| 1 |
FIELD C J , ROBINSON L . Dietary fats[J]. Adv Nutr, 2019, 10, 722- 724.
doi: 10.1093/advances/nmz052
|
| 2 |
LIMA ROCHA J É , MENDES FURTADO M , MELLO NETO R S , et al. Effects of fish oil supplementation on oxidative stress biomarkers and liver damage in hypercholesterolemic rats[J]. Nutrients, 2022, 14 (3): 426.
doi: 10.3390/nu14030426
|
| 3 |
彭地纬, 杨必能, 黄祯, 等. 饲用鱼油的氧化稳定性研究[J]. 现代畜牧兽医, 2022 (10): 19- 23.
|
|
PENG D W , YANG B N , HUANG Z , et al. Study on oxidation stability of fish oil for feeding[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2022, 407 (10): 19- 23.
|
| 4 |
SONG C , LIU B , XU P , et al. Oxidized fish oil injury stress in Megalobrama amblycephala: evaluated by growth, intestinal physiology, and transcriptome-based PI3K-Akt/NF-κB/TCR inflammatory signaling[J]. Fish Shellfish Immunol, 2018, 81, 446- 455.
doi: 10.1016/j.fsi.2018.07.049
|
| 5 |
ALI TAVAKKOLI A , MIRAKZEHI M T , SALEH H , et al. The effects of supplementation of Withania coagulans and α-tocopherol acetate in diets containing oxidised oil on growth performance, immune response and antioxidant indices in broiler chickens[J]. Arch Anim Nutr, 2021, 75 (4): 278- 293.
doi: 10.1080/1745039X.2021.1942765
|
| 6 |
AZIMI V , MIRAKZEHI M T , SALEH H . Hydroalcoholic extract of Withania somnifera leaf and α-tocopherol acetate in diets containing oxidised oil: effects on growth performance, immune response, and oxidative status in broiler chickens[J]. Ital J Anim Sci, 2020, 19, 917- 928.
doi: 10.1080/1828051X.2020.1808537
|
| 7 |
CHENG L , WEI Y , PENG L , et al. State-of-the-art review of theabrownins: from preparation, structural characterization to health-promoting benefits[J]. Crit Rev Food Sci Nutr, 2024, 64 (31): 11321- 11340.
doi: 10.1080/10408398.2023.2236701
|
| 8 |
XIAO Y , HUANG Y , LONG F , et al. Insight into structural characteristics of theabrownin from Pingwu Fuzhuan brick tea and its hypolipidemic activity based on the in vivo zebrafish and in vitro lipid digestion and absorption models[J]. Food Chem, 2023, 404 (Pt A): 134382.
|
| 9 |
HOU Y , ZHANG Z , CUI Y , et al. Pu-erh tea and theabrownin ameliorate metabolic syndrome in mice via potential microbiota-gut-liver-brain interactions[J]. Food Res Int, 2022, 162 (Pt B): 112176.
|
| 10 |
LIU J , WANG X , ZHU Y , et al. Theabrownin from dark tea ameliorates insulin resistance via attenuating oxidative stress and modulating IRS-1/PI3K/Akt pathway in HepG2 cells[J]. Nutrients, 2023, 15 (18): 3862.
doi: 10.3390/nu15183862
|
| 11 |
WANG J , ZHENG D , HUANG F , et al. Theabrownin and Poria cocos polysaccharide improve lipid metabolism via modulation of bile acid and fatty acid metabolism[J]. Front Pharmacol, 2022, 13, 875549.
doi: 10.3389/fphar.2022.875549
|
| 12 |
ZHEN Q , LIANG Q , WANG H , et al. Theabrownin ameliorates liver inflammation, oxidative stress, and fibrosis in MCD diet-fed C57BL/6J mice[J]. Front Endocrinol (Lausanne), 2023, 14, 1118925.
doi: 10.3389/fendo.2023.1118925
|
| 13 |
LI H , HUANG S , ZHOU D , et al. Theabrownin inhibits obesity and non-alcoholic fatty liver disease in mice via serotonin-related signaling pathways and gut-liver axis[J]. J Adv Res, 2023, 52, 59- 72.
doi: 10.1016/j.jare.2023.01.008
|
| 14 |
ZHANG T , BAI S , DING X , et al. Dietary Theabrownin supplementation improves production performance and egg quality by promoting intestinal health and antioxidant capacity in laying hens[J]. Animals (Basel), 2022, 12 (20): 2856.
|
| 15 |
FAN X , YU W , Wang Q , et al. Protective effect of Broussonetia papyrifera leaf polysaccharides on intestinal integrity in a rat model of diet-induced oxidative stress[J]. Int J Biol Macromol, 2024, 268 (Pt 1): 131589.
|
| 16 |
FAN X , XIAO X , YU W , et al. Yucca schidigera purpurea-sourced arabinogalactan polysaccharides augments antioxidant capacity facilitating intestinal antioxidant functions[J]. Carbohydr Polym, 2024, 326, 121613.
doi: 10.1016/j.carbpol.2023.121613
|
| 17 |
黄冰, 谭大雁, 毛湘冰, 等. 灌服构树叶多糖对氧化鱼油饲粮诱导的大鼠肝脏功能损伤的影响[J]. 动物营养学报, 2023, 35 (12): 8074- 8082.
|
|
HUANG B , TAN D Y , MAO X B , et al. Effects of oral administration of Broussonetia papyrifera leaf polysaccharides on liver dysfunction of rats fed diet containing oxidized fish oil[J]. Chinese Journal of Animal Nutrition, 2023, 35 (12): 8074- 8082.
|
| 18 |
MAO X B , DOU Y S , FAN X Q , et al. The effect of dietary Yucca schidigera extract supplementation on productive performance, egg quality, and gut health in laying hens with Clostridium perfringens and coccidia challenge[J]. Poult Sci, 2023, 102 (8): 102822.
doi: 10.1016/j.psj.2023.102822
|
| 19 |
王清湘. 茶褐素对摄入氧化鱼油大鼠的肠道屏障功能和抗氧化能力的影响[D]. 成都: 四川农业大学, 2024.
|
|
WANG Q X. Effect of theabrownin on intestinal barrier function and antioxidant capacity in rats fed with oxidized fish oil[D]. Chengdu: Sichuan Agricultural University, 2024. (in Chinese)
|
| 20 |
MANACH C , SCALBERT A , MORAND C , et al. Polyphenols: food sources and bioavailability[J]. Am J Clin Nutr, 2004, 79 (5): 727- 747.
doi: 10.1093/ajcn/79.5.727
|
| 21 |
HIGDON JV , FREI B . Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions[J]. Crit Rev Food Sci Nutr, 2003, 43 (1): 89- 143.
doi: 10.1080/10408690390826464
|
| 22 |
XU J , XIAO X , YAN B , et al. Green tea-derived theabrownin induces cellular senescence and apoptosis of hepatocellular carcinoma through p53 signaling activation and bypassed JNK signaling suppression[J]. Cancer Cell Int, 2022, 22 (1): 39.
doi: 10.1186/s12935-022-02468-3
|
| 23 |
LAMBERT J D , SANG S , YANG C S . Possible controversy over dietary polyphenols: benefits vs. risks[J]. Chem Res Toxicol, 2007, 20 (4): 583- 585.
doi: 10.1021/tx7000515
|
| 24 |
TREFTS E , GANNON M , WASSERMAN D H . The liver[J]. Curr Biol, 2017, 27 (21): R1147- R1151.
doi: 10.1016/j.cub.2017.09.019
|
| 25 |
CHELAKKOT C , GHIM J , RYU S H . Mechanisms regulating intestinal barrier integrity and its pathological implications[J]. Exp Mol Med, 2018, 50 (8): 1- 9.
|
| 26 |
XU L , YU Y , SANG R , et al. Protective effects of taraxasterol against ethanol-induced liver injury by regulating CYP2E1/Nrf2/HO-1 and NF-κB signaling pathways in mice[J]. Oxid Med Cell Longev, 2018, 2018, 8284107.
doi: 10.1155/2018/8284107
|
| 27 |
GUICCIARDI M E , MALHI H , MOTT J L , et al. Apoptosis and necrosis in the liver[J]. Compr Physiol, 2013, 3 (2): 977- 1010.
doi: 10.1002/j.2040-4603.2013.tb00507.x
|
| 28 |
CHIU H , CHEN T , TZENG Y , et al. Improvement of liver function in humans using a mixture of schisandra fruit extract and sesamin[J]. Phytother Res, 2013, 27 (3): 368- 373.
doi: 10.1002/ptr.4702
|
| 29 |
VICENCIO J M , GALLUZZI L , TAJEDDINE N , et al. Senescence, apoptosis or autophagy[J]. Gerontology, 2008, 54 (2): 92- 99.
doi: 10.1159/000129697
|
| 30 |
CICHOŻ-LACH H , MICHALAK A . Oxidative stress as a crucial factor in liver diseases[J]. World J Gastroenterol, 2014, 20 (25): 8082- 8091.
doi: 10.3748/wjg.v20.i25.8082
|
| 31 |
CUI Y T , LIU B , XIE J , et al. The effect of emodin on cytotoxicity, apoptosis and antioxidant capacity in the hepatic cells of grass carp (Ctenopharyngodon idellus)[J]. Fish Shellfish Immunol, 2014, 38 (1): 74- 79.
doi: 10.1016/j.fsi.2014.02.018
|
| 32 |
YANG Y , CHEN S , ZHANG J M . The updated role of oxidative stress in subarachnoid hemorrhage[J]. Curr Drug Deliv, 2017, 14 (6): 832- 842.
|
| 33 |
ESMAEILNEJAD B , TAVASSOLI M , SAMIEI A , et al. Evaluation of oxidative stress and antioxidant status, serum trace mineral levels and cholinesterases activity in cattle infected with Anaplasma marginale[J]. Microb Pathog, 2018, 123, 402- 409.
doi: 10.1016/j.micpath.2018.07.039
|
| 34 |
LIU W X , JIA F L , HE Y Y , et al. Protective effects of 5-methoxypsoralen against acetaminophen-induced hepatotoxicity in mice[J]. World J Gastroenterol, 2012, 18 (18): 2197- 2202.
doi: 10.3748/wjg.v18.i18.2197
|
| 35 |
SANG S , LAMBERT J D , HO C T , et al. The chemistry and biotransformation of tea constituents[J]. Pharmacol Res, 2011, 64 (2): 87- 99.
doi: 10.1016/j.phrs.2011.02.007
|
| 36 |
NA H K , SURH Y J . Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG[J]. Food Chem Toxicol, 2008, 46 (4): 1271- 1278.
doi: 10.1016/j.fct.2007.10.006
|
| 37 |
YAMAMOTO M , KENSLER T W , MOTOHASHI H . The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis[J]. Physiol Rev, 2018, 98 (3): 1169- 1203.
doi: 10.1152/physrev.00023.2017
|