梭中机械力离子通道及其信号传递机制研究进展[J]. 军事医学, 2023, 47 (5): 395- 400. |
HONG J , LIAN Y H , WANG H L . Advances in mechanosensitive ion channels and possible mechanisms of mechanical signal transmission[J]. Military Medical Sciences, 2023, 47 (5): 395- 400. | |
51 | MARKS C R , SHONESY B C , WANG X , et al. Activated CaMKⅡα binds to the mGlu5 metabotropic glutamate receptor and modulates calcium mobilization[J]. Mol Pharmacol, 2018, 94 (6): 1352- 1362. |
52 | NISWENDER C M , CONN P J . Metabotropic glutamate receptors: physiology, pharmacology, and disease[J]. Annu Rev Pharmacol Toxicol, 2010, 50, 295- 322. |
53 | 李爽, 付玉莹, 佟慧丽, 等. GRP94通过PI3K/AKT/mTOR信号通路促进牛肌肉卫星细胞分化[J]. 中国兽医学报, 2023, 43 (10): 2101- 2108. |
LI S , FU Y Y , TONG H L , et al. GRP94 promotes differentiation of bovine skeletal muscle satellite cells through PI3K/AKT/mTOR signaling pathway[J]. Chinese Journal of Veterinary Science, 2023, 43 (10): 2101- 2108. | |
54 | SPRENGEL R . Role of AMPA receptors in synaptic plasticity[J]. Cell Tissue Res, 2006, 326 (2): 447- 455. |
55 | 李世超, 阮怀珍. Kainate受体参与痛觉调控机制研究进展[J]. 神经解剖学杂志, 2012, 28 (1): 85- 88. |
LI S C , RUAN H Z . Research progress on the mechanism of Kainate receptor involved in pain regulation[J]. Chinese Journal of Neuroanatomy, 2012, 28 (1): 85- 88. | |
56 | GONG J K , LIU J Z , RONAN E A , et al. A cold-sensing receptor encoded by a glutamate receptor gene[J]. Cell, 2019, 178 (6): 1375- 1386. |
57 | 张晓雯, 张艳杰, 李玮, 等. 南极独角雪冰鱼与尼罗罗非鱼Grik1基因的克隆及其在低温胁迫下的作用比较[J]. 大连海洋大学学报, 2023, 38 (1): 68- 75. |
ZHANG X W , ZHANG Y J , LI W , et al. Cloning and function exploration comparison of Grik1 in Antarctic crocodile icefish (Chionodmco hamatus) and Nile tilapia (Oreochromis niloticus) exposed to cold stress[J]. Journal of Dalian Ocean University, 2023, 38 (1): 68- 75. | |
58 | RUEL J , EMERY S , NOUVIAN R , et al. Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice[J]. Am J Hum Genet, 2008, 83 (2): 278- 292. |
59 | 王春晖. 快速伸缩复合训练对青年男子篮球运动员下肢爆发力的影响研究[J]. 辽宁体育科技, 2022, 44 (1): 135- 140. |
WANG C H . Study on the effect of rapid stretching compound training on lower limb explosive force of youth male basketball players[J]. Liaoning Sport Science and Technology, 2022, 44 (1): 135- 140. | |
60 | 黄硕, 赵小峰. 全身振动训练对老年肌少症患者下肢肌力和活动能力的影响[J]. 中国康复, 2024, 39 (3): 160- 162. |
HUANG S , ZHAO X F . Effect of whole body vibration training on lower limb muscle strength and mobility in elderly patients with sarcopenia[J]. Chinese Journal of Rehabilitation, 2024, 39 (3): 160- 162. | |
61 | 刘晓冬. 振动训练对男子跳远运动员下肢爆发力即时影响的研究[D]. 北京: 北京体育大学, 2020. |
LIU X D. A study of the acute effect of vibration training on the explosive power of the lower limbs of male long jumpers[D]. Beijing: Beijing Sport University, 2020. (in Chinese) | |
62 | 陈剑飞. 上肢末端释放训练对散打运动员直拳爆发力干预效果的研究[D]. 上海: 上海体育学院, 2023. |
CHEN J F. Study on the effect of upper limb end ballistic training on the explosive power of Sanda athletes[D]. Shanghai: Shanghai University of Sport, 2023. (in Chinese) |
[1] | 苏蒙, 刘莎, 宋丹丽, 高倩梅, 郑麦青, 文杰, 赵桂苹, 李庆贺. 基于转录组测序筛选肉鸡腹水综合征相关候选基因[J]. 畜牧兽医学报, 2025, 56(2): 559-570. |
[2] | 吴双, 尹娜, 余莫涵, 平玉宇, 白皓, 陈世豪, 常国斌. TRIM39.2过表达对鸡巨噬细胞转录表达的影响[J]. 畜牧兽医学报, 2025, 56(1): 178-188. |
[3] | 鲁秀, 张名爱, 孔敏, 张晶, 王秉翰, 侯中一, 滕兴怡, 姜雅静, 凡文磊, 王宝维. 基于转录组和蛋白质组分析筛选五龙鹅产蛋相关候选基因[J]. 畜牧兽医学报, 2025, 56(1): 232-245. |
[4] | 王盛琪, 季新雨, 黄福青, 胡曼丽, 王柔淇, 耿玉欣, 孙迎雪, 齐智利, 张鑫. 添加红景天苷的全价粮对犬血液生化指标和肝转录组学的影响[J]. 畜牧兽医学报, 2025, 56(1): 455-465. |
[5] | 张肖旭, 李昊, 冯平捷, 杨豪, 李新月, 吕冉, 潘章源, 储明星. 单细胞转录组测序技术在家养动物中的应用[J]. 畜牧兽医学报, 2024, 55(8): 3276-3287. |
[6] | 陈静, 吴薛蓓, 苗冬枝, 张弛, 郭振玉, 王莹. 产蛋间隔前期鸽卵泡转录组比较分析揭示卵泡发育相关基因[J]. 畜牧兽医学报, 2024, 55(8): 3503-3515. |
[7] | 李跃, 张长春, 刘光裕, 高梦源, 符超俊, 邢家宝, 徐思佳, 邝麒元, 刘静, 高校鹏, 王衡, 龚浪, 张桂红, 孙彦阔. 宏转录组测序技术在一起仔猪病毒性腹泻疾病诊断中的运用及分析[J]. 畜牧兽医学报, 2024, 55(8): 3579-3589. |
[8] | 李婉卿, 曾亚琦, 姚新奎, 王建文, 袁鑫鑫, 孟晨, 孙远方, 彭宣, 孟军. 肉用型伊犁马的血液转录组比较分析[J]. 畜牧兽医学报, 2024, 55(7): 2951-2962. |
[9] | 何明亮, 吕晓阳, 蒋永清, 宋正海, 王叶青, 杨会国, 王善禾, 孙伟. 基于转录组测序分析SOX18在湖羊毛囊毛乳头细胞中的功能[J]. 畜牧兽医学报, 2024, 55(6): 2409-2420. |
[10] | 李栋梁, 郑关民, 李帅, 朱洪森, 吴超. 猪流行性腹泻病毒感染仔猪空肠转录组差异表达分析[J]. 畜牧兽医学报, 2024, 55(6): 2652-2661. |
[11] | 陈哲, 曲小露, 郭彬彬, 孙雪峰, 闫乐艳. 基于转录组测序研究绿光影响鹅胚心脏早期发育的候选基因[J]. 畜牧兽医学报, 2024, 55(5): 1978-1988. |
[12] | 徐俊杰, 张璐通, 王津洁, 陈晓晨, 何伟先, 蔡传江, 褚瑰燕, 杨公社. 基于多组学与网络药理学探究淫羊藿对后备母猪发情的作用[J]. 畜牧兽医学报, 2024, 55(4): 1615-1628. |
[13] | 王鑫, 聂桐, 李阿群, 马隽. 橙皮苷通过氧化磷酸化途径缓解高脂饲喂诱导的小鼠肝氧化应激[J]. 畜牧兽医学报, 2024, 55(3): 1302-1313. |
[14] | 高娅薇, 彭弟, 孙朝阳, 晏子越, 崔凯, 马泽芳. 基于转录组数据挖掘外源褪黑激素影响水貂卵巢发育的分子机制[J]. 畜牧兽医学报, 2024, 55(2): 607-618. |
[15] | 肖乐, 刘峻源, 曾雯玉, 汪芹, 韩雯珏, 刘彦泠, 范誉, 徐雨婷, 杨贝妮, 肖雄, 王自力. 基于微生物组和宿主转录组整合分析香砂六君子汤对ETEC诱导断奶腹泻仔猪回肠损伤的调控机制[J]. 畜牧兽医学报, 2024, 55(2): 797-808. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||