畜牧兽医学报 ›› 2025, Vol. 56 ›› Issue (1): 26-35.doi: 10.11843/j.issn.0366-6964.2025.01.003
收稿日期:
2024-06-03
出版日期:
2025-01-23
发布日期:
2025-01-18
通讯作者:
刘深贺
E-mail:1873742881@qq.com;liush2016@qq.com
作者简介:
史心琦(2004-),女,河南濮阳人,主要从事反刍动物繁殖性能调控技术研究,E-mail: 1873742881@qq.com
基金资助:
SHI Xinqi(), MA Mengmeng, GAO Tengyun, LIU Shenhe*(
)
Received:
2024-06-03
Online:
2025-01-23
Published:
2025-01-18
Contact:
LIU Shenhe
E-mail:1873742881@qq.com;liush2016@qq.com
摘要:
精液品质是选择优良种公畜(禽)的重要参考指标。肠道微生物既可以通过肠道-睾丸轴调节促性腺激素释放激素(gonadotropin-releasing hormone, GnRH)、促卵泡生成素(follicle-stimulating hormone, FSH)、促黄体生成素(luteinizing hormone, LH)、睾酮(Testosterone, T)等生殖激素水平,也可调节肠道中丁酸、氨基酸、维生素、胆汁酸、气体信号分子(H2S、NH3和NO)、γ-氨基丁酸(γ-aminobutyric acid, GABA)和5-羟色胺(5-hydroxytryptamine, 5-HT)等的合成与代谢,从而调控精液品质。因此,提高肠道中适宜微生物或其代谢物水平能够提高雄性动物精液品质。本文旨在阐明动物肠道微生物及其代谢物调控精液品质的研究进展,以期指导生产实践。
中图分类号:
史心琦, 马梦梦, 高腾云, 刘深贺. 动物肠道微生物调控精液品质的研究进展[J]. 畜牧兽医学报, 2025, 56(1): 26-35.
SHI Xinqi, MA Mengmeng, GAO Tengyun, LIU Shenhe. Research Progress on the Regulation of Semen Quality by Intestinal Microorganisms in Animals[J]. Acta Veterinaria et Zootechnica Sinica, 2025, 56(1): 26-35.
表 1
日粮添加物调控肠道菌群对精液品质的影响"
品种 Breed | 年龄 Age | 添加物 Additive | 添加水平 Supplemental doses | 菌群变化 Level of influence | 效果 Effect | 引用 Reference |
杜洛克公猪 Duroc boar | 31~33月龄 | 羟基酪醇(HT) | 0、20 mg·kg-1 | 双歧杆菌↑、乳酸菌↑、真杆菌↑、肠单胞菌↑、粪球菌↑和丁霉球菌↑链球菌↓、振荡杆菌↓、Clostridium-sensu-stricto↓、大肠杆菌↓、Phascolarctobacterium ↓和Barnesiella↓ | 精子发生↑ 精子活力↑ | [ |
杜洛克公猪 Duroc boar | 2岁 | Taxifolin (TAX) | 0、15 mg·kg-1 | 肠单胞菌↑、粪球菌↑、丁弧菌↑、Clostridium-XlVa↑普雷沃氏菌↓、霍华德氏菌↓、莫吉杆菌↓和肠球菌↓ | 精子活力↑ 精子浓度↑ | [ |
KK-Ay小鼠 KK-Ay mice | 14周 | 中草药山茱萸(Cor) | 0、100 mg·kg-1 | 咽喉魏氏菌↓、ND2梭状芽胞杆菌↓、大肠杆菌DSM 17241↓和梭状芽胞杆菌↓ | 精子活力↑ 精子数量↑ | [ |
虹鳟鱼 Trout | 2岁 | 益生菌 | 0、1×109、2×109、4×109 cfu·kg-1 | 酸性片球菌↑、屎肠球菌↑、枯草芽孢杆菌↑、嗜酸乳杆菌↑、植物乳杆菌↑、干酪乳杆菌↑、鼠李糖乳杆菌↑和双歧杆菌↑ | 精子密度↑ 受精能力↑ | [ |
表 2
肠道微生物对精液品质的作用及机制"
微生物 Microbial | 途径 Approach | 因素 Element | 作用 Effect | 引用 Reference |
肠球菌↑Enterococcus↑ | 生殖激素代谢 | GnRH↑、FSH↑、LH↑、T↑ | 精子发生↑ | [ |
普雷沃氏菌↑ Prevotella↑ | ||||
罗伊氏乳杆菌↑ | 精子发生↑ | [ | ||
Lactobacillus reuteri ATCC 6475↑ | 精子浓度↑ 精子活性↑ | |||
丁酸梭菌↑ Clostridium butyricum↑ | 代谢产物 | 丁酸(盐)↑ | 精子发生↑ | [ |
粪球菌属↑Coprococcus↑ | 精子发生↑ | [ | ||
肠杆菌属↑Enterobacters↑ | ||||
乳酸杆菌属↑Lactobacillus↑ | 天冬氨酸↑、苏氨酸↑ | 精子密度↑ | [ | |
肠球菌属↑Enterococcus↑ | 精子活率↑ | |||
梭菌属↑Clostridium↑ | 精子顶体完整率↑ 精子质膜完整率↑ | |||
Ruminococcaceae-NK4A214-group↑ | 维生素A↑ | 精子发生↓ | [ | |
粪球菌属↑Coprococcus↑ | 胆汁酸↓ | 精子发生↑ | [ | |
普雷沃菌↓Prevotella↓ | 精子畸形率↓ | [ | ||
Ruminococcaceae-NK4A214-group↓ | 精子发生↓ | [ |
1 | HASBI H , ISKANDAR H , SONJAYA H , et al. Comparative developmental competence of in vitro embryos recovered from Bali cattle with normal and poor sperm motility[J]. Vet World, 2024, 17 (3): 593- 601. |
2 |
MASIDE C , RECUERO S , SALAS-HUETOS A , et al. Animal board invited review: an update on the methods for semen quality evaluation in swine-from farm to the lab[J]. Animal, 2023, 17 (3): 100720.
doi: 10.1016/j.animal.2023.100720 |
3 |
LI J W , LI Y H , CHENG M X , et al. Gut microbial diversity among Yorkshire, Landrace and Duroc boars and its impact on semen quality[J]. AMB Express, 2022, 12 (1): 158.
doi: 10.1186/s13568-022-01496-6 |
4 |
GUO L L , WU Y H , WANG C , et al. Gut microbiological disorders reduce semen utilization rate in Duroc boars[J]. Front Microbiol, 2020, 11, 581926.
doi: 10.3389/fmicb.2020.581926 |
5 | 黄黎明. 影响种公鸭精液品质及性行为的肠道微生物鉴定与分析[D]. 武汉: 华中农业大学, 2022. |
HUANG L M. Identification and analysis of gut microbes affecting semen quality and sexual behavior in breeding ducks[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese) | |
6 |
TRIPLETT M D , PARKER H M , MCDANIEL C D , et al. Influence of 6 different intestinal bacteria on Beltsville Small White turkey semen[J]. Poult Sci, 2016, 95 (8): 1918- 1926.
doi: 10.3382/ps/pew119 |
7 |
DING N , ZHANG X , ZHANG X D , et al. Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes[J]. Gut, 2020, 69 (9): 1608- 1619.
doi: 10.1136/gutjnl-2019-319127 |
8 |
LI H , LI N S , LU Q D , et al. Chronic alcohol-induced dysbiosis of the gut microbiota and gut metabolites impairs sperm quality in mice[J]. Front Microbiol, 2022, 13, 1042923.
doi: 10.3389/fmicb.2022.1042923 |
9 |
HAN H , ZHONG R Q , ZHOU Y X , et al. Hydroxytyrosol benefits boar semen quality via improving gut microbiota and blood metabolome[J]. Front Nutr, 2022, 8, 815922.
doi: 10.3389/fnut.2021.815922 |
10 |
ZHOU Y X , CHEN L , HAN H , et al. Taxifolin increased semen quality of Duroc boars by improving gut microbes and blood metabolites[J]. Front Microbiol, 2022, 13, 1020628.
doi: 10.3389/fmicb.2022.1020628 |
11 | LIU L P , SHU A M , ZHU Y H , et al. Cornuside alleviates diabetes mellitus-induced testicular damage by modulating the gut microbiota[J]. Evid Based Complement Alternat Med, 2021, 2021, 5301942. |
12 |
AKBARI NARGESI E , FALAHATKAR B . Effects of dietary supplementation of multi-strain probiotics on semen quality, seminal plasma compositions, and fertilization ability of rainbow trout (Oncorhynchus mykiss) broodstock spermatozoa[J]. Theriogenology, 2023, 202, 1- 9.
doi: 10.1016/j.theriogenology.2023.02.026 |
13 |
ZHAO S J , ZHANG K Y , DING X M , et al. The impact of dietary supplementation of different feed additives on performances of broiler breeders characterized by different egg-laying rate[J]. Poult Sci, 2019, 98 (11): 6091- 6099.
doi: 10.3382/ps/pez316 |
14 |
ORG E , MEHRABIAN M , PARKS B W , et al. Sex differences and hormonal effects on gut microbiota composition in mice[J]. Gut Microbes, 2016, 7 (4): 313- 322.
doi: 10.1080/19490976.2016.1203502 |
15 |
POUTAHIDIS T , SPRINGER A , LEVKOVICH T , et al. Probiotic microbes sustain youthful serum testosterone levels and testicular size in aging mice[J]. PLoS One, 2014, 9 (1): e84877.
doi: 10.1371/journal.pone.0084877 |
16 |
AL-ASMAKH M , STUKENBORG J B , REDA A , et al. The gut microbiota and developmental programming of the testis in mice[J]. PLoS One, 2014, 9 (8): e103809.
doi: 10.1371/journal.pone.0103809 |
17 |
LI D , LIU R , WANG M , et al. 3β-Hydroxysteroid dehydrogenase expressed by gut microbes degrades testosterone and is linked to depression in males[J]. Cell Host Microbe, 2022, 30 (3): 329- 339. e5.
doi: 10.1016/j.chom.2022.01.001 |
18 |
COLLDÉN H , LANDIN A , WALLENIUS V , et al. The gut microbiota is a major regulator of androgen metabolism in intestinal contents[J]. Am J Physiol Endocrinol Metab, 2019, 317 (6): E1182- E1192.
doi: 10.1152/ajpendo.00338.2019 |
19 |
RIDLON J M , IKEGAWA S , ALVES J M P , et al. Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens[J]. J Lipid Res, 2013, 54 (9): 2437- 2449.
doi: 10.1194/jlr.M038869 |
20 |
DEVENDRAN S , MÉNDEZ-GARCÍA C , RIDLON J M . Identification and characterization of a 20β-HSDH from the anaerobic gut bacterium Butyricicoccus desmolans ATCC 43058[J]. J Lipid Res, 2017, 58 (5): 916- 925.
doi: 10.1194/jlr.M074914 |
21 |
DEVENDRAN S , MYTHEN S M , RIDLON J M . The desA and desB genes from Clostridium scindens ATCC 35704 encode steroid-17, 20-desmolase[J]. J Lipid Res, 2018, 59 (6): 1005- 1014.
doi: 10.1194/jlr.M083949 |
22 | QI Y. Effects of caloric restriction on intestinal microbiota[C]//Proceedings of the 2nd International Conference on Biomedical Engineering, Healthcare and Disease Prevention (BEHDP 2022). School of Biological and Environmental Engineering, Zhejiang Shuren University, 2022: 10. |
23 |
赵志显, 常雪蕊, 郭勇, 等. 种公鸡精液品质营养调控的研究进展[J]. 畜牧兽医学报, 2022, 53 (8): 2435- 2443.
doi: 10.11843/j.issn.0366-6964.2022.08.003 |
ZHAO Z X , CHANG X R , GUO Y , et al. Research progress on nutritional regulation of semen quality in breeder roosters[J]. Journal of Animal Husbandry and Veterinary Medicine, 2022, 53 (8): 2435- 2443.
doi: 10.11843/j.issn.0366-6964.2022.08.003 |
|
24 |
LEE C , KIM B G , KIM J H , et al. Sodium butyrate inhibits the NF-kappa B signaling pathway and histone deacetylation, and attenuates experimental colitis in an IL-10 independent manner[J]. Int Immunopharmacol, 2017, 51, 47- 56.
doi: 10.1016/j.intimp.2017.07.023 |
25 |
AFOUDA P , DURAND G A , LAGIER J C , et al. Noncontiguous finished genome sequence and description of Intestinimonas massiliensis sp. nov strain GD2T, the second Intestinimonas species cultured from the human gut[J]. Microbiologyopen, 2019, 8 (1): e00621.
doi: 10.1002/mbo3.621 |
26 |
ALHAJ H W , LI Z J , SHAN T P , et al. Effects of dietary sodium butyrate on reproduction in adult breeder roosters[J]. Anim Reprod Sci, 2018, 196, 111- 119.
doi: 10.1016/j.anireprosci.2018.07.002 |
27 | GUBARA H W A. 饲料添加剂丁酸钠对种公鸡精子发生、抗氧化状态和肠道功能的影响[D]. 南京: 南京农业大学, 2017. |
GUBARA H W A. Effects of dietary sodium butyrate on Spermatogenesis, antioxidant status and intestinal function in roosters[D]. Nanjing: Nanjing Agricultural University, 2017. (in Chinese) | |
28 | 孙昌辉. 复合益生菌发酵饲料对公猪免疫机能和精液品质的影响[D]. 杨凌: 西北农林科技大学, 2019. |
SUN C H. Effects of compound probiotics fermented feed on immune function and semen quality in boar[D]. Yangling: Northwest A&F University, 2019. (in Chinese) | |
29 |
CHARLIER D , BERVOETS I . Regulation of arginine biosynthesis, catabolism and transport in Escherichia coli[J]. Amino Acids, 2019, 51 (8): 1103- 1127.
doi: 10.1007/s00726-019-02757-8 |
30 | 傅帅, 田玉民, 张莉力, 等. 一株牛瘤胃微生物的分离纯化及其赖氨酸合成能力的测定[J]. 粮食与饲料工业, 2018, (1): 49- 52. |
FU S , TIAN Y M , ZHANG L L , et al. Separation and purification of one microorganism of bovine rumen and detection of its lysine synthesis ability[J]. Cereal & Feed Industry, 2018, (1): 49- 52. | |
31 | 刘佳峰, 乔郅钠, 赵有玺, 等. 理性代谢工程改造促进谷氨酸棒杆菌高效合成L-谷氨酸[J]. 生物工程学报, 2023, 39 (8): 3273- 3289. |
LIU J F , QIAO Z N , ZHAO Y X , et al. Rational metabolic engineering of Corynebacterium glutamicum for efficient synthesis of L-glutamate[J]. Chinese Journal of Biotechnology, 2023, 39 (8): 3273- 3289. | |
32 |
WU G Y . Amino acids: metabolism, functions, and nutrition[J]. Amino Acids, 2009, 37 (1): 1- 17.
doi: 10.1007/s00726-009-0269-0 |
33 |
ABBASPOUR B , SHARIFI S D , GHAZANFARI S , et al. The effect of L-arginine and flaxseed on plasma testosterone concentration, semen quality and some testicular histology parameters in old broiler breeder roosters[J]. Theriogenology, 2019, 128, 101- 109.
doi: 10.1016/j.theriogenology.2019.01.034 |
34 | 井文倩, 张宁波, 李福昌. 赖氨酸对种公兔精液品质和血液生化指标的影响[J]. 饲料研究, 2014, (5): 38-39, 59. |
JING W Q , ZHANG N B , LI F C . Effect of lysine on semen quality and blood biochemical indexes in male rabbits[J]. Feed Research, 2014, (5): 38-39, 59. | |
35 |
ANSARI M , ZHANDI M , KOHRAM H , et al. Improvement of post-thawed sperm quality and fertility of Arian rooster by oral administration of d-aspartic acid[J]. Theriogenology, 2017, 92, 69- 74.
doi: 10.1016/j.theriogenology.2017.01.014 |
36 |
LIN Y , LI J Y , WANG K , et al. Effects of dietary L-leucine supplementation on testicular development and semen quality in boars[J]. Front Vet Sci, 2022, 9, 904653.
doi: 10.3389/fvets.2022.904653 |
37 | NAKATA H , ISEKI S . Three-dimensional analysis of partial restoration of spermatogenesis in vitamin A-deficient mice[J]. Andrology, 2024, |
38 |
CHIHARA M , OTSUKA S , ICHⅡ O , et al. Vitamin A deprivation affects the progression of the spermatogenic wave and initial formation of the blood-testis barrier, resulting in irreversible testicular degeneration in mice[J]. J Reprod Dev, 2013, 59 (6): 525- 535.
doi: 10.1262/jrd.2013-058 |
39 |
ZHANG T , SUN P , GENG Q , et al. Disrupted spermatogenesis in a metabolic syndrome model: the role of vitamin A metabolism in the gut-testis axis[J]. Gut, 2022, 71 (1): 78- 87.
doi: 10.1136/gutjnl-2020-323347 |
40 |
李雪梅, 曾饶琼, 易宗容, 等. 维生素A饲喂量对种公猪精液品质的影响[J]. 安徽农业科学, 2008, 36 (33): 14540, 14544.
doi: 10.3969/j.issn.0517-6611.2008.33.075 |
LI X M , ZENG R Q , YI Z R , et al. Effects of different vitamin A addition on semen quality of boar[J]. Journal of Anhui Agricultural Sciences, 2008, 36 (33): 14540, 14544.
doi: 10.3969/j.issn.0517-6611.2008.33.075 |
|
41 |
YOKOTA S , SEKINE N , WAKAYAMA T , et al. Impact of chronic vitamin A excess on sperm morphogenesis in mice[J]. Andrology, 2021, 9 (5): 1579- 1592.
doi: 10.1111/andr.13013 |
42 | MAGNÚSDÓTTIR S , RAVCHEEV D , DE CRÉCY-LAGARD V , et al. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes[J]. Front Genet, 2015, 6, 148. |
43 |
SZALENIEC M , WOJTKIEWICZ A M , BERNHARDT R , et al. Bacterial steroid hydroxylases: enzyme classes, their functions and comparison of their catalytic mechanisms[J]. Appl Microbiol Biotechnol, 2018, 102 (19): 8153- 8171.
doi: 10.1007/s00253-018-9239-3 |
44 |
SUGIMOTO H , SHINKYO R , HAYASHI K , et al. Crystal structure of CYP105A1 (P450SU-1) in complex with 1α, 25-dihydroxyvitamin D3[J]. Biochemistry, 2008, 47 (13): 4017- 4027.
doi: 10.1021/bi7023767 |
45 |
YAMAMOTO E A , JØRGENSEN T N . Relationships between vitamin D, gut microbiome, and systemic autoimmunity[J]. Front Immunol, 2020, 10, 3141.
doi: 10.3389/fimmu.2019.03141 |
46 |
SMAJDOR J , JEDLIŃSKA K , PORADA R , et al. The impact of gut bacteria producing long chain homologs of vitamin K2 on colorectal carcinogenesis[J]. Cancer Cell Int, 2023, 23 (1): 268.
doi: 10.1186/s12935-023-03114-2 |
47 | 李雨晴, 胡冰艳, 庞卫军. 维生素类物质在猪精液常温保存中的应用研究进展[J]. 畜牧兽医杂志, 2022, 41 (5): 127- 132. |
LI Y Q , HU B Y , PANG W J . Research progress on the application of vitamins in the preservation of pig semen at room temperature[J]. Journal of Animal Science and Veterinary Medicine, 2022, 41 (5): 127- 132. | |
48 | 马红, 王文涛, 吴赛辉, 等. 维生素类物质对民猪精子常温保存效果的影响[J]. 黑龙江畜牧兽医, 2018, (4): 78-79, 82. |
MA H , WANG W T , WU S H , et al. Effect of vitamins on the preservation effect of sperm at room temperature[J]. Heilongjiang Animal Science and Veterinary Medicine, 2018, (4): 78-79, 82. | |
49 | ASADPOUR R , TARAVAT M , RAHBAR M , et al. Effects of vitamin D supplementation in extender on sperm kinematics and apoptosis following the freeze-thaw process in normozoospermic and asthenozoospermic Holstein bulls[J]. Basic Clin Androl, 2021, 31 (1): 20. |
50 | MOGHADAM M T , HOSSEINI G , ABSALAN F , et al. Effects of vitamin D on apoptosis and quality of sperm in Asthenozoospermia[J]. JBRA Assist Reprod, 2020, 24 (3): 316- 323. |
51 | 马赫. VK2依赖的GGCX/MGP维持附睾管腔钙稳态的机制和对男性生育的影响[D]. 西安: 中国人民解放军空军军医大学, 2019. |
MA H. Vitamin K2-dependent GGCX and MGP are required for homeostatic calcium regulation in epididymis for male reproduction health[D]. Xi'an: Air Force Medical University, 2019. (in Chinese) | |
52 | SUWIMONTEERABUTR J , KETKAEW P , NETIPRASERT G , et al. Supplementing semen extenders with a combination of phosphorus and vitamin B12 improves post-thawed cryopreserved rooster semen quality[J]. Front Vet Sci, 2023, 10, 1301186. |
53 | FOLEY M H , O'FLAHERTY S , ALLEN G , et al. Lactobacillus bile salt hydrolase substrate specificity governs bacterial fitness and host colonization[J]. Proc Natl Acad Sci U S A, 2021, 118 (6): e2017709118. |
54 | SÈDES L , MARTINOT E , BAPTISSART M , et al. Bile acids and male fertility: from mouse to human?[J]. Mol Aspects Med, 2017, 56, 101- 109. |
55 | BAPTISSART M , MARTINOT E , VEGA A , et al. Bile acid-FXRα pathways regulate male sexual maturation in mice[J]. Oncotarget, 2016, 7 (15): 19468- 19482. |
56 | VEGA A , MARTINOT E , BAPTISSART M , et al. Bile acid alters male mouse fertility in metabolic syndrome context[J]. PLoS One, 2015, 10 (10): e0139946. |
57 | SAAD R A , MAHMOUD Y I . Ursodeoxycholic acid alleviates cholestasis-induced histophysiological alterations in the male reproductive system of bile duct-ligated rats[J]. Reprod Toxicol, 2014, 50, 87- 97. |
58 | QI Q Q , ZHANG H J , JIN Z Y , et al. Hydrogen sulfide produced by the gut microbiota impairs host metabolism via reducing GLP-1 levels in male mice[J]. Nat Metab, 2024, 6 (8): 1601- 1615. |
59 | TISO M , SCHECHTER A N . Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions[J]. PLoS One, 2015, 10 (3): e0119712. |
60 | WANG P , WU P F , WANG H J , et al. Gut microbiome-derived ammonia modulates stress vulnerability in the host[J]. Nat Metab, 2023, 5 (11): 1986- 2001. |
61 | 王婧. 硫化氢对精子发生及功能障碍的保护作用及机制的研究[D]. 南京: 南京医科大学, 2014. |
WANG J. Studies of effect and mechanism of Hydrogen sulfide against spermatogenic failure and sperm dysfunction[D]. Nanjing: Nanjing Medical University, 2014. (in Chinese) | |
62 | LIAW R L , SRILATHA B , ADAIKAN P G . Effects of hydrogen sulfide on erectile function and its possible mechanism(s) of action[J]. J Sex Med, 2011, 8 (7): 1853- 1864. |
63 | 木沙·托合提, 阿尔曼·海热, 敬斌宇, 等. 外源一氧化氮(NO)对解冻马鹿精子的影响[J/OL]. 经济动物学报, (2022-09-15)[2024-05-12]. http://kns.cnki.net/kcms/detail/22.1258.S.20220914.1148.002.html. |
MUSHA ·T H T, AERMAN H R, JING B Y, et al. Effect of exogenous nitric oxide(NO) on thawed red deer sperm[J/OL]. Journal of Economic Animal, (2022-09-15)[2024-05-12]. http://kns.cnki.net/kcms/detail/22.1258.S.20220914.1148.002.html. (in Chinese) | |
64 | UPADHYAY V R , ROY A K , PANDITA S , et al. Optimized addition of nitric oxide compounds in semen extender improves post-thaw seminal attributes of Murrah buffaloes[J]. Trop Anim Health Prod, 2023, 55 (1): 47. |
65 | ZHANG W D , ZHAO Y , ZHANG P F , et al. Decrease in male mouse fertility by hydrogen sulfide and/or ammonia can Be inheritable[J]. Chemosphere, 2018, 194, 147- 157. |
66 | OTARU N , YE K , MUJEZINOVIC D , et al. GABA production by human intestinal Bacteroides spp.: prevalence, regulation, and role in acid stress tolerance[J]. Front Microbiol, 2021, 12, 656895. |
67 | KURATA S , UMEZU K , TAKAMORI H , et al. Exogenous gamma-aminobutyric acid addition enhances porcine sperm acrosome reaction[J]. Anim Sci J, 2022, 93 (1): e13744. |
68 | REIGSTAD C S , SALMONSON C E , RAINEY 3RD J F , et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells[J]. FASEB J, 2015, 29 (4): 1395- 1403. |
69 | HAY D W P , WADSWORTH R M . The contractile effects of 5-hydroxytryptamine on the rat isolated vas deferens[J]. Br J Pharmacol, 1982, 77 (4): 605- 613. |
70 | FRUNGIERI M B , ZITTA K , PIGNATARO O P , et al. Interactions between testicular serotoninergic, catecholaminergic, and corticotropin-releasing hormone systems modulating cAMP and testosterone production in the golden hamster[J]. Neuroendocrinology, 2002, 76 (1): 35- 46. |
71 | 任艳玲. 孕酮、γ-氨基丁酸诱发马鹿精子顶体反应及对离子转运调节的研究[D]. 哈尔滨: 东北林业大学, 2006. |
REN Y L. Studay on induction of acrosome reaction and regulation of ions transport of wapiti(Cervus elaphus)sperm using progesterone & γ-aminobutyricacid[D]. Harbin: Northeast Forestry University, 2006. (in Chinese) | |
72 | KURATA S , UMEZU K , TAKAMORI H , et al. Exogenous gamma-aminobutyric acid addition enhances porcine sperm acrosome reaction[J]. Anim Sci J, 2022, 93 (1): e13744. |
73 | 谢元平, 荣莉, 貌杨萍, 等. 针刺对免疫性不育症雄性大鼠的抗精子抗体及5-羟色胺的调节作用[J]. 新中医, 2012, 44 (11): 137- 139. |
XIE Y P , RONG L , MAO Y P , et al. Regulatory effect of acupuncture on ASAB and 5-HT in male SD rats with immune infertility[J]. Journal of New Chinese Medicine, 2012, 44 (11): 137- 139. | |
74 | SUGIYAMA Y , FUJINOKI M , SHIBAHARA H . Effects of 5-hydroxytryptamine on spermatozoal hyperactivation and in vitro fertilization in mice[J]. J Reprod Dev, 2019, 65 (6): 541- 550. |
75 | OMOTE M , WAKIMOTO Y , SHIBAHARA H . Possible role of 5-Hydroxytryptamine (5-HT) receptor on human sperm motility regulation[J]. Cureus, 2023, 15 (11): e49530. |
[1] | 宋云方, 程浩, 冯露雅, 白平, 邓远坤, 夏耀耀, 谭碧娥, 王婧. 营养调控肠道免疫细胞活化机制研究进展[J]. 畜牧兽医学报, 2024, 55(7): 2846-2858. |
[2] | 陈倩玲, 沙玉柱, 刘秀, 邵鹏阳, 王翻兄, 陈小伟, 杨文鑫, 谢转回, 高敏, 黄薇. 肠道微生物与线粒体互作调控动物脂肪沉积的研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2293-2303. |
[3] | 冯铭, 伊旭东, 庞卫军. 肠道微生物通过骨骼肌纤维类型、肌内脂肪含量和骨骼肌代谢调控猪肉质研究进展[J]. 畜牧兽医学报, 2024, 55(6): 2304-2312. |
[4] | 魏雅婷, 徐泽君, 陈虹宇, 王献伟, 陈其新, 刘深贺. 外源维生素E和硒调控动物精液品质的研究进展[J]. 畜牧兽医学报, 2024, 55(4): 1389-1400. |
[5] | 陈鑫珠, 岳稳, 方桂友, 缪伏荣, 黄庆祥, 林平冬, 李忠荣, 刘景. 纤维对白羽肉鸡生长性能、生理生化、胃肠结构和盲肠微生物的影响[J]. 畜牧兽医学报, 2024, 55(12): 5602-5619. |
[6] | 李常营, 徐兰梦, 黄榆智, 何航, 万堃, 袁岩聪, 章杰. 哺乳方式对猪生长、血清生化、肠道微生物及代谢物的影响[J]. 畜牧兽医学报, 2024, 55(11): 5147-5158. |
[7] | 徐兰梦, 黄榆智, 韩玉竹, 李常营, 章杰. 肠道微生物调控脂肪沉积及其代谢相关疾病的研究进展[J]. 畜牧兽医学报, 2024, 55(10): 4263-4277. |
[8] | 徐成, 田文杰, 马月辉, 王圣楠, 蒋琳, 王丹丹. 基于16S rRNA测序分析敲除基因ZBED6后巴马猪肠道微生物菌群的变化[J]. 畜牧兽医学报, 2024, 55(10): 4302-4310. |
[9] | 占小秀, 刘鹏宇, 向小娥, 毛胜勇, 金巍. 甲烷马赛球菌DZ1对小鼠血清氧化三甲胺和炎症因子、肝脏抗氧化能力及盲肠微生物区系的影响[J]. 畜牧兽医学报, 2024, 55(10): 4679-4689. |
[10] | 王瑞玲, 王雪妍, 王菲菲, 孔维怡, 毛永霞, 刘欣, 丁辉, 许立华, 郭延生. 奶牛产后急性子宫内膜炎血液氧化脂质组变化特征[J]. 畜牧兽医学报, 2024, 55(1): 373-387. |
[11] | 郑先瑞, 卓明雪, 纪金丽, 蒋维虎, 邓在双, 张吉成, 田雅莉, 丁月云, 张晓东, 殷宗俊. 皖南黑猪不同生长阶段血清免疫指标及肠道菌群的特征分析[J]. 畜牧兽医学报, 2023, 54(9): 3770-3783. |
[12] | 禹世雄, 魏凌云, 徐甜甜, 焦金真, 蒋林树, 贺志雄. 幼龄反刍动物肠道微生物定植规律及其营养调控研究进展[J]. 畜牧兽医学报, 2023, 54(7): 2701-2707. |
[13] | 纪鹏, 张斌, 张春勇, 邢笑锟, 杨佳, 刘韶娜, 方碟, 潘洪彬, 赵彦光, 安清聪. 日粮添加乳铁蛋白对断奶仔猪肠道微生物多样性的影响[J]. 畜牧兽医学报, 2023, 54(7): 2942-2955. |
[14] | 杜海东, 娜仁花. 反刍动物胃肠道上皮屏障功能及与微生物互作研究[J]. 畜牧兽医学报, 2023, 54(5): 1804-1814. |
[15] | 陆梦琪, 杨文杰, 李萍, 余鹏, 董翎, 牛晓玉, 杨克礼, 邹维华, 宋卉. 基于16S rRNA测序分析PRRSV感染仔猪肺和肠道中微生物菌群的变化[J]. 畜牧兽医学报, 2023, 54(4): 1664-1678. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||