1 |
CATTOLI G , SUSTA L , TERREGINO C , et al. Newcastle disease: a review of field recognition and current methods of laboratory detection[J]. J Vet Diagn Invest, 2011, 23 (4): 637- 656.
doi: 10.1177/1040638711407887
|
2 |
王林浩, 康一岚, 刘兆霞, 等. 鸡新城疫的诊断及疫苗免疫情况[J]. 特种经济动植物, 2024, 27 (11): 72- 74.
|
|
WANG L H , KANG Y L , LIU Z X , et al. Diagnosis and vaccine immunization of Newcastle disease in chickens[J]. Special Economic Animals and Plants, 2024, 27 (11): 72- 74.
|
3 |
张高峰, 魏家阳, 冯贺龙, 等. 生物矿化对新城疫病毒LaSota株生物学特性及免疫原性的影响[J]. 畜牧兽医学报, 2024, 55 (12): 5663- 5671.
doi: 10.11843/j.issn.0366-6964.2024.12.029
|
|
ZHANG G F , WEI J Y , FENG H L , et al. Effects of biomineralization on the biological characteristics and immunogenicity of the LaSota strain of Newcastle disease virus[J]. Acta Veterinaria et Zootechnica Sinica, 2024, 55 (12): 5663- 5671.
doi: 10.11843/j.issn.0366-6964.2024.12.029
|
4 |
BELLO M B , YUSOFF K , IDERIS A , et al. Diagnostic and vaccination approaches for newcastle disease virus in poultry: the current and emerging perspectives[J]. Biomed Res Int, 2018, 2018, 7278459.
|
5 |
BI S , ZHANG J , QU Y , et al. Yeast cell wall product enhanced intestinal IgA response and changed cecum microflora species after oral vaccination in chickens[J]. Poult Sci, 2020, 99 (12): 6576- 6585.
|
6 |
CAO L T , LI J , ZHANG J R , et al. Beta-glucan enhanced immune response to Newcastle disease vaccine and changed mRNA expression of spleen in chickens[J]. Poult Sci, 2023, 102 (2): 102414.
doi: 10.1016/j.psj.2022.102414
|
7 |
RAJPUT I R , LI L Y , XIN X , et al. Effect of Saccharomyces boulardii and Bacillus subtilis B10 on intestinal ultrastructure modulation and mucosal immunity development mechanism in broiler chickens[J]. Poult Sci, 2013, 92 (4): 956- 965.
doi: 10.3382/ps.2012-02845
|
8 |
BI S , ZHANG J , ZHANG L , et al. Yeast cell wall upregulated cell-mediated immune responses to Newcastle disease virus vaccine[J]. Poult Sci, 2022, 101 (4): 101712.
|
9 |
王燕飞, 刘璇, 张若男, 等. 复合益生菌对肉鸡肠道免疫、抗氧化与细胞凋亡的影响[J]. 动物营养学报, 2023, 35 (5): 2916- 2928.
|
|
WANG Y F , LIU X , ZHANG R N , et al. Effects of compound probiotics on intestinal immunity, antioxidation and apoptosis of broilers[J]. Chinese Journal of Animal Nutrition, 2023, 35 (5): 2916- 2928.
|
10 |
ISHO B , FLORESCU A , WANG A A , et al. Fantastic IgA plasma cells and where to find them[J]. Immunol Rev, 2021, 303 (1): 119- 137.
|
11 |
李丹, 苏冀彦, 苏璐, 等. 喂食蛹虫草的小鼠血清对小鼠脾淋巴细胞增殖及活化的影响[J]. 食用菌学报, 2019, 26 (2): 72- 82.
|
|
LI D , SU J Y , SU L , et al. Effect of serum from mice fed with Cordyceps militaris on proliferation and activation of mouse spleen lymphocytes[J]. Acta Edulis Fungi, 2019, 26 (2): 72- 82.
|
12 |
ZHANG J J , JI Y H , WANG Z X , et al. Effective improvements to the live-attenuated Newcastle disease virus vaccine by polyethylenimine-based biomimetic silicification[J]. Vaccine, 2022, 40 (6): 886- 896.
|
13 |
SAWANT P M , VERMA P C , SUBUDHI P K , et al. Immunomodulation of bivalent Newcastle disease DNA vaccine induced immune response by co-delivery of chicken IFN-γ and IL-4 genes[J]. Vet Immunol Immunopathol, 2011, 144 (1-2): 36- 44.
|
14 |
GARDNER A , RUFFELL B . Dendritic cells and cancer immunity[J]. Trends Immunol, 2016, 37 (12): 855- 865.
|
15 |
ZHOU M X , OUYANG W J . The function role of GATA-3 in Th1 and Th2 differentiation[J]. Immunol Res, 2003, 28 (1): 25- 37.
|
16 |
HUANG L L , WANG J L , WANG Y H , et al. Upregulation of CD4+CD8+memory cells in the piglet intestine following oral administration of Bacillus subtilis spores combined with PEDV whole inactivated virus[J]. Vet Microbiol, 2019, 235, 1- 9.
|
17 |
COMERFORD I , HARATA-LEE Y , BUNTING M D , et al. A myriad of functions and complex regulation of the CCR7/CCL19/CCL21 chemokine axis in the adaptive immune system[J]. Cytokine Growth Factor Rev, 2013, 24 (3): 269- 283.
|
18 |
WANI S M , GANI A , MIR S A , et al. β-glucan: a dual regulator of apoptosis and cell proliferation[J]. Int J Biol Macromol, 2021, 182, 1229- 1237.
|
19 |
GOODRIDGE H S , WOLF A J , UNDERHILL D M . β-glucan recognition by the innate immune system[J]. Immunol Rev, 2009, 230 (1): 38- 50.
|
20 |
KANKKUNEN P , TEIRILÄ L , RINTAHAKA J , et al. (1, 3)-β-glucans activate both dectin-1 and NLRP3 inflammasome in human macrophages[J]. J Immunol, 2010, 184 (11): 6335- 6342.
|
21 |
MASUDA Y , TOGO T , MIZUNO S , et al. Soluble β-glucan from Grifola frondosa induces proliferation and Dectin-1/Syk signaling in resident macrophages via the GM-CSF autocrine pathway[J]. J Leukoc Biol, 2012, 91 (4): 547- 556.
|
22 |
XU J , LIU D B , YIN Q , et al. Tetrandrine suppresses β-glucan-induced macrophage activation via inhibiting NF-κB, ERK and STAT3 signaling pathways[J]. Mol Med Rep, 2016, 13 (6): 5177- 5184.
|
23 |
BYUN E B , PARK S H , JANG B S , et al. Gamma-irradiated β-glucan induces immunomodulation and anticancer activity through MAPK and NF-κB pathways[J]. J Sci Food Agric, 2016, 96 (2): 695- 702.
|
24 |
WANG S , ZHOU H , FENG T , et al. β-glucan attenuates inflammatory responses in oxidized LDL-induced THP-1 cells via the p38 MAPK pathway[J]. Nutr Metab Cardiovasc Dis, 2014, 24 (3): 248- 255.
|
25 |
RUIZ DE MORALES J M G , PUIG L , DAUDÉN E , et al. Critical role of interleukin (IL)-17 in inflammatory and immune disorders: an updated review of the evidence focusing in controversies[J]. Autoimmun Rev, 2020, 19 (1): 102429.
|
26 |
葛晓龙, 曹裕, 王婷婷. 肠道内Th17细胞的特征及其在炎症性肠病中的作用[J]. 免疫学杂志, 2014, 30 (12): 1113- 1117.
|
|
GE X L , CAO Y , WANG T T . The features of Th17 in the intestine and its function in inflammatory bowel disease[J]. Immunological Journal, 2014, 30 (12): 1113- 1117.
|
27 |
ABUSLEME L , MOUTSOPOULOS N M . IL-17:overview and role in oral immunity and microbiome[J]. Oral Dis, 2017, 23 (7): 854- 865.
|
28 |
郭思呈, 李铁松, 李庆伟. TMEM16A: 一种钙离子激活的氯离子通道[J]. 中国生物化学与分子生物学报, 2017, 33 (12): 1187- 1194.
|
|
GUO S C , LI T S , LI Q W . TMEM16A: a type of calcium-activated chloride channel[J]. Chinese Journal of Biochemistry and Molecular Biology, 2017, 33 (12): 1187- 1194.
|
29 |
魏晶, 陈纪飞, 王冰, 等. TMEM家族成员免疫功能的研究进展[J]. 中国免疫学杂志, 2016, 32 (1): 127- 130.
|
|
WEI J , CHEN J F , WANG B , et al. Research progress on immune function of TMEM family members[J]. Chinese Journal of Immunology, 2016, 32 (1): 127- 130.
|
30 |
TONG J C , LI H R , HU Y , et al. TMEM158 regulates the canonical and non-canonical pathways of TGF-β to mediate EMT in triple-negative breast cancer[J]. J Cancer, 2022, 13 (8): 2694- 2704.
|
31 |
FU Y , YAO N , DING D , et al. TMEM158 promotes pancreatic cancer aggressiveness by activation of TGFβ1 and PI3K/AKT signaling pathway[J]. J Cell Physiol, 2020, 235 (3): 2761- 2775.
|